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Naive solution: check all possible paths
» O(N - N!') where N = |V]|

More efficient solution: dynamic programming on vertex sets

» d[S][v]: whether a path exists which:
» Starts at vertex 1
» Ends at vertex v
» Visits exactly vertices from set S
» Vertex sets are stored as bitmasks
» Numbers from 0 to 2V — 1
» j-th bit is set if vertex number / is in the set

» We can solve Hamiltonian-related problems using the values of d[S][v]
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procedure HAMILTONIANDP(V, E)
d[S][v]: if a path exists which starts at 1, ends at v and visits vertices from S
d[{1}][1] < TRUE
for S € 2 in non-decreasing order of |S| where |S| > 2 do
for ve S\ {1} do
d[S][v] < FALSE
S'«+ S\ {v}
for ue S’ do
if (u,v) € E then d[S][v] < d[S][v] or d[S'][u] end if
end for
end for
end for
end procedure
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boolean [][] hamiltonianDP (boolean [][] graph) {

int n = graph.length;
boolean [][] d = new boolean[(1 << (n — 1))][n];
d[o][0] = 1;
for (int mask = 1; mask < d.length; ++mask) {
for (int v=1; v<n; ++v) {
if ((mask & (1 << (v — 1))) '=0) {
int prev = mask ~ (1 << (v — 1));

)
boolean curr = d[prev][0] && graph[v][O0];

for (int u=1; u<n; ++tu) {
if (graph[v][u]) {

if ((prev & (1 << (u—1))) !'=0) {

curr |= d[prev][u];

}
d[mask][v] = curr;
}
¥

return d;

//
//
//

/o
/

An efficient implementation

save one bit, reduce memory 2x times
count vertices from 0
locally ordered by size

mask contains v

'/ previous mask

consider 0 separately

check previous vertices

if graph has the (v,u) edge ...
and if u is in the mask ...

'/ update the current value
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ITMO UNIVERSITY efficient implementation

int [] hamiltonianDP (int [] graph) { // running time looks more like ‘O(2°n % n)"*
int n = graph.length; // and memory more like ‘O(2°n)*
int[] d =new int[(1 << (n — 1))];

d[o] = 1; // count vertices from 0

for (int mask = 1; mask < d.length; +4mask) { // locally ordered by size
for (int v=1; v<n; ++v) {

if ((mask & (1 << (v — 1))) '=0) { // mask contains v
int prev = mask ~ (1 << (v — 1)); // previous mask
if ((d[prev] & graph[v]) != 0) { // if u exists with path l—u and with edge (u,v)
d[mask] |= 1 << v; // saying the path I—v also exists
}
¥
}
}
return d;

8 /11



ITMO UNIVERSITY Solving Hamiltonian problems

» Does a Hamiltonian tour exist?

9/11



332 ITMO UNIVERSITY Solving Hamiltonian problems

» Does a Hamiltonian tour exist?

Evaluate d[S][v] for all S and v

If, for some v # 1, d[V][v] = TRUE and (v,1) € E, then the Hamiltonian tour exists
Otherwise it does not exist

Running time: O(2/V!- |V|) + O(|V|)

vV vy vYyy

9/11



' ITMO UNIVERSITY Solving Hamiltonian problems

» Does a Hamiltonian tour exist?

Evaluate d[S][v] for all S and v

If, for some v # 1, d[V][v] = TRUE and (v,1) € E, then the Hamiltonian tour exists
Otherwise it does not exist

Running time: O(2/V!- |V|) + O(|V|)

» Does a Hamiltonian path between a and b exist?

vV vy vYyy

9/11



332 ITMO UNIVERSITY Solving Hamiltonian problems

» Does a Hamiltonian tour exist?
Evaluate d[S][v] for all S and v
If, for some v # 1, d[V][v] = TRUE and (v,1) € E, then the Hamiltonian tour exists
Otherwise it does not exist
Running time: O(2/V!- |V|) + O(|V|)
» Does a Hamiltonian path between a and b exist?
» Evaluate d[S][v] for all S and v
> If there exists S’ C 2V\M1:a:6} gch that:
» d[S'U{1,a}][a] = TRUE
» d[V\ S\ {a}][b] = TRUE
then a Hamiltonian path between a and b exists, otherwise not
» Simple special casesif a=1or b=1
» Running time: O(2!VI-|V|) + 0(2IV
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v

Does any Hamiltonian path exist?

» Evaluate d[S][v] for all S and v
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v

Does any Hamiltonian path exist?

» Evaluate d[S][v] for all S and v
» Check all " C V' \ {1}:
> If exists a € S’ such that d[S’ U {1}][a] = TRUE. ..
» ...and b ¢ S’ such that d[V \ S’][b] = TRUE. ..
» .. .then a Hamiltonian path exists between a and b
» ...and this can be done in O(1) per single S’ using bit arithmetic!

» Running time: 02!V - |V|) + 0(2/V]
» Restore a Hamiltonian path/tour
» Values of d[S][v] provide enough information to restore a path in O(|V/|?)
Count Hamiltonian paths/tours
» d[S][v] stores the number of paths from 1 to v using vertices from S
Shortest Hamiltonian path/tour (Traveling Salesperson Problem)
» d[S][v] stores the shortest length of a path from 1 to v using vertices from S

v

v
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Special case: Every tournament has a Hamiltonian path.
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* ITMO UNIVERSITY Hamiltonian tours and tournaments

Special case: Every tournament has a Hamiltonian path. Proof:
» Start building this path from an arbitary vertex, say, v
» Assume a path vy ... v is built. Add a new vertex v:

» If there is an edge (v, v1) € E, prepend v

» Otherwise, if there is an edge (vk, v) € E, append v

» Otherwise: find i such that (v;,v) € E and (v, vi41) € E — it will exist because
the graph is a tournament — then insert v between v; and v; 1
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