
How to Win Coding Competitions: Secrets of Champions

Week 4: Algorithms on Graphs
Lecture 7: Hamiltonian paths and Hamiltonian tours

Maxim Buzdalov
Saint Petersburg 2016

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once

FGCEDBA

A

B

C

D

E

F

G

A Hamiltonian tour is a Hamiltonian path
which starts and ends on the same vertex

FEABGCDF

A

B

C

D

E

F G

2 / 11

Solution idea

Checking whether a Hamiltonian path/tour exists is NP-complete

I No universal solution in polynomial time

Näıve solution: check all possible paths

I O(N · N!) where N = |V |
More efficient solution: dynamic programming on vertex sets

I d [S][v]: whether a path exists which:
I Starts at vertex 1
I Ends at vertex v
I Visits exactly vertices from set S

I Vertex sets are stored as bitmasks
I Numbers from 0 to 2N − 1
I i-th bit is set if vertex number i is in the set

I We can solve Hamiltonian-related problems using the values of d [S][v]

3 / 11

Solution idea

Checking whether a Hamiltonian path/tour exists is NP-complete

I No universal solution in polynomial time

Näıve solution: check all possible paths

I O(N · N!) where N = |V |
More efficient solution: dynamic programming on vertex sets

I d [S][v]: whether a path exists which:
I Starts at vertex 1
I Ends at vertex v
I Visits exactly vertices from set S

I Vertex sets are stored as bitmasks
I Numbers from 0 to 2N − 1
I i-th bit is set if vertex number i is in the set

I We can solve Hamiltonian-related problems using the values of d [S][v]

3 / 11

Solution idea

Checking whether a Hamiltonian path/tour exists is NP-complete

I No universal solution in polynomial time

Näıve solution: check all possible paths

I O(N · N!) where N = |V |
More efficient solution: dynamic programming on vertex sets

I d [S][v]: whether a path exists which:
I Starts at vertex 1
I Ends at vertex v
I Visits exactly vertices from set S

I Vertex sets are stored as bitmasks
I Numbers from 0 to 2N − 1
I i-th bit is set if vertex number i is in the set

I We can solve Hamiltonian-related problems using the values of d [S][v]

3 / 11

Solution idea

Checking whether a Hamiltonian path/tour exists is NP-complete

I No universal solution in polynomial time

Näıve solution: check all possible paths

I O(N · N!) where N = |V |

More efficient solution: dynamic programming on vertex sets
I d [S][v]: whether a path exists which:

I Starts at vertex 1
I Ends at vertex v
I Visits exactly vertices from set S

I Vertex sets are stored as bitmasks
I Numbers from 0 to 2N − 1
I i-th bit is set if vertex number i is in the set

I We can solve Hamiltonian-related problems using the values of d [S][v]

3 / 11

Solution idea

Checking whether a Hamiltonian path/tour exists is NP-complete

I No universal solution in polynomial time

Näıve solution: check all possible paths

I O(N · N!) where N = |V |
More efficient solution: dynamic programming on vertex sets

I d [S][v]: whether a path exists which:
I Starts at vertex 1
I Ends at vertex v
I Visits exactly vertices from set S

I Vertex sets are stored as bitmasks
I Numbers from 0 to 2N − 1
I i-th bit is set if vertex number i is in the set

I We can solve Hamiltonian-related problems using the values of d [S][v]

3 / 11

Solution idea

Checking whether a Hamiltonian path/tour exists is NP-complete

I No universal solution in polynomial time

Näıve solution: check all possible paths

I O(N · N!) where N = |V |
More efficient solution: dynamic programming on vertex sets

I d [S][v]: whether a path exists which:
I Starts at vertex 1
I Ends at vertex v
I Visits exactly vertices from set S

I Vertex sets are stored as bitmasks
I Numbers from 0 to 2N − 1
I i-th bit is set if vertex number i is in the set

I We can solve Hamiltonian-related problems using the values of d [S][v]

3 / 11

Solution idea

Checking whether a Hamiltonian path/tour exists is NP-complete

I No universal solution in polynomial time

Näıve solution: check all possible paths

I O(N · N!) where N = |V |
More efficient solution: dynamic programming on vertex sets

I d [S][v]: whether a path exists which:
I Starts at vertex 1
I Ends at vertex v
I Visits exactly vertices from set S

