ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 4: Algorithms on Graphs
Lecture 7: Hamiltonian paths and Hamiltonian tours

Maxim Buzdalov
Saint Petersburg 2016

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian tour is a Hamiltonian path which starts and ends on the same vertex

FEABGCDF

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian tour is a Hamiltonian path which starts and ends on the same vertex

FEABGCDF

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian tour is a Hamiltonian path which starts and ends on the same vertex

FEABGCDF

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian tour is a Hamiltonian path which starts and ends on the same vertex

FEABGCDF

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian tour is a Hamiltonian path which starts and ends on the same vertex

FEABGCDF

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian tour is a Hamiltonian path which starts and ends on the same vertex

FEABGCDF

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian tour is a Hamiltonian path which starts and ends on the same vertex

FEABGCDF

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian tour is a Hamiltonian path which starts and ends on the same vertex

FEABGCDF

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian tour is a Hamiltonian path which starts and ends on the same vertex

FEABGCDF

A Hamiltonian path is a path in a graph that contains each vertex of the graph exactly once

FGCEDBA

A Hamiltonian tour is a Hamiltonian path which starts and ends on the same vertex

FEABGCDF

Checking whether a Hamiltonian path/tour exists is NP-complete

Checking whether a Hamiltonian path/tour exists is NP-complete

- No universal solution in polynomial time

Checking whether a Hamiltonian path/tour exists is NP-complete

- No universal solution in polynomial time

Naïve solution: check all possible paths

Checking whether a Hamiltonian path/tour exists is NP-complete

- No universal solution in polynomial time

Naïve solution: check all possible paths

- $O(N \cdot N!)$ where $N=|V|$

Checking whether a Hamiltonian path/tour exists is NP-complete

- No universal solution in polynomial time

Naïve solution: check all possible paths

- $O(N \cdot N!)$ where $N=|V|$

More efficient solution: dynamic programming on vertex sets

Checking whether a Hamiltonian path/tour exists is NP-complete

- No universal solution in polynomial time

Naïve solution: check all possible paths

- $O(N \cdot N!)$ where $N=|V|$

More efficient solution: dynamic programming on vertex sets

- $d[S][v]$: whether a path exists which:
- Starts at vertex 1
- Ends at vertex v
- Visits exactly vertices from set S

Checking whether a Hamiltonian path/tour exists is NP-complete

- No universal solution in polynomial time

Naïve solution: check all possible paths

- $O(N \cdot N!)$ where $N=|V|$

More efficient solution: dynamic programming on vertex sets

- $d[S][v]$: whether a path exists which:
- Starts at vertex 1
- Ends at vertex v
- Visits exactly vertices from set S
- Vertex sets are stored as bitmasks
- Numbers from 0 to $2^{N}-1$
- i-th bit is set if vertex number i is in the set

