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What is an algorithm?

Muhammad ibn Musa
al-Khwarizmi: gave rise
to the word “algorithm”

Euclid: Inventor of an
algorithm for computing 

greatest common divisors
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Why study algorithms?

As programs get complicated, thinking algorithmically 
allows us to:

›

›

›

reason about their correctness and efficiency 
before implementing them
focus on techniques for solving problems
understand relationship between different
computational problems



Induction + Algorithm Design

›
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›

›

A fundamental idea in algorithm design–solve a 
problem on bigger data sets using your knowledge 
of how to solve it on smaller ones.
This idea embodies the proof technique of
Mathematical Induction.
Example: Towers of Hanoi

Step1

Move n− 1 recursively



Induction + Algorithm Design

›
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›

›

Step2

Move lastbrick

› Move top n-1 disks from
rod A to rod B

A fundamental idea in algorithm design–solve a 
problem on bigger data sets using your knowledge 
of how to solve it on smaller ones.
This idea embodies the proof technique of
Mathematical Induction.
Example: Towers of Hanoi



Induction + Algorithm Design

›
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›

›

Step3

Move n− 1 recursively again

›

›

Move top n-1 disks from
rod A to rod B
Move disk 1 from rod A 
to rod C

A fundamental idea in algorithm design–solve a 
problem on bigger data sets using your knowledge 
of how to solve it on smaller ones.
This idea embodies the proof technique of
Mathematical Induction.
Example: Towers of Hanoi



Induction + Algorithm Design

›

›

›

Step4
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Done

›

›

›

Move top n-1 disks from
rod A to rod B
Move disk 1 from rod A 
to rod C
Move the n-1 disks from 
rod B to rod C

A fundamental idea in algorithm design–solve a 
problem on bigger data sets using your knowledge 
of how to solve it on smaller ones.
This idea embodies the proof technique of
Mathematical Induction.
Example: Towers of Hanoi
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Induction + Algorithm Design
›

›

›

›

›

›

›

Move top n-1 disks from
rod A to rod B
Move disk 1 from rod A 
to rod C
Move the n-1 disks from 
rod B to rod C
How long does this
take? How can this be
analyzed with
induction?

A fundamental idea in algorithm design–solve a 
problem on bigger data sets using your knowledge 
of how to solve it on smaller ones.
This idea embodies the proof technique of
Mathematical Induction.
Example: Towers of Hanoi



Another Example: Insertion Sort

5 2 4 6 1 3
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Another Example: Insertion Sort

5  2  4  6  1 3

2  5  4  6  1 3
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Another Example: Insertion Sort

5 2 4 6 1 3

2 5 4 6 1 3

2 4 5 6 1 3

11Property	of	University	of	Pennsylvania, SampathKannan



Another Example: Insertion Sort

5 2 4 6 1 3

2 5 4 6 1 3

2 4 5 6 1 3

2 4 5 6 1 3
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5 2 4 6 1 3

2 5 4 6 1 3

2 4 5 6 1 3

2 4 5 6 1 3

1 2 4 5 6 3
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Another Example: Insertion Sort



5 2 4 6 1 3

2 5 4 6 1 3

2 4 5 6 1 3

2 4 5 6 1 3

1 2 4 5 6 3
1 2 3 4 5 6
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Another Example: Insertion Sort



Another Example: Insertion Sort
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Another Example: Insertion Sort

› If we’ve already sorted
the first k elements of 
the array, how long does 
it take to place the next 
element?
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Recurrence Relations

› How can we analyze the runtime of an algorithm
that is recursive?
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›

›

How can we analyze the runtime of an algorithm
that is recursive?
Recurrence relation: a function defined in terms
of itself

Recurrence Relations
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Recurrence Relations

›

›

›

How can we analyze the runtime of an algorithm that is
recursive?
Recurrence relation: a function defined in terms of itself
How can we write the runtime of Towers of Hanoi using a
recurrence?
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Recurrence Relations

› T (n) = # operations required to solve a tower with n 
disks
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Recurrence Relations

›
›

T (n) = # operations required to solve a tower with n disks
disks  T (n − 1) = # operations required to solve a tower 
with n− 1  disks
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Recurrence Relations

›
›

T (n) = # operations required to solve a tower with n disks  
T (n − 1) = # operations required to solve a tower with n− 
1  disks

› Can we write T (n) usingT (n − 1)?
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Recurrence Relations

Towers of Hanoi recurrence: T (n) = 2T (n− 1) + 1
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Towers of Hanoi: Runtime

›

We can expand this recurrence out through telescoping

T (n) = 2T (n− 1) + 1
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Towers of Hanoi: Runtime

›
›

We can expand this recurrence out through telescoping

T (n) = 2T (n− 1) + 1
T (n − 1) = 2T (n − 2) + 1
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Towers of Hanoi: Runtime