I Vertex sets are stored as bitmasks
I Numbers from 0 to 2N − 1
I i-th bit is set if vertex number i is in the set

I We can solve Hamiltonian-related problems using the values of d [S][v]

3 / 11

Solution idea

Checking whether a Hamiltonian path/tour exists is NP-complete

I No universal solution in polynomial time

Näıve solution: check all possible paths

I O(N · N!) where N = |V |
More efficient solution: dynamic programming on vertex sets

I d [S][v]: whether a path exists which:
I Starts at vertex 1
I Ends at vertex v
I Visits exactly vertices from set S

I Vertex sets are stored as bitmasks
I Numbers from 0 to 2N − 1
I i-th bit is set if vertex number i is in the set

I We can solve Hamiltonian-related problems using the values of d [S][v]

3 / 11

How dynamic programming works

procedure HamiltonianDP(V , E)
d [S][v]: if a path exists which starts at 1, ends at v and visits vertices from S
d [{1}][1]← true
for S ∈ 2V in non-decreasing order of |S | where |S | ≥ 2 do

for v ∈ S \ {1} do
d [S][v]← false
S ′ ← S \ {v}
for u ∈ S ′ do

if (u, v) ∈ E then d [S][v]← d [S][v] or d [S ′][u] end if
end for

end for
end for

end procedure

4 / 11

How dynamic programming works

procedure HamiltonianDP(V , E)
d [S][v]: if a path exists which starts at 1, ends at v and visits vertices from S
d [{1}][1]← true . A path consisting of vertex 1 exists
for S ∈ 2V in non-decreasing order of |S | where |S | ≥ 2 do

for v ∈ S \ {1} do
d [S][v]← false
S ′ ← S \ {v}
for u ∈ S ′ do

if (u, v) ∈ E then d [S][v]← d [S][v] or d [S ′][u] end if
end for

end for
end for

end procedure

4 / 11

How dynamic programming works

procedure HamiltonianDP(V , E)
d [S][v]: if a path exists which starts at 1, ends at v and visits vertices from S
d [{1}][1]← true . A path consisting of vertex 1 exists
for S ∈ 2V in non-decreasing order of |S | where |S | ≥ 2 do . Check all sets

for v ∈ S \ {1} do
d [S][v]← false
S ′ ← S \ {v}
for u ∈ S ′ do

if (u, v) ∈ E then d [S][v]← d [S][v] or d [S ′][u] end if
end for

end for
end for

end procedure

4 / 11

How dynamic programming works

procedure HamiltonianDP(V , E)
d [S][v]: if a path exists which starts at 1, ends at v and visits vertices from S
d [{1}][1]← true . A path consisting of vertex 1 exists
for S ∈ 2V in non-decreasing order of |S | where |S | ≥ 2 do . Check all sets

for v ∈ S \ {1} do . Check all possible endpoints
d [S][v]← false
S ′ ← S \ {v}
for u ∈ S ′ do

if (u, v) ∈ E then d [S][v]← d [S][v] or d [S ′][u] end if
end for

end for
end for

end procedure

4 / 11

How dynamic programming works

procedure HamiltonianDP(V , E)
d [S][v]: if a path exists which starts at 1, ends at v and visits vertices from S
d [{1}][1]← true . A path consisting of vertex 1 exists
for S ∈ 2V in non-decreasing order of |S | where |S | ≥ 2 do . Check all sets

for v ∈ S \ {1} do . Check all possible endpoints
d [S][v]← false . Initially no path
S ′ ← S \ {v}
for u ∈ S ′ do

if (u, v) ∈ E then d [S][v]← d [S][v] or d [S ′][u] end if
end for

end for
end for

end procedure

4 / 11

How dynamic programming works

procedure HamiltonianDP(V , E)
d [S][v]: if a path exists which starts at 1, ends at v and visits vertices from S
d [{1}][1]← true . A path consisting of vertex 1 exists
for S ∈ 2V in non-decreasing order of |S | where |S | ≥ 2 do . Check all sets

for v ∈ S \ {1} do . Check all possible endpoints
d [S][v]← false . Initially no path
S ′ ← S \ {v} . The previous vertex set: ready as |S ′| < |S |
for u ∈ S ′ do