Checking whether a Hamiltonian path/tour exists is NP-complete

- No universal solution in polynomial time

Naïve solution: check all possible paths

- $O(N \cdot N!)$ where $N=|V|$

More efficient solution: dynamic programming on vertex sets

- $d[S][v]$: whether a path exists which:
- Starts at vertex 1
- Ends at vertex v
- Visits exactly vertices from set S
- Vertex sets are stored as bitmasks
- Numbers from 0 to $2^{N}-1$
- i-th bit is set if vertex number i is in the set
- We can solve Hamiltonian-related problems using the values of $d[S][v]$
procedure HamiltonianDP (V, E)
$d[S][v]$: if a path exists which starts at 1 , ends at v and visits vertices from S
$d[\{1\}][1] \leftarrow$ TRUE
for $S \in 2^{V}$ in non-decreasing order of $|S|$ where $|S| \geq 2$ do
for $v \in S \backslash\{1\}$ do
$d[S][v] \leftarrow$ FALSE
$S^{\prime} \leftarrow S \backslash\{v\}$ for $u \in S^{\prime}$ do
if $(u, v) \in E$ then $d[S][v] \leftarrow d[S][v]$ or $d\left[S^{\prime}\right][u]$ end if end for end for
end for
end procedure
procedure HamiltonianDP (V, E)
$d[S][v]$: if a path exists which starts at 1 , ends at v and visits vertices from S
$d[\{1\}][1] \leftarrow$ TRUE $\quad \triangleright$ A path consisting of vertex 1 exists
for $S \in 2^{V}$ in non-decreasing order of $|S|$ where $|S| \geq 2$ do
for $v \in S \backslash\{1\}$ do $d[S][v] \leftarrow$ FALSE $S^{\prime} \leftarrow S \backslash\{v\}$ for $u \in S^{\prime}$ do
if $(u, v) \in E$ then $d[S][v] \leftarrow d[S][v]$ or $d\left[S^{\prime}\right][u]$ end if end for end for
end for
end procedure
procedure HamiltonianDP (V, E)
$d[S][v]$: if a path exists which starts at 1 , ends at v and visits vertices from S
$d[\{1\}][1] \leftarrow$ TRUE $\quad \triangleright$ A path consisting of vertex 1 exists
for $S \in 2^{V}$ in non-decreasing order of $|S|$ where $|S| \geq 2$ do \triangleright Check all sets
for $v \in S \backslash\{1\}$ do $d[S][v] \leftarrow$ FALSE $S^{\prime} \leftarrow S \backslash\{v\}$ for $u \in S^{\prime}$ do
if $(u, v) \in E$ then $d[S][v] \leftarrow d[S][v]$ or $d\left[S^{\prime}\right][u]$ end if end for end for
end for
end procedure
procedure HamiltonianDP (V, E)
$d[S][v]$: if a path exists which starts at 1 , ends at v and visits vertices from S
$d[\{1\}][1] \leftarrow$ TRUE $\quad \triangleright$ A path consisting of vertex 1 exists for $S \in 2^{V}$ in non-decreasing order of $|S|$ where $|S| \geq 2$ do \quad Check all sets for $v \in S \backslash\{1\}$ do \triangleright Check all possible endpoints $d[S][v] \leftarrow$ FALSE $S^{\prime} \leftarrow S \backslash\{v\}$ for $u \in S^{\prime}$ do
if $(u, v) \in E$ then $d[S][v] \leftarrow d[S][v]$ or $d\left[S^{\prime}\right][u]$ end if end for end for
end for
end procedure
procedure HamiltonianDP (V, E)
$d[S][v]$: if a path exists which starts at 1 , ends at v and visits vertices from S
$d[\{1\}][1] \leftarrow$ TRUE $\quad \triangleright$ A path consisting of vertex 1 exists for $S \in 2^{V}$ in non-decreasing order of $|S|$ where $|S| \geq 2$ do \quad Check all sets for $v \in S \backslash\{1\}$ do \triangleright Check all possible endpoints $d[S][v] \leftarrow$ FALSE $\quad \triangleright$ Initially no path $S^{\prime} \leftarrow S \backslash\{v\}$ for $u \in S^{\prime}$ do
if $(u, v) \in E$ then $d[S][v] \leftarrow d[S][v]$ or $d\left[S^{\prime}\right][u]$ end if end for end for
end for
end procedure
procedure HamiltonianDP (V, E)
$d[S][v]$: if a path exists which starts at 1 , ends at v and visits vertices from S
$d[\{1\}][1] \leftarrow$ TRUE \triangleright A path consisting of vertex 1 exists
for $S \in 2^{V}$ in non-decreasing order of $|S|$ where $|S| \geq 2$ do \quad Check all sets

$$
\text { for } v \in S \backslash\{1\} \text { do } \quad \triangleright \text { Check all possible endpoints }
$$