›

We can expand this recurrence out through telescoping

substituting in for T (n − 1):
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Towers of Hanoi: Runtime

›

›

We can expand this recurrence out through telescoping
substituting in for T (n − 1):

T (n) = 2( 2T (n − 2) + 1) + 1
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Towers of Hanoi: Runtime

›

›

›

We can expand this recurrence out through telescoping
substituting in forT (n − 1):

T (n) = 2( 2T (n − 2) + 1) + 1

T (n) = 4T (n− 2) + 2+ 1
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Towers of Hanoi: Runtime

›

We can expand this recurrence out through 
telescoping

substituting in again for T (n − 2):



30Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

›
›

We can expand this recurrence out through telescoping

substituting in again for T (n − 2):
T (n) = 8T (n− 3) + 4+ 2+ 1
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Towers of Hanoi: Runtime

›
›

›

We can expand this recurrence out through telescoping

substituting in againfor T (n − 2):
T (n) = 8T (n− 3) + 4+ 2+ 1
Can we generalize this to k?
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Towers of Hanoi: Runtime

We can expand this recurrence out through telescoping
› i=0T (n)= 2kT(n− k) + (∑ k− 12i)
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Towers of Hanoi: Runtime

We can expand this recurrence out through telescoping

T (n)= 2kT(n− k) + ( ∑ k− 12i)›

›
i=0

T (n)= 2kT (n− k) + (2k− 1)
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Towers of Hanoi: Runtime

We can expand this recurrence out through telescoping

T (n)= 2kT(n− k) + ( ∑ k− 12i)›

›

›

i=0
T (n)= 2kT (n− k) + (2k− 1)
What is T (1)?
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Towers of Hanoi: Runtime

We can expand this recurrence out through telescoping

T (n)= 2kT(n− k) + ( ∑ k− 12i)›

›
›

i=0
T (n)= 2kT (n− k) + (2k− 1)
What is T (1)?

) How long does it take to solve 
a tower with 1 ring?
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Towers of Hanoi: Runtime

We can expand this recurrence out through telescoping

T (n)= 2kT(n− k) + ( ∑ k− 12i)›

›
›

i=0
T (n)= 2kT (n− k) + (2k− 1)
What is T (1)?

)

)

How long does it take to solve a  
tower with 1 ring?
T (1) = 1. Substitute k = n − 1

› T (n)= 2n−1+ 2n−1− 1
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Towers of Hanoi: Runtime

We can expand this recurrence out through telescoping

T (n)= 2kT(n− k) + ( ∑ k− 12i)›

›
›

i=0
T (n)= 2kT (n− k) + (2k− 1)
What is T (1)?

)

)

How long does it take to solve a  
tower with 1 ring?
T (1) = 1. Substitute k = n − 1

›

›
T (n)= 2n−1+ 2n−1− 1
T (n) = 2n−1
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Towers of Hanoi: Runtime

Result: Solving Towers of Hanoi requires 2n − 1 
operations!



39Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

We can expand this recurrence out through telescoping
›

›
›

›

›

›
›

›

T (n) = 2T (n− 1) + 1
T (n− 1) = 2T (n − 2) + 1
substituting in for T (n− 1):

T (n) = 2( 2T (n− 2) + 1) + 1
T (n) = 4T (n− 2) + 2+ 1
substitutingin againfor T (n− 2):
T (n) = 8T (n− 3) + 4+ 2+ 1
Can we generalize this to k?

T (n)= 2kT (n− k) + (∑ k− 1 2i)›

›
i=0

T (n)= 2kT (n− k) + (2k− 1)
› What is T (1)?

)

)

How long does it take to 
solve a tower with 1 ring?
T (1) = 1. Substitute k = n − 1

›
›

T (n) = 2n−1 + 2n−1 − 1
T (n) = 2n− 1

Result: Solving Towers of Hanoi requires 2n − 1 operations!
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Recurrence Relations: Back to Insertion Sort

› Can we write Insertion Sort using a recurrence?
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Recurrence Relations: Back to Insertion Sort

›
›

Can we write Insertion Sort using a recurrence?
Not really, it isn’t recursive! Instead, we can analyze
how long each iteration of the loop takes.
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Recurrence Relations: Back to Insertion Sort

›
›

›

Can we write Insertion Sort using a recurrence?
Not really, it isn’t recursive! Instead, we can analyze how long 
each iteration of the loop takes.
Key observation: At the kth iteration of the loop, the first k − 1 
elements of the array are in sorted order
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Recurrence Relations: Back to Insertion Sort

›
›

›

›

›

Can we write Insertion Sort using a recurrence?
Not really, it isn’t recursive! Instead, we can analyze how long each 
iteration of the loop takes.
Key observation: At the kth iteration of the loop, the first k − 1 
elements of the array are in sorted order
First iteration of the loop: 0 swaps required (first elementis  
trivially sorted)
Last iteration of the loop: at most n− 1 swaps required
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Recurrence Relations: Back to Insertion Sort