if (u, v) ∈ E then d [S][v]← d [S][v] or d [S ′][u] end if
end for

end for
end for

end procedure

4 / 11

How dynamic programming works

procedure HamiltonianDP(V , E)
d [S][v]: if a path exists which starts at 1, ends at v and visits vertices from S
d [{1}][1]← true . A path consisting of vertex 1 exists
for S ∈ 2V in non-decreasing order of |S | where |S | ≥ 2 do . Check all sets

for v ∈ S \ {1} do . Check all possible endpoints
d [S][v]← false . Initially no path
S ′ ← S \ {v} . The previous vertex set: ready as |S ′| < |S |
for u ∈ S ′ do . Check all possible previous vertices

if (u, v) ∈ E then d [S][v]← d [S][v] or d [S ′][u] end if
end for

end for
end for

end procedure

4 / 11

How dynamic programming works

procedure HamiltonianDP(V , E)
d [S][v]: if a path exists which starts at 1, ends at v and visits vertices from S
d [{1}][1]← true . A path consisting of vertex 1 exists
for S ∈ 2V in non-decreasing order of |S | where |S | ≥ 2 do . Check all sets

for v ∈ S \ {1} do . Check all possible endpoints
d [S][v]← false . Initially no path
S ′ ← S \ {v} . The previous vertex set: ready as |S ′| < |S |
for u ∈ S ′ do . Check all possible previous vertices

if (u, v) ∈ E then d [S][v]← d [S][v] or d [S ′][u] end if . Update
end for

end for
end for

end procedure

4 / 11

An efficient implementation

boolean [] [] hami l ton ianDP (boolean [] [] graph) {
i n t n = graph . l e n g t h ;
boolean [] [] d = new boolean [(1 << (n − 1))] [n] ; // save one b i t , r educe memory 2x t imes
d [0] [0] = 1 ; // count v e r t i c e s from 0
f o r (i n t mask = 1 ; mask < d . l e n g t h ; ++mask) { // l o c a l l y o r d e r ed by s i z e

f o r (i n t v = 1 ; v < n ; ++v) {
i f ((mask & (1 << (v − 1))) != 0) { // mask c o n t a i n s v

i n t prev = mask ˆ (1 << (v − 1)) ; // p r e v i o u s mask
boolean c u r r = d [p rev] [0] && graph [v] [0] ; // c o n s i d e r 0 s e p a r a t e l y
f o r (i n t u = 1 ; u < n ; ++u) { // check p r e v i o u s v e r t i c e s

i f (graph [v] [u]) { // i f graph has the (v , u) edge . . .
i f ((p r ev & (1 << (u − 1))) != 0) { // . . . and i f u i s i n the mask . . .

c u r r |= d [p rev] [u] ; // update the c u r r e n t v a l u e
}

}
}
d [mask] [v] = cu r r ;

}
}

}
r e t u r n d ;

}

5 / 11

An efficient implementation

boolean [] [] hami l ton ianDP (boolean [] [] graph) {
i n t n = graph . l e n g t h ;
boolean [] [] d = new boolean [(1 << (n − 1))] [n] ; // save one b i t , r educe memory 2x t imes
d [0] [0] = 1 ; // count v e r t i c e s from 0
f o r (i n t mask = 1 ; mask < d . l e n g t h ; ++mask) { // l o c a l l y o r d e r ed by s i z e

f o r (i n t v = 1 ; v < n ; ++v) {
i f ((mask & (1 << (v − 1))) != 0) { // mask c o n t a i n s v

i n t prev = mask ˆ (1 << (v − 1)) ; // p r e v i o u s mask
boolean c u r r = d [p rev] [0] && graph [v] [0] ; // c o n s i d e r 0 s e p a r a t e l y
f o r (i n t u = 1 ; u < n ; ++u) { // check p r e v i o u s v e r t i c e s

i f (graph [v] [u]) { // i f graph has the (v , u) edge . . .
i f ((p r ev & (1 << (u − 1))) != 0) { // . . . and i f u i s i n the mask . . .

c u r r |= d [p rev] [u] ; // update the c u r r e n t v a l u e
}

}
}
d [mask] [v] = cu r r ;

}
}

}
r e t u r n d ;