$d[S][v] \leftarrow$ FALSE
\triangleright Initially no path
$S^{\prime} \leftarrow S \backslash\{v\} \quad \triangleright$ The previous vertex set: ready as $\left|S^{\prime}\right|<|S|$ for $u \in S^{\prime}$ do
if $(u, v) \in E$ then $d[S][v] \leftarrow d[S][v]$ or $d\left[S^{\prime}\right][u]$ end if end for end for
end for
end procedure
procedure HamiltonianDP (V, E)
$d[S][v]$: if a path exists which starts at 1 , ends at v and visits vertices from S
$d[\{1\}][1] \leftarrow$ TRUE \triangleright A path consisting of vertex 1 exists
for $S \in 2^{V}$ in non-decreasing order of $|S|$ where $|S| \geq 2$ do \quad Check all sets for $v \in S \backslash\{1\}$ do \triangleright Check all possible endpoints $d[S][v] \leftarrow$ FALSE
\triangleright Initially no path
$S^{\prime} \leftarrow S \backslash\{v\} \quad \triangleright$ The previous vertex set: ready as $\left|S^{\prime}\right|<|S|$ for $u \in S^{\prime}$ do $\quad \triangleright$ Check all possible previous vertices if $(u, v) \in E$ then $d[S][v] \leftarrow d[S][v]$ or $d\left[S^{\prime}\right][u]$ end if end for end for
end for
end procedure
procedure HamiltonianDP (V, E)
$d[S][v]$: if a path exists which starts at 1 , ends at v and visits vertices from S
$d[\{1\}][1] \leftarrow$ TRUE \triangleright A path consisting of vertex 1 exists for $S \in 2^{V}$ in non-decreasing order of $|S|$ where $|S| \geq 2$ do \quad Check all sets for $v \in S \backslash\{1\}$ do \triangleright Check all possible endpoints $d[S][v] \leftarrow$ FALSE
\triangleright Initially no path $S^{\prime} \leftarrow S \backslash\{v\} \quad \triangleright$ The previous vertex set: ready as $\left|S^{\prime}\right|<|S|$ for $u \in S^{\prime}$ do \triangleright Check all possible previous vertices if $(u, v) \in E$ then $d[S][v] \leftarrow d[S][v]$ or $d\left[S^{\prime}\right][u]$ end if \triangleright Update end for end for
end for
end procedure

```
boolean[][] hamiltonianDP(boolean[][] graph) {
    int n= graph.length;
    boolean[][] d = new boolean[(1<< (n - 1))][n]; // save one bit, reduce memory 2x times
    d[0][0] = 1;
    for (int mask = 1; mask< d.length; ++mask) {
        for (int v=1;v< n; ++v) {
            if ((mask & (1<< (v - 1))) != 0) {
                int prev = mask ^ (1<< (v - 1));
                boolean curr = d[prev][0] && graph[v][0];
                    for (int u = 1; u< n; ++u) {
                        if (graph[v][u]) {
                            if ((prev & (1<< (u-1))) != 0)
                                    curr |= d[prev][u];
                        }
                }
                }
            d[mask][v] = curr;
            }
        }
    }
    return d;
}
```

```
boolean[][] hamiltonianDP(boolean[][] graph) {
    int n= graph.length;
    boolean[][] d = new boolean[(1<< (n - 1))][n]; // save one bit, reduce memory 2x times
    d[0][0] = 1;
    for (int mask = 1; mask< d.length; ++mask) {
        for (int v=1;v< n; ++v) {
            if ((mask & (1<< (v - 1))) != 0) {
                int prev = mask ^ (1<< (v - 1));
                boolean curr = d[prev][0] && graph[v][0];
                    for (int u = 1; u< n; ++u) {
                        if (graph[v][u]) {
                            if ((prev & (1<< (u-1))) != 0)