›
›

›

›

Can we write Insertion Sort using a recurrence?
Not really, it isn’t recursive !Instead,we can analyze how long each 
iteration of the loop takes.
Key observation: At the kth iteration of theloop, the firs k − 1 
elements of the array are in sorted order
First iteration of the loop: 0 swaps required (first elementis trivially 
sorted)

›  Last iteration of the loop: at most n− 1 swaps required
›  In general, kth iteration of theloop: at most k − 1 swaps required
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Recurrence Relations: Back to Insertion Sort

›

Finding the total number of swaps:
n

total number of swaps = ∑ i − 1i =0
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Recurrence Relations: Back to Insertion Sort

= 1 + 2 + ... + n − 1
›

›
› = n(n−1)

2

Finding the total number of swaps:
n

total number of swaps = ∑ i − 1i =0
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Recurrence Relations: Back to Insertion Sort

i=0ntotal number of swaps =  ∑ i − 1
= 1 + 2 + ...+ n − 1

›

›
› = n(n−1)

2

Finding the total number of swaps:
Number ofswaps  

required for
Insertion sort:

n(n−1)
2



Video 1.2
Sampath Kannan
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Asymptotic Bounds
Motivation:
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Motivation:
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›

›

Essentially a way to compare  
functions without worrying 
about their behavior on small n.

Big-Oh is like ≤ (ignoring constant
factors), and Big-Omega is like ≥

Gives us an idea of how
fast a function grows

Asymptotic Bounds



Asymptotic Bounds
Motivation:
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›

›

Essentially a way to compare  
functions without worrying 
about their behavior on small n. 
In this sense Big-Oh is like ≤ 
(ignoring constant factors), and
Big-Omega is like ≥
Gives us an idea of how fast a
function grows

›

›

Note: O(f (n)) is a set.
O(n2): the set of all function that do not grow faster 
than n2
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Asymptotic Bounds: Examples

Some elements of O(n2):
›

›
›

2n2∈O(n2)
100n2+ n + 1∈O(n2)
n∈O(n2)

Some elements of Ω(n2):
2n2∈Ω(n2)

n2
1000

n∈Ω(n 2)
›

›

› 2n3 ∈Ω(n)

What is the complexity of insertion sort?
T (n) = T (n 1) + n›

› T (n) = n2+n

›
2

T (n)∈O(n2)
Insertion sort has a runtime of O(n2)



Complexity
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Complexity

How does insertion sort perform on an already-
sorted array?
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Complexity
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Complexity

time for inner loop?
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Complexity

›
›

time for inner loop?
Each iteration requires no swaps!
(constant time to check the first
element)

› n 1= n∈O(n)∑ i =1
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Complexity
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›
›

time for inner loop?
Each iteration requires no swaps!
(constant time to check the first
element)

› ∑ n
i =1 1 = n∈O(n)

› is insertion sortO(n), or O(n2)?



Complexity

›
›

time for inner loop?
Each iteration requires no swaps!
(constant time to check the first  
element)

› . ni =1 1 = n∈O(n)
› is insertion sort O(n), or O(n2)?

Takeaway: Can’t assume  
anything about the input.  
Always assume the worst  

case!

∑
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Algorithm Design: Divide and Conquer Paradigm

Idea: Solve a problem by splitting it into pieces, solving those
pieces recursively, and merging them to solve the larger 

problem
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Divide and Conquer Example: Triominos

›

›

Input: NxN grid (assume n is a power of 2) with a single 
square removed, and a supply of corner shaped triomino tiles
Goal: Fill the grid without any overlapping tiles

Algorithm:
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Divide and Conquer Example: Triominos

›

›

Input: NxN grid (assume n is a powerof 2) with a single square
removed, and a supply of corner shaped triomino tiles
Goal: Fill the grid without any overlapping tiles

Algorithm:
›

›

Divide the grid into 4 squares(size  
2n− 1x 2n− 1).
note: 1 of these 4 squares contains
the missing piece



Video 1.3
Sampath Kannan
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Binary Search
›

›

How long does it take to search for an element in an array?
O(n)
Idea: Can we do better if we know that the array is sorted?