}

5 / 11

An efficient implementation

boolean [] [] hami l ton ianDP (boolean [] [] graph) {
i n t n = graph . l e n g t h ;
boolean [] [] d = new boolean [(1 << (n − 1))] [n] ; // save one b i t , r educe memory 2x t imes
d [0] [0] = 1 ; // count v e r t i c e s from 0
f o r (i n t mask = 1 ; mask < d . l e n g t h ; ++mask) { // l o c a l l y o r d e r ed by s i z e

f o r (i n t v = 1 ; v < n ; ++v) {
i f ((mask & (1 << (v − 1))) != 0) { // mask c o n t a i n s v

i n t prev = mask ˆ (1 << (v − 1)) ; // p r e v i o u s mask
boolean c u r r = d [p rev] [0] && graph [v] [0] ; // c o n s i d e r 0 s e p a r a t e l y
f o r (i n t u = 1 ; u < n ; ++u) { // check p r e v i o u s v e r t i c e s

c u r r |= d [p rev] [u] && graph [v] [u] ; // i f graph has the (v , u) edge , update
}
d [mask] [v] = cu r r ;

}
}

}
r e t u r n d ;

}

6 / 11

An efficient implementation

boolean [] [] hami l ton ianDP (boolean [] [] graph) {
i n t n = graph . l e n g t h ;
boolean [] [] d = new boolean [(1 << (n − 1))] [n] ; // save one b i t , r educe memory 2x t imes
d [0] [0] = 1 ; // count v e r t i c e s from 0
f o r (i n t mask = 1 ; mask < d . l e n g t h ; ++mask) { // l o c a l l y o r d e r ed by s i z e

f o r (i n t v = 1 ; v < n ; ++v) {
i f ((mask & (1 << (v − 1))) != 0) { // mask c o n t a i n s v

i n t prev = mask ˆ (1 << (v − 1)) ; // p r e v i o u s mask
boolean c u r r = d [p rev] [0] && graph [v] [0] ; // c o n s i d e r 0 s e p a r a t e l y
f o r (i n t u = 1 ; u < n ; ++u) { // check p r e v i o u s v e r t i c e s

c u r r |= d [p rev] [u] && graph [v] [u] ; // i f graph has the (v , u) edge , update
}
d [mask] [v] = cu r r ;

}
}

}
r e t u r n d ;

}

6 / 11

An efficient implementation

boolean [] [] hami l ton ianDP (boolean [] [] graph) {
i n t n = graph . l e n g t h ;
boolean [] [] d = new boolean [(1 << (n − 1))] [n] ; // save one b i t , r educe memory 2x t imes
d [0] [0] = 1 ; // count v e r t i c e s from 0
f o r (i n t mask = 1 ; mask < d . l e n g t h ; ++mask) { // l o c a l l y o r d e r ed by s i z e

f o r (i n t v = 1 ; v < n ; ++v) {
i f ((mask & (1 << (v − 1))) != 0) { // mask c o n t a i n s v

i n t prev = mask ˆ (1 << (v − 1)) ; // p r e v i o u s mask
boolean c u r r = f a l s e ; // c o n s i d e r 0 s e p a r a t e l y
f o r (i n t u = 0 ; u < n ; ++u) { // check p r e v i o u s v e r t i c e s

c u r r |= d [p rev] [u] && graph [v] [u] ; // i f graph has the (v , u) edge , update
}
d [mask] [v] = cu r r ;

}
}

}
r e t u r n d ;

}

7 / 11

An efficient implementation

boolean [] [] hami l ton ianDP (boolean [] [] graph) {
i n t n = graph . l e n g t h ;
boolean [] [] d = new boolean [(1 << (n − 1))] [n] ; // save one b i t , r educe memory 2x t imes
d [0] [0] = 1 ; // count v e r t i c e s from 0
f o r (i n t mask = 1 ; mask < d . l e n g t h ; ++mask) { // l o c a l l y o r d e r ed by s i z e

f o r (i n t v = 1 ; v < n ; ++v) {
i f ((mask & (1 << (v − 1))) != 0) { // mask c o n t a i n s v

i n t prev = mask ˆ (1 << (v − 1)) ; // p r e v i o u s mask
boolean c u r r = f a l s e ; // c o n s i d e r 0 s e p a r a t e l y
f o r (i n t u = 0 ; u < n ; ++u) { // check p r e v i o u s v e r t i c e s

c u r r |= d [p rev] [u] && graph [v] [u] ; // i f graph has the (v , u) edge , update
}
d [mask] [v] = cu r r ;

