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Definitions

A Hamiltonian path is a path in a graph
that contains each vertex of the graph
exactly once
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Solution idea

Checking whether a Hamiltonian path/tour exists is NP-complete

I No universal solution in polynomial time

Näıve solution: check all possible paths

I O(N · N!) where N = |V |
More efficient solution: dynamic programming on vertex sets

I d [S ][v ]: whether a path exists which:
I Starts at vertex 1
I Ends at vertex v
I Visits exactly vertices from set S

I Vertex sets are stored as bitmasks
I Numbers from 0 to 2N − 1
I i-th bit is set if vertex number i is in the set

I We can solve Hamiltonian-related problems using the values of d [S ][v ]
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How dynamic programming works

procedure HamiltonianDP(V , E )
d [S ][v ]: if a path exists which starts at 1, ends at v and visits vertices from S
d [{1}][1]← true
for S ∈ 2V in non-decreasing order of |S | where |S | ≥ 2 do

for v ∈ S \ {1} do
d [S ][v ]← false
S ′ ← S \ {v}
for u ∈ S ′ do

if (u, v) ∈ E then d [S ][v ]← d [S ][v ] or d [S ′][u] end if
end for

end for
end for

end procedure
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An efficient implementation

boolean [ ] [ ] hami l ton ianDP ( boolean [ ] [ ] graph ) {
i n t n = graph . l e n g t h ;
boolean [ ] [ ] d = new boolean [ ( 1 << ( n − 1 ) ) ] [ n ] ; // save one b i t , r educe memory 2x t imes
d [ 0 ] [ 0 ] = 1 ; // count v e r t i c e s from 0
f o r ( i n t mask = 1 ; mask < d . l e n g t h ; ++mask ) { // l o c a l l y o r d e r ed by s i z e

f o r ( i n t v = 1 ; v < n ; ++v ) {
i f ( ( mask & (1 << ( v − 1 ) ) ) != 0) { // mask c o n t a i n s v

i n t prev = mask ˆ (1 << ( v − 1 ) ) ; // p r e v i o u s mask
boolean c u r r = d [ p rev ] [ 0 ] && graph [ v ] [ 0 ] ; // c o n s i d e r 0 s e p a r a t e l y
f o r ( i n t u = 1 ; u < n ; ++u) { // check p r e v i o u s v e r t i c e s

i f ( graph [ v ] [ u ] ) { // i f graph has the ( v , u ) edge . . .
i f ( ( p r ev & (1 << ( u − 1 ) ) ) != 0 ) { // . . . and i f u i s i n the mask . . .

c u r r |= d [ p rev ] [ u ] ; // update the c u r r e n t v a l u e
}

}
}
d [ mask ] [ v ] = cu r r ;

}
}

}
r e t u r n d ;

}
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An efficient implementation

i n t [ ] hami l ton ianDP ( i n t [ ] graph ) { // runn ing t ime l o o k s more l i k e ‘O(2ˆn ∗ n ) ‘
i n t n = graph . l e n g t h ; // and memory more l i k e ‘O(2ˆn ) ‘
i n t [ ] d = new i n t [ ( 1 << ( n − 1 ) ) ] ;
d [ 0 ] = 1 ; // count v e r t i c e s from 0
f o r ( i n t mask = 1 ; mask < d . l e n g t h ; ++mask ) { // l o c a l l y o r d e r ed by s i z e
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i n t prev = mask ˆ (1 << ( v − 1 ) ) ; // p r e v i o u s mask
i f ( ( d [ p r ev ] & graph [ v ] ) != 0) { // i f u e x i s t s w i th path 1−u and wi th edge (u , v )

d [ mask ] |= 1 << v ; // s a y i n g the path 1−v a l s o e x i s t s
}

}
}

}
r e t u r n d ;

}
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Solving Hamiltonian problems

I Does a Hamiltonian tour exist?

I Evaluate d [S ][v ] for all S and v
I If, for some v 6= 1, d [V ][v ] = true and (v , 1) ∈ E , then the Hamiltonian tour exists
I Otherwise it does not exist
I Running time: O(2|V | · |V |) + O(|V |)

I Does a Hamiltonian path between a and b exist?
I Evaluate d [S ][v ] for all S and v
I If there exists S ′ ⊆ 2V\{1,a,b}, such that:

I d [S ′ ∪ {1, a}][a] = true
I d [V \ S ′ \ {a}][b] = true

then a Hamiltonian path between a and b exists, otherwise not
I Simple special cases if a = 1 or b = 1
I Running time: O(2|V | · |V |) + O(2|V |)
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Hamiltonian tours and tournaments

Special case: Every tournament has a Hamiltonian path.

Proof:

I Start building this path from an arbitary vertex, say, v1
I Assume a path v1 . . . vk is built. Add a new vertex v :

I If there is an edge (v , v1) ∈ E , prepend v
I Otherwise, if there is an edge (vk , v) ∈ E , append v
I Otherwise: find i such that (vi , v) ∈ E and (v , vi+1) ∈ E – it will exist because

the graph is a tournament – then insert v between vi and vi+1
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