                                    curr |= d[prev][u];
                        }
                }
                }
            d[mask][v] = curr;
            }
        }
    }
    return d;
}
```

```
boolean[][] hamiltonianDP(boolean[][] graph) {
    int n = graph.length;
    boolean[][] d = new boolean[(1<< (n - 1))][n]; // save one bit, reduce memory 2x times
    d[0][0] = 1.
    for (int mask = 1; mask< d.length; ++mask) {
        for (int v = 1; v< n; ++v) {
            if ((mask & (1<< (v - 1))) != 0) {
                int prev = mask ^ (1<< (v - 1));
                boolean curr = d[prev][0] && graph[v][0];
            for (int u = 1; u< n; ++u) {
                    curr |= d[prev][u] && graph[v][u];
                }
            d[mask][v] = curr;
            }
        }
    }
    return d;
}
```

```
boolean[][] hamiltonianDP(boolean[][] graph) {
    int n = graph.length;
    boolean[][] d = new boolean[(1<< (n - 1))][n]; // save one bit, reduce memory 2x times
    d[0][0] = 1;
    for (int mask = 1; mask < d.length; ++mask) {
        for (int v = 1; v< n; ++v) {
            if ((mask & (1<< (v - 1))) != 0) {
                int prev = mask ^ (1<< (v - 1));
                boolean curr = d[prev][0] && graph[v][0];
                    for (int u = 1; u< n; ++u) {
                    curr |= d[prev][u] && graph[v][u];
                }
            d[mask][v] = curr;
            }
        }
    }
    return d;
}
```

```
boolean[][] hamiltonianDP(boolean[][] graph) {
    int n = graph.length;
    boolean[][] d = new boolean[(1<< (n - 1))][n]; // save one bit, reduce memory 2x times
    d[0][0] = 1;
    for (int mask = 1; mask< d.length; ++mask) {
        for (int v = 1; v< n; ++v) {
            if ((mask & (1<< (v - 1))) != 0) {
                int prev = mask ^ (1 << (v - 1));
                boolean curr = false;
            for (int u = 0; u < n; ++u) {
                    curr |= d[prev][u] && graph[v][u];
                }
            d[mask][v] = curr;
            }
        }
    }
    return d;
}
```

```
boolean[][] hamiltonianDP(boolean[][] graph) {
    int n = graph.length;
    boolean[][] d = new boolean[(1<< (n - 1))][n]; // save one bit, reduce memory 2x times
    d[0][0] = 1;
    for (int mask = 1; mask< d.length; ++mask) {
        for (int v=1;v< n; ++v) {
            if ((mask & (1<< (v - 1))) != 0) {
                int prev = mask ^ (1 << (v - 1));
                boolean curr = false;
                for (int u = 0; u < n; ++u) {
                    curr |= d[prev][u] && graph[v][u];
                }
            d[mask][v] = curr;
            }
        }
    }
    return d;
}
```

```
int[] hamiltonianDP(int [] graph) {
    int n = graph.length;
    int[] d = new int[(1<< (n - 1))];
    d[0] = 1; // count vertices from 0
    for (int mask = 1; mask < d.length; ++mask) { // locally ordered by size
        for (int v=1; v< n; ++v) {
            if ((mask & (1<< (v - 1))) != 0) { // mask contains v
                int prev = mask ^ (1 << (v - 1)); // previous mask
                if ((d[prev] & graph[v]) != 0) { // if u exists with path 1-u and with edge (u,v)
                    d[mask] |= 1<< v;
                }
                }
        }
    }
    return d;
}
```