}
}

}
r e t u r n d ;

}

7 / 11

An efficient implementation

i n t [] hami l ton ianDP (i n t [] graph) { // runn ing t ime l o o k s more l i k e ‘O(2ˆn ∗ n) ‘
i n t n = graph . l e n g t h ; // and memory more l i k e ‘O(2ˆn) ‘
i n t [] d = new i n t [(1 << (n − 1))] ;
d [0] = 1 ; // count v e r t i c e s from 0
f o r (i n t mask = 1 ; mask < d . l e n g t h ; ++mask) { // l o c a l l y o r d e r ed by s i z e

f o r (i n t v = 1 ; v < n ; ++v) {
i f ((mask & (1 << (v − 1))) != 0) { // mask c o n t a i n s v

i n t prev = mask ˆ (1 << (v − 1)) ; // p r e v i o u s mask
i f ((d [p r ev] & graph [v]) != 0) { // i f u e x i s t s w i th path 1−u and wi th edge (u , v)

d [mask] |= 1 << v ; // s a y i n g the path 1−v a l s o e x i s t s
}

}
}

}
r e t u r n d ;

}

8 / 11

Solving Hamiltonian problems

I Does a Hamiltonian tour exist?

I Evaluate d [S][v] for all S and v
I If, for some v 6= 1, d [V][v] = true and (v , 1) ∈ E , then the Hamiltonian tour exists
I Otherwise it does not exist
I Running time: O(2|V | · |V |) + O(|V |)

I Does a Hamiltonian path between a and b exist?
I Evaluate d [S][v] for all S and v
I If there exists S ′ ⊆ 2V\{1,a,b}, such that:

I d [S ′ ∪ {1, a}][a] = true
I d [V \ S ′ \ {a}][b] = true

then a Hamiltonian path between a and b exists, otherwise not
I Simple special cases if a = 1 or b = 1
I Running time: O(2|V | · |V |) + O(2|V |)

9 / 11

Solving Hamiltonian problems

I Does a Hamiltonian tour exist?
I Evaluate d [S][v] for all S and v
I If, for some v 6= 1, d [V][v] = true and (v , 1) ∈ E , then the Hamiltonian tour exists
I Otherwise it does not exist
I Running time: O(2|V | · |V |) + O(|V |)

I Does a Hamiltonian path between a and b exist?
I Evaluate d [S][v] for all S and v
I If there exists S ′ ⊆ 2V\{1,a,b}, such that:

I d [S ′ ∪ {1, a}][a] = true
I d [V \ S ′ \ {a}][b] = true

then a Hamiltonian path between a and b exists, otherwise not
I Simple special cases if a = 1 or b = 1
I Running time: O(2|V | · |V |) + O(2|V |)

9 / 11

Solving Hamiltonian problems

I Does a Hamiltonian tour exist?
I Evaluate d [S][v] for all S and v
I If, for some v 6= 1, d [V][v] = true and (v , 1) ∈ E , then the Hamiltonian tour exists
I Otherwise it does not exist
I Running time: O(2|V | · |V |) + O(|V |)

I Does a Hamiltonian path between a and b exist?

I Evaluate d [S][v] for all S and v
I If there exists S ′ ⊆ 2V\{1,a,b}, such that:

I d [S ′ ∪ {1, a}][a] = true
I d [V \ S ′ \ {a}][b] = true

then a Hamiltonian path between a and b exists, otherwise not
I Simple special cases if a = 1 or b = 1
I Running time: O(2|V | · |V |) + O(2|V |)

9 / 11

Solving Hamiltonian problems

I Does a Hamiltonian tour exist?
I Evaluate d [S][v] for all S and v
I If, for some v 6= 1, d [V][v] = true and (v , 1) ∈ E , then the Hamiltonian tour exists
I Otherwise it does not exist
I Running time: O(2|V | · |V |) + O(|V |)

I Does a Hamiltonian path between a and b exist?
I Evaluate d [S][v] for all S and v
I If there exists S ′ ⊆ 2V\{1,a,b}, such that:

I d [S ′ ∪ {1, a}][a] = true
I d [V \ S ′ \ {a}][b] = true

then a Hamiltonian path between a and b exists, otherwise not
I Simple special cases if a = 1 or b = 1
I Running time: O(2|V | · |V |) + O(2|V |)

9 / 11

Solving Hamiltonian problems

I Does any Hamiltonian path exist?