Binary-search(A,val):
return Binary-search(A, val, 0,(length(A)-1))

Binary-search(A, val, low, high): if  
high < low

return -1 (not found)  
mid <- (low + high) / 2 if
A[mid] > val

return Binary-search(A, val, low, mid-1)
else if A[mid] <val

return Binary-search(A, val, mid+1, hi)  
else returnmid

Each step of the algorithm, the size of the input halves.
T (n) = T (n) + 1

›
›
›

2

How to solve this recurrence: How many times can we halve
2 4

N before reaching1? N , N , ...
N = 1,k = lg2N›

›
2k

binary search runs in O(lgN )



› merging runs in O(n + m) time
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Merging two sorted lists
Input: two sorted arrays of size n and m 
Output: a single sorted array of size n+m

↑
3 7 12 18

↑
2 5 16 21

↑

merge(A,B):
C = new array[len(A) + len(B)]  
i, j, k <- 0
while i < len(A) and j < len(B):

if A[i] < B[j]:
C[k] <-A[i]  
i++, k++

else:
C[k] <-B[j]  
j++, k++

while i < len(A):
C[k++] <-A[i++]

while j < len(B):
C[k++]<- B[j++]

return C

›
›
›

How long does this take?
Every time a comparison is made, either i or j is incremented  
Total number of comparisons is n + m



Merging two sorted lists
Input: two sorted arrays of size n and m 
Output: a single sorted array of size n+m

↑
3 7 12 18

↑
2 5 16 21

↑
2

merge(A,B):
C = new array[len(A) + len(B)]  
i, j, k <- 0
while i < len(A) and j < len(B):

if A[i] < B[j]:
C[k] <-A[i]  
i++, k++

else:
C[k] <-B[j]  
j++, k++

while i < len(A):
C[k++] <-A[i++]

while j < len(B):
C[k++]<- B[j++]

return C

›
›
›
›
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› merging runs in O(n + m) time

›
›
›

How long does this take?
Every time a comparison is made, either i or j is incremented  
Total number of comparisons is n + m



Merging two sorted lists
Input: two sorted arrays of size n and m 
Output: a single sorted array of size n+m

↑
3 7 12 18

↑
2 5 16 21

↑
2 3

merge(A,B):
C = new array[len(A) + len(B)]  
i, j, k <- 0
while i < len(A) and j < len(B):

if A[i] < B[j]:
C[k] <-A[i]  
i++, k++

else:
C[k] <-B[j]  
j++, k++

while i < len(A):
C[k++] <-A[i++]

while j < len(B):
C[k++]<- B[j++]

return C

›
›
›
›
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› merging runs in O(n + m) time

›
›
›

How long does this take?
Every time a comparison is made, either i or j is incremented  
Total number of comparisons is n + m
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Merging two sorted lists
Input: two sorted arrays of size n and m 
Output: a single sorted array of size n+m

↑3 7 12 18

↑
2 5 16 21

2 3 5
↑

merge(A,B):
C = new array[len(A) + len(B)]  
i, j, k <- 0
while i < len(A) and j < len(B):

if A[i] < B[j]:
C[k] <-A[i]  
i++, k++

else:
C[k] <-B[j]  
j++, k++

while i < len(A):
C[k++] <-A[i++]

while j < len(B):
C[k++]<- B[j++]

return C

› merging runs in O(n + m) time

›
›
›

How long does this take?
Every time a comparison is made, either i or j is incremented  
Total number of comparisons is n + m



More on Divide and Conquer: Mergesort

Input: An array of size n, Output: A sorted array of size n

Can we apply the Divide and Conquer paradigm to sorting? 
Idea:  Split the array, sort halves recursively, merge the result

mergesort(A):
mergesort(A, 0,len(A)-1)

mergesort(A, aux, lo, hi):  
if (hi - lo <= 1)return  
mid = (lo + hi) / 2  
mergesort(A, lo, mid)  
mergesort(A, mid+1,hi)
C = merge(A[lo:mid], A[mid+1:hi])  
copy elements from C back intoA

69Property	of	University	of	Pennsylvania, SampathKannan



More on Divide and Conquer: Mergesort

mergesort(A):
mergesort(A, 0,len(A)-1)

mergesort(A, aux, lo, hi):  
if (hi - lo <= 1)return  
mid = (lo + hi) / 2  
mergesort(A, lo, mid)  
mergesort(A, mid+1,hi)
C = merge(A[lo:mid],A[mid+1:hi])  
copy elements from C back intoA
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Input: An array of size n, Output: A sorted array of size n

Can we apply the Divide and Conquer paradigm to sorting? 
Idea:  Split the array, sort halves recursively, merge the result



More on Divide and Conquer: Mergesort

mergesort(A):
mergesort(A, 0,len(A)-1)

mergesort(A, aux, lo, hi):  
if (hi - lo <= 1)return  
mid = (lo + hi) / 2  
mergesort(A, lo, mid)  
mergesort(A, mid+1,hi)
C = merge(A[lo:mid], A[mid+1:hi])
copy elements from C back intoA
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Input: An array of size n, Output: A sorted array of size n

Can we apply the Divide and Conquer paradigm to sorting? 
Idea:  Split the array, sort halves recursively, merge the result