- Does a Hamiltonian tour exist?
- Does a Hamiltonian tour exist?
- Evaluate $d[S][v]$ for all S and v
- If, for some $v \neq 1, d[V][v]=$ TRUE and $(v, 1) \in E$, then the Hamiltonian tour exists
- Otherwise it does not exist
- Running time: $O\left(2^{|V|} \cdot|V|\right)+O(|V|)$
- Does a Hamiltonian tour exist?
- Evaluate $d[S][v]$ for all S and v
- If, for some $v \neq 1, d[V][v]=\operatorname{TRUE}$ and $(v, 1) \in E$, then the Hamiltonian tour exists
- Otherwise it does not exist
- Running time: $O\left(2^{|V|} \cdot|V|\right)+O(|V|)$
- Does a Hamiltonian path between a and b exist?
- Does a Hamiltonian tour exist?
- Evaluate $d[S][v]$ for all S and v
- If, for some $v \neq 1, d[V][v]=\operatorname{TRUE}$ and $(v, 1) \in E$, then the Hamiltonian tour exists
- Otherwise it does not exist
- Running time: $O\left(2^{|V|} \cdot|V|\right)+O(|V|)$
- Does a Hamiltonian path between a and b exist?
- Evaluate $d[S][v]$ for all S and v
- If there exists $S^{\prime} \subseteq 2^{V \backslash\{1, a, b\}}$, such that:
- $d\left[S^{\prime} \cup\{1, a\}\right][a]=$ TRUE
- $d\left[V \backslash S^{\prime} \backslash\{a\}\right][b]=$ TRUE
then a Hamiltonian path between a and b exists, otherwise not
- Simple special cases if $a=1$ or $b=1$
- Running time: $O\left(2^{|V|} \cdot|V|\right)+O\left(2^{|V|}\right)$
- Does any Hamiltonian path exist?
- Does any Hamiltonian path exist?
- Evaluate $d[S][v]$ for all S and v
- Check all $S^{\prime} \subseteq V \backslash\{1\}$:
- If exists $a \in S^{\prime}$ such that $d\left[S^{\prime} \cup\{1\}\right][a]=$ TRUE...
- \ldots. and $b \notin S^{\prime}$ such that $d\left[V \backslash S^{\prime}\right][b]=$ TRUE. .
- ...then a Hamiltonian path exists between a and b
- and this can be done in $O(1)$ per single S^{\prime} using bit arithmetic!
- Running time: $O\left(2^{|V|} \cdot|V|\right)+O\left(2^{|V|}\right)$
- Does any Hamiltonian path exist?
- Evaluate $d[S][v]$ for all S and v
- Check all $S^{\prime} \subseteq V \backslash\{1\}$:
- If exists $a \in S^{\prime}$ such that $d\left[S^{\prime} \cup\{1\}\right][a]=$ TRUE.. .
- . . . and $b \notin S^{\prime}$ such that $d\left[V \backslash S^{\prime}\right][b]=$ TRUE. .
- ...then a Hamiltonian path exists between a and b
- and this can be done in $O(1)$ per single S^{\prime} using bit arithmetic!
- Running time: $O\left(2^{|V|} \cdot|V|\right)+O\left(2^{|V|}\right)$
- Restore a Hamiltonian path/tour
- Does any Hamiltonian path exist?
- Evaluate $d[S][v]$ for all S and v
- Check all $S^{\prime} \subseteq V \backslash\{1\}$:
- If exists $a \in S^{\prime}$ such that $d\left[S^{\prime} \cup\{1\}\right][a]=$ TRUE...
- . . . and $b \notin S^{\prime}$ such that $d\left[V \backslash S^{\prime}\right][b]=$ TRUE. . .
- ...then a Hamiltonian path exists between a and b
- and this can be done in $O(1)$ per single S^{\prime} using bit arithmetic!
- Running time: $O\left(2^{|V|} \cdot|V|\right)+O\left(2^{|V|}\right)$
- Restore a Hamiltonian path/tour
- Values of $d[S][v]$ provide enough information to restore a path in $O\left(|V|^{2}\right)$
- Does any Hamiltonian path exist?
- Evaluate $d[S][v]$ for all S and v
- Check all $S^{\prime} \subseteq V \backslash\{1\}$:
- If exists $a \in S^{\prime}$ such that $d\left[S^{\prime} \cup\{1\}\right][a]=$ TRUE...
- . . . and $b \notin S^{\prime}$ such that $d\left[V \backslash S^{\prime}\right][b]=$ TRUE. . .