I Evaluate d [S][v] for all S and v
I Check all S ′ ⊆ V \ {1}:

I If exists a ∈ S ′ such that d [S ′ ∪ {1}][a] = true. . .
I . . . and b /∈ S ′ such that d [V \ S ′][b] = true. . .
I . . . then a Hamiltonian path exists between a and b
I . . . and this can be done in O(1) per single S ′ using bit arithmetic!

I Running time: O(2|V | · |V |) + O(2|V |)

I Restore a Hamiltonian path/tour
I Values of d [S][v] provide enough information to restore a path in O(|V |2)

I Count Hamiltonian paths/tours
I d [S][v] stores the number of paths from 1 to v using vertices from S

I Shortest Hamiltonian path/tour (Traveling Salesperson Problem)
I d [S][v] stores the shortest length of a path from 1 to v using vertices from S

10 / 11

Solving Hamiltonian problems

I Does any Hamiltonian path exist?
I Evaluate d [S][v] for all S and v
I Check all S ′ ⊆ V \ {1}:

I If exists a ∈ S ′ such that d [S ′ ∪ {1}][a] = true. . .
I . . . and b /∈ S ′ such that d [V \ S ′][b] = true. . .
I . . . then a Hamiltonian path exists between a and b
I . . . and this can be done in O(1) per single S ′ using bit arithmetic!

I Running time: O(2|V | · |V |) + O(2|V |)

I Restore a Hamiltonian path/tour
I Values of d [S][v] provide enough information to restore a path in O(|V |2)

I Count Hamiltonian paths/tours
I d [S][v] stores the number of paths from 1 to v using vertices from S

I Shortest Hamiltonian path/tour (Traveling Salesperson Problem)
I d [S][v] stores the shortest length of a path from 1 to v using vertices from S

10 / 11

Solving Hamiltonian problems

I Does any Hamiltonian path exist?
I Evaluate d [S][v] for all S and v
I Check all S ′ ⊆ V \ {1}:

I If exists a ∈ S ′ such that d [S ′ ∪ {1}][a] = true. . .
I . . . and b /∈ S ′ such that d [V \ S ′][b] = true. . .
I . . . then a Hamiltonian path exists between a and b
I . . . and this can be done in O(1) per single S ′ using bit arithmetic!

I Running time: O(2|V | · |V |) + O(2|V |)

I Restore a Hamiltonian path/tour

I Values of d [S][v] provide enough information to restore a path in O(|V |2)

I Count Hamiltonian paths/tours
I d [S][v] stores the number of paths from 1 to v using vertices from S

I Shortest Hamiltonian path/tour (Traveling Salesperson Problem)
I d [S][v] stores the shortest length of a path from 1 to v using vertices from S

10 / 11

Solving Hamiltonian problems

I Does any Hamiltonian path exist?
I Evaluate d [S][v] for all S and v
I Check all S ′ ⊆ V \ {1}:

I If exists a ∈ S ′ such that d [S ′ ∪ {1}][a] = true. . .
I . . . and b /∈ S ′ such that d [V \ S ′][b] = true. . .
I . . . then a Hamiltonian path exists between a and b
I . . . and this can be done in O(1) per single S ′ using bit arithmetic!

I Running time: O(2|V | · |V |) + O(2|V |)

I Restore a Hamiltonian path/tour
I Values of d [S][v] provide enough information to restore a path in O(|V |2)

I Count Hamiltonian paths/tours
I d [S][v] stores the number of paths from 1 to v using vertices from S

I Shortest Hamiltonian path/tour (Traveling Salesperson Problem)
I d [S][v] stores the shortest length of a path from 1 to v using vertices from S

10 / 11

Solving Hamiltonian problems

I Does any Hamiltonian path exist?
I Evaluate d [S][v] for all S and v
I Check all S ′ ⊆ V \ {1}:

I If exists a ∈ S ′ such that d [S ′ ∪ {1}][a] = true. . .
I . . . and b /∈ S ′ such that d [V \ S ′][b] = true. . .
I . . . then a Hamiltonian path exists between a and b
I . . . and this can be done in O(1) per single S ′ using bit arithmetic!