More on Divide and Conquer: Mergesort

mergesort(A):
mergesort(A, 0,len(A)-1)

mergesort(A, aux, lo, hi):  
if (hi - lo <= 1)return  
mid = (lo + hi) / 2  
mergesort(A, lo, mid)  
mergesort(A, mid+1,hi)
C = merge(A[lo:mid], A[mid+1:hi])
copy elements from C back intoA
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Input: An array of size n, Output: A sorted array of size n

Can we apply the Divide and Conquer paradigm to sorting? 
Idea:  Split the array, sort halves recursively, merge the result



More on Divide and Conquer: Mergesort

mergesort(A):
mergesort(A, 0,len(A)-1)

mergesort(A, aux, lo, hi):  
if (hi - lo <= 1)return  
mid = (lo + hi) / 2  
mergesort(A, lo, mid)  
mergesort(A, mid+1,hi)
C = merge(A[lo:mid], A[mid+1:hi])
copy elements from C back intoA
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Input: An array of size n, Output: A sorted array of size n

Can we apply the Divide and Conquer paradigm to sorting? 
Idea:  Split the array, sort halves recursively, merge the result



More on Divide and Conquer: Mergesort

mergesort(A):
mergesort(A, 0,len(A)-1)

mergesort(A, aux, lo, hi):  
if (hi - lo <= 1)return  
mid = (lo + hi) / 2  
mergesort(A, lo, mid)  
mergesort(A, mid+1,hi)
C = merge(A[lo:mid], A[mid+1:hi])
copy elements from C back intoA
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Input: An array of size n, Output: A sorted array of size n

Can we apply the Divide and Conquer paradigm to sorting? 
Idea:  Split the array, sort halves recursively, merge the result



More on Divide and Conquer: Mergesort

mergesort(A):
mergesort(A, 0,len(A)-1)

mergesort(A, aux, lo, hi):  
if (hi - lo <= 1)return  
mid = (lo + hi) / 2  
mergesort(A, lo, mid)  
mergesort(A, mid+1,hi)
C = merge(A[lo:mid], A[mid+1:hi])
copy elements from C back intoA
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Input: An array of size n, Output: A sorted array of size n

Can we apply the Divide and Conquer paradigm to sorting? 
Idea:  Split the array, sort halves recursively, merge the result



Video 1.4
Sampath Kannan
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Algorithm Design: Using Randomness

e Remember from Insertion Sort: Algorithm performance can  
depend on the input:

)

)

on a sorted list: O(n) comparisons  
on a reversed list: O(n2) comparisons
In general: somewhere between n and n(n+1) comparisons)

) However, the worst-case is still O(n2)2

e An ”adversary” can repeatedly construct an input to our
algorithm that causes it to perform as poorly as possible

e Can we prevent our algorithm performance from 
depending on the  input?

) Shift the dependency: from input to randomization
e Idea: Write algorithms that toss a coin!



First: An Introduction to Probability

e For a stronger introduction,see:
https://www.coursera.org/learn/probability- intro

e Random Variable: A function X from the results of an
experiment to numbers

e E [X]: the expected value of the random variable X 
(a ”weighted average” )

e Formula: E [X ]= Σ i ∗ P (X = i ) (for all values i that X can take on)

e Example:
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Intro to Probability: Continued

e What is the expected sum of two dice?
e X = the sum of two dice. Want to find E [X ].
e X can take on values from 2...12
e E.x. P (X = 5). Can result from two die rolls of:

)   (1, 4)
)   (4, 1)
)   (2, 3)
)   (3, 2)

Calculation is not trivial. Solution: Linearity of Expectation!
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Intro to Probability: Continued

e Linearity of Expectation: For n random variables, X1, .., Xn, E
[X1 + .. + Xn] = E [X1] + .. + E [Xn]

e Example:
)

)

)

)

)

)

)

)

What is the expected sum of rolling 2 dice?
let Xi be the random variable denoting the value of the i’th die
rolled
let X be the r.v. denoting the sum of all 2 dice  
then X = X1 + X2
E [X ] = E [X1 + X2]
E [X ] = E [X1] + E [X2] (by lin. of exp.)

as shown above, for each i, E [Xi ]= 3.5
E [X] = 3.5 + 3.5 = 7



Expectation Example: Hat Checking
N people go to a restaurant, take off their hats and throw
them in a pile. Afterwards, they each take a hat from the
pile at random. What is the expected number of people who
get their hat back?

e We can analyze using random variables!
e Let:) X = the number of people who get their hats back

Xi=
. 1

0 person i chooses their own hat  
person i doesnt t choose their ownhat

e What is E [Xi ]?
) From the definition:
) E [Xi ] = 1 ∗ P(choose their hat) + 0P (donjt choose their hat)
) E [Xi ] = P (choose hat)=1

n
e Again, X = X1 + X2 + .. + Xn

e E [X]= E [X1 + .. + Xn] = E [X1] + .. + E [Xn] by lin. of exp.

e E [X] = n1 = 1n
In expectation, one person will correctly take their own hat!
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Quicksort: An Introduction

Goal: Another sorting algorithm that uses divide-and-conquer
e Idea:
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) Select an element in the array
) Partition the other elements of the 
array around it

e Is the array more sorted than it 
was before?

e Answer: yes!
e Next step: recursively sort the left 

and right sides of the array as
well.