- ...then a Hamiltonian path exists between a and b
- and this can be done in $O(1)$ per single S^{\prime} using bit arithmetic!
- Running time: $O\left(2^{|V|} \cdot|V|\right)+O\left(2^{|V|}\right)$
- Restore a Hamiltonian path/tour
- Values of $d[S][v]$ provide enough information to restore a path in $O\left(|V|^{2}\right)$
- Count Hamiltonian paths/tours
- Does any Hamiltonian path exist?
- Evaluate $d[S][v]$ for all S and v
- Check all $S^{\prime} \subseteq V \backslash\{1\}$:
- If exists $a \in S^{\prime}$ such that $d\left[S^{\prime} \cup\{1\}\right][a]=$ TRUE.. .
- . . . and $b \notin S^{\prime}$ such that $d\left[V \backslash S^{\prime}\right][b]=$ TRUE. .
- ...then a Hamiltonian path exists between a and b
- and this can be done in $O(1)$ per single S^{\prime} using bit arithmetic!
- Running time: $O\left(2^{|V|} \cdot|V|\right)+O\left(2^{|V|}\right)$
- Restore a Hamiltonian path/tour
- Values of $d[S][v]$ provide enough information to restore a path in $O\left(|V|^{2}\right)$
- Count Hamiltonian paths/tours
- $d[S][v]$ stores the number of paths from 1 to v using vertices from S
- Does any Hamiltonian path exist?
- Evaluate $d[S][v]$ for all S and v
- Check all $S^{\prime} \subseteq V \backslash\{1\}$:
- If exists $a \in S^{\prime}$ such that $d\left[S^{\prime} \cup\{1\}\right][a]=$ TRUE...
- . . . and $b \notin S^{\prime}$ such that $d\left[V \backslash S^{\prime}\right][b]=$ TRUE. . .
- ...then a Hamiltonian path exists between a and b
- and this can be done in $O(1)$ per single S^{\prime} using bit arithmetic!
- Running time: $O\left(2^{|V|} \cdot|V|\right)+O\left(2^{|V|}\right)$
- Restore a Hamiltonian path/tour
- Values of $d[S][v]$ provide enough information to restore a path in $O\left(|V|^{2}\right)$
- Count Hamiltonian paths/tours
- $d[S][v]$ stores the number of paths from 1 to v using vertices from S
- Shortest Hamiltonian path/tour (Traveling Salesperson Problem)
- Does any Hamiltonian path exist?
- Evaluate $d[S][v]$ for all S and v
- Check all $S^{\prime} \subseteq V \backslash\{1\}$:
- If exists $a \in S^{\prime}$ such that $d\left[S^{\prime} \cup\{1\}\right][a]=$ TRUE...
- \ldots. and $b \notin S^{\prime}$ such that $d\left[V \backslash S^{\prime}\right][b]=$ TRUE. .
- ...then a Hamiltonian path exists between a and b
- and this can be done in $O(1)$ per single S^{\prime} using bit arithmetic!
- Running time: $O\left(2^{|V|} \cdot|V|\right)+O\left(2^{|V|}\right)$
- Restore a Hamiltonian path/tour
- Values of $d[S][v]$ provide enough information to restore a path in $O\left(|V|^{2}\right)$
- Count Hamiltonian paths/tours
- $d[S][v]$ stores the number of paths from 1 to v using vertices from S
- Shortest Hamiltonian path/tour (Traveling Salesperson Problem)
- $d[S][v]$ stores the shortest length of a path from 1 to v using vertices from S

Special case: Every tournament has a Hamiltonian path.

Special case: Every tournament has a Hamiltonian path. Proof:

- Start building this path from an arbitary vertex, say, v_{1}
- Assume a path $v_{1} \ldots v_{k}$ is built. Add a new vertex v :
- If there is an edge $\left(v, v_{1}\right) \in E$, prepend v
- Otherwise, if there is an edge $\left(v_{k}, v\right) \in E$, append v
- Otherwise: find i such that $\left(v_{i}, v\right) \in E$ and $\left(v, v_{i+1}\right) \in E$ - it will exist because the graph is a tournament - then insert v between v_{i} and v_{i+1}