I Running time: O(2|V | · |V |) + O(2|V |)

I Restore a Hamiltonian path/tour
I Values of d [S][v] provide enough information to restore a path in O(|V |2)

I Count Hamiltonian paths/tours

I d [S][v] stores the number of paths from 1 to v using vertices from S

I Shortest Hamiltonian path/tour (Traveling Salesperson Problem)
I d [S][v] stores the shortest length of a path from 1 to v using vertices from S

10 / 11

Solving Hamiltonian problems

I Does any Hamiltonian path exist?
I Evaluate d [S][v] for all S and v
I Check all S ′ ⊆ V \ {1}:

I If exists a ∈ S ′ such that d [S ′ ∪ {1}][a] = true. . .
I . . . and b /∈ S ′ such that d [V \ S ′][b] = true. . .
I . . . then a Hamiltonian path exists between a and b
I . . . and this can be done in O(1) per single S ′ using bit arithmetic!

I Running time: O(2|V | · |V |) + O(2|V |)

I Restore a Hamiltonian path/tour
I Values of d [S][v] provide enough information to restore a path in O(|V |2)

I Count Hamiltonian paths/tours
I d [S][v] stores the number of paths from 1 to v using vertices from S

I Shortest Hamiltonian path/tour (Traveling Salesperson Problem)
I d [S][v] stores the shortest length of a path from 1 to v using vertices from S

10 / 11

Solving Hamiltonian problems

I Does any Hamiltonian path exist?
I Evaluate d [S][v] for all S and v
I Check all S ′ ⊆ V \ {1}:

I If exists a ∈ S ′ such that d [S ′ ∪ {1}][a] = true. . .
I . . . and b /∈ S ′ such that d [V \ S ′][b] = true. . .
I . . . then a Hamiltonian path exists between a and b
I . . . and this can be done in O(1) per single S ′ using bit arithmetic!

I Running time: O(2|V | · |V |) + O(2|V |)

I Restore a Hamiltonian path/tour
I Values of d [S][v] provide enough information to restore a path in O(|V |2)

I Count Hamiltonian paths/tours
I d [S][v] stores the number of paths from 1 to v using vertices from S

I Shortest Hamiltonian path/tour (Traveling Salesperson Problem)

I d [S][v] stores the shortest length of a path from 1 to v using vertices from S

10 / 11

Solving Hamiltonian problems

I Does any Hamiltonian path exist?
I Evaluate d [S][v] for all S and v
I Check all S ′ ⊆ V \ {1}:

I If exists a ∈ S ′ such that d [S ′ ∪ {1}][a] = true. . .
I . . . and b /∈ S ′ such that d [V \ S ′][b] = true. . .
I . . . then a Hamiltonian path exists between a and b
I . . . and this can be done in O(1) per single S ′ using bit arithmetic!

I Running time: O(2|V | · |V |) + O(2|V |)

I Restore a Hamiltonian path/tour
I Values of d [S][v] provide enough information to restore a path in O(|V |2)

I Count Hamiltonian paths/tours
I d [S][v] stores the number of paths from 1 to v using vertices from S

I Shortest Hamiltonian path/tour (Traveling Salesperson Problem)
I d [S][v] stores the shortest length of a path from 1 to v using vertices from S

10 / 11

Hamiltonian tours and tournaments

Special case: Every tournament has a Hamiltonian path.

Proof:

I Start building this path from an arbitary vertex, say, v1
I Assume a path v1 . . . vk is built. Add a new vertex v :

I If there is an edge (v , v1) ∈ E , prepend v
I Otherwise, if there is an edge (vk , v) ∈ E , append v
I Otherwise: find i such that (vi , v) ∈ E and (v , vi+1) ∈ E – it will exist because

the graph is a tournament – then insert v between vi and vi+1

11 / 11

Hamiltonian tours and tournaments

Special case: Every tournament has a Hamiltonian path. Proof:

I Start building this path from an arbitary vertex, say, v1
I Assume a path v1 . . . vk is built. Add a new vertex v :

I If there is an edge (v , v1) ∈ E , prepend v
I Otherwise, if there is an edge (vk , v) ∈ E , append v
I Otherwise: find i such that (vi , v) ∈ E and (v , vi+1) ∈ E – it will exist because

the graph is a tournament – then insert v between vi and vi+1

11 / 11