Problem: What about ”adversarial inputs”? This algorithm 
will perform better on some inputs than others.



Quicksort: Randomized

Can we write an algorithm for sorting that uses coin tossing
(randomness)?

e Idea:
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)

)

)

Randomly select an element in the array
Partition the other elements of the array
around it
Recursively sort the left and right sides
of the array

Result: Another divide and conquer algorithm for sorting, that 
uses randomness.



Video 1.5
Sampath Kannan
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Quicksort

Idea: Choose an element at random. Partition the array 
around this element. Recursively sort the left and right side.



Quicksort
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86

quicksort(A):
quicksort(A, 0, len(A)-1)

quicksort(A, lo, hi): 
if(lo >= hi) return 
pivot_location <- partition(A, lo, hi) 
quicksort(A, lo, pivot_location - 1) 
quicksort(A, pivot_location +1, hi)

partition(A, lo, hi):
pivot_index <- random(lo, hi)
swap(A, pivot_index, hi)
pivot <- A[hi]
I <- lo, j <- hi, C <- new array 
for k = lo to hi -1 

if A[k] <= pivot:
C[i++] <- A[k] 

else:
C[j--] <- A[k] 

C[i] <- A[hi] (copy the pivot in) 
copy C[lo : hi] back into A 
return i 

Idea: Choose an element at random. Partition the array 
around this element. Recursively sort the left and right side.
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Quicksort

Quicksort (compare to Mergesort)
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Quicksort

Quicksort (compare to Mergesort)
e divide-and-conquer algorithm
e First partition, then sort recursively
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Quicksort

Quicksort (compare to Mergesort)
e divide-and-conquer algorithm
e First partition, then sort recursively

e Can be done with no extra space
e runtime: See next slide
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Quicksort: Analysis
e First: the recurrence for quicksort
e Step 1: Partition requires O(n)
e Step 2: Recursively sort left and right sides of the array
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Quicksort: Analysis
e First: the recurrence for quicksort
e Step 1: Partition requires O(n)
e Step 2: Recursively sort left and right sides of the array

What are the sizes of these two arrays?)

) k and n − k − 1, for some k
e T (n) = T (k ) + T (n − k − 1) + O(n)
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Quicksort: Analysis
e First: the recurrence for quicksort
e Step 1: Partition requiresO(n)
e Step 2: Recursively sort left and right sides of the array

What are the sizes of these two arrays?)
) k and n − k − 1, for some k

e T (n) = T (k ) + T (n − k − 1) + O(n)

Worstcase (bad partition):
e partition does not split array at all
at every step(k = 1 or n − 1)
e T (n) = T (1) + T (n − 1) + n
e T (n) = O(n2) (similar to insertion sort)
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Quicksort: Analysis

)

2

Best case(good partition):
e partition splits array evenly at 
every step (k= n )

2 2e T (n) = T (n) + T (n) + O(n)
e T (n) = O(nlgn) 
(recall from merge sort)

e First: the recurrence for quicksort
e Step 1: Partition requiresO(n)
e Step 2: Recursively sort left and right sides of the array

What are the sizes of these two arrays?
) k and n − k − 1, for some k

e T (n) = T (k ) + T (n − k − 1) 
+ O(n)

Worstcase (bad partition):
e partition does not split array at all
at every step(k = 1 or n − 1)
e T (n) = T (1) + T (n − 1) + n
e T (n) = O(n2) (similar to insertion
sort)
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How does the algorithm perform on average?
We can analyze with expectation

Quicksort: Analysis

)

2

Best case(good partition):
e partition splits array evenly at 
every step (k= n )

2 2e T (n) = T (n) + T (n) + O(n)
e T (n) = O(nlgn) 
(recall from merge sort)

e First: the recurrence for quicksort
e Step 1: Partition requiresO(n)
e Step 2: Recursively sort left and right sides of the array

What are the sizes of these two arrays?
) k and n − k − 1, for some k

e T (n) = T (k ) + T (n − k − 1) 
+ O(n)

Worstcase (bad partition):
e partition does not split array at all
at every step(k = 1 or n − 1)
e T (n) = T (1) + T (n − 1) + n
e T (n) = O(n2) (similar to insertion
sort)
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Quicksort: Analysis

Recurrence for quicksort:
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Quicksort: Analysis

Recurrence for quicksort:
e taking the expected value overall possible i:



Quicksort: Analysis

Recurrence for quicksort:
e taking the expected value overall possible i:
e T (n) = 1 Σ n
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n i=1
T (i) + T (n− i)+ O(n)



Quicksort: Analysis

Recurrence for quicksort:
e taking the expected value overall possible i:
e T (n) = n
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1 n
Σ i=1 T (i) + T (n− i)+ O(n)

e This is difficult to analyze! Can we find a better way to analyze 
quicksort?



Quicksort: Analysis

Recurrence for quicksort:
e taking the expected value overall possible i:
e T (n) = n

1 Σ n
i =1 T (i) + T (n− i)+ O(n)

e This is difficult to analyze! Can we find a better 
way to analyze quicksort?

Partition step

Idea: Any two elements are never
compared more than once

e What happens after an element is compared to
the partitioning element?

) these two elements won’t be compared 
again
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Quicksort: Analysis

Analyze with random variables:
e denote the kth smallest element in the array as ek
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Quicksort: Analysis

Analyze with random variables:
e denote the kth smallest element in the array as ek

e X = total number of comparisons
e

Xij=
. 1

0
eiand ejarecompared
eiand ejare not compared
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Quicksort: Analysis

Analyze with random variables:
e denote the kth smallest element in the array as ek

e X = total number of comparisons
e

Xij=
. 1

0
ei and ej are compared
ei and ej are not compared

e Then X= n− 1 n
i=1 j=i+1X ij∑ ∑
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Quicksort: Analysis

e E [X] = E [ Σ Σ X ij] = Σ Σ E [Xij]by lin. of exp.

e Recall: E [Xij ]= 1∗P(Xij = 1) + 0 ∗P(Xij = 0)
e E [Xij ]= P (Xij = 1)

e Then X= n− 1 n
i=1 j=i+1X ij∑ ∑

Analyze with random variables:
e denote the kth smallest element in the array as ek

e X = total number of comparisons
e

Xij=
. 1

0
ei and ej are compared
ei and ej are not compared
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Quicksort: Analysis

Analyze with random variables:

What is the probability that ei and ej are compared?
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Quicksort: Analysis

Analyze with random variables:

What is the probability that ei and ej are compared?
e ei and ej will be compared if either is selected as a pivot
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Quicksort: Analysis

Analyze with random variables:

What is the probability that ei and ej are compared?
e ei and ej will be compared if either is selected as a pivot
e ei andej will not be compared if some ek , i< k < j is  

selected as a pivot first
) ei willbe to the left of ek , and ej willbe to the right.
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Quicksort: Analysis

e Which pivots must be chosen for ei and ej to be compared?
) either ei or ej (2 total)
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Quicksort: Analysis

e Which pivots must be chosen for ei and ej to be compared?
) either ei or ej (2 total )

e Which pivots for ei and ej not to be compared?
) ei +1, ei +2, ..., or ej−1 (j − i − 1 total)
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Quicksort: Analysis

e Elements are chosen as pivots randomly
2e E [Xij ] = 2 =

e

( j− i−1)+2 j−i+1

n−1 n 2
i=1 j=i +1 j− i+1

e E [X ]≤ 2nlgn∈O(nlgn)

E [X]= ∑ ∑

e Which pivots must be chosen for ei and ej to be compared?
) either ei or ej (2 total )

e Which pivots for ei and ej not to be compared?
) ei +1, ei +2, ..., or ej−1 (j − i − 1 total)



Quicksort: Analysis
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Result: Randomized Quicksort makes an expected O(nlgn)
comparisons!

2e E [Xij ] = 2 =

e

( j− i−1)+2 j−i+1

n−1 n 2
i=1 j=i +1 j− i+1

e E [X ]≤ 2nlgn∈O(nlgn)

E [X]= ∑ ∑

e Which pivots must be chosen for ei and ej to be compared?
) either ei or ej (2 total )

e Which pivots for ei and ej not to be compared?
) ei +1, ei +2, ..., or ej−1 (j − i − 1 total)
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Quick Select

Goal: select the kth smallest element of an array
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Quick Select

Goal: select the kth smallest element of an array

Option 1:

e Use quicksort to sort the array A
e Select the kth smallest element (A[k − 1])
e Time required: O(nlgn) to sort the array
e Are we doing unnecessary work? Can we do better?
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Quick Select

Goal: select the kth smallest element of an array

Option 1:

e Use quicksort to sort the array A
e Select the kth smallest element (A[k − 1])
e Time required: O(nlgn) to sort the array
e Are we doing unnecessary work? Can we do better?

Key Idea:
e When we partition the array, the kth smallest element will only be
on one side of this partition
e No need to recursively sort both sides of the array: Only the side

containing the element we want



Quick select
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quicksort(A):
quicksort(A, 0, len(A)-1)

quicksort(A, lo, hi): 
if(lo == hi) return A[lo] 
pivot_location <- partition(A, lo, hi) 
if pivot_location == k:

return A[k] 
else if pivot_location < k:

return quickselect(A, lo, pivot_location -1, k)
else: 

return quickselect(A, pivot_location +1, hi, k-pivot_location + !)



Quickselect

e Analysis?
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quicksort(A):
quicksort(A, 0, len(A)-1)

quicksort(A, lo, hi): 
if(lo == hi) return A[lo] 
pivot_location <- partition(A, lo, hi) 
if pivot_location == k:

return A[k] 
else if pivot_location < k:

return quickselect(A, lo, pivot_location -1, k)
else: 

return quickselect(A, pivot_location +1, hi, k-pivot_location + !)



Quickselect

e Analysis?
)

)

We will use a similar analysis to Quicksort
What will change? Are certain elements less likely to be  
compared?
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quicksort(A):
quicksort(A, 0, len(A)-1)

quicksort(A, lo, hi): 
if(lo == hi) return A[lo] 
pivot_location <- partition(A, lo, hi) 
if pivot_location == k:

return A[k] 
else if pivot_location < k:

return quickselect(A, lo, pivot_location -1, k)
else: 

return quickselect(A, pivot_location +1, hi, k-pivot_location + !)
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Quickselect: Analysis

Analyze with random variables:
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Quickselect: Analysis

Analyze with random variables:
e denote the kth smallest element in the array as ek
e What is the probability that ei and ej are compared when  

selecting ek ?
e 3 cases:



Quickselect: Analysis

Analyze with random variables:
e denote the kth smallest element in the array as ek
e What is the probability that ei and ej are compared when

selecting ek ?
e 3 cases:

119
Property	of	University	of	Pennsylvania, SampathKannan



Quickselect: Analysis

Analyze with random variables:
e denote the kth smallest element in the array as ek
e What is the probability that ei and ej are compared when  

selecting ek ?
e 3 cases:
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Quickselect: Analysis

Analyze with random variables:
e denote the kth smallest element in the array as ek
e What is the probability that ei and ej are compared

when selecting ek ?
e 3 cases:
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Quickselect: Analysis

Runtime:
e Similar to quick sort analysis, how many total comparisons 

are we making?



Quickselect: Analysis

Runtime:
e Similar to quick sort analysis, how many total comparisons are 

we making?
e Sum over all pairs of elements ei , ej (split among the 3 cases)

e Non obvious sum, but yields E [X ]= O(n)!
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Quickselect: Analysis

Outcome:
e Quick select is faster than quick sort!
e Note: quick select is randomized
e Can we make it deterministic, and still keep the worstcase O(n)?
e Yes, with some extra work
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Runtime:
e Similar to quick sort analysis, how many total comparisons are 

we making?
e Sum over all pairs of elements ei , ej (split among the 3 cases)

e Non obvious sum, but yields E [X ]= O(n)!



Video 1.6
Sampath Kannan
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Queues

Enqueue Dequeue
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e Sometimes we want to extract elements not in the order we
insert them but instead in the order of some given keys. We
call this a priorityqueue

e For example your operating systemis constantly getting jobs to 
complete, it needs a fast way of getting the highest priority 
job to schedule next



Operations of Priority Queues

10

8 6 2 1

3 4
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Operations of Priority Queues

10

8 6 2

3 4

Extract Min:
1
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Operations of Priority Queues

10

8 6 2

3 4

Find Min:
2
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Operations of Priority Queues

10

8 6 2

3 4

Insert(11):

11
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Operations of Priority Queues

10

6 2

4

8

Delete(3):

11
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Trees

left
:

v:A right:

left: v:B right: left
:

v:C right:

left
:

v:F right:left: v:D right:

left: v:E right: left
:

v:G right:

In order to make an efficient priority heap we will 
usea more  general data structure called a tree.

Root Node
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Trees

left
:

v:A right:

left: v:B right: left
:

v:C right:

left
:

v:F right:left: v:D right:

left: v:E right: left
:

v:G right:

Height =3
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In order to make an efficient priority heap we will 
usea more  general data structure called a tree.



Heaps as trees

3 6

4 10 8 9

2
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We can use a tree to make a heap by enforcing the properties that  
node will have a key value that is less than both of it’s children, 
and that the tree will always be complete except for the last layer.

e This makes finding the minimum very
easy. It’s always on top!

e We will see that removing the root  
(minimum) element can be done in a
number of operations proportional to 
the height.

e However if we want to find an arbitrary
element we will have to search the 
whole tree.



Heaps Shapes

2

3 6

4 10 8

2

3 6

9 4 10

3 6

4 10 8

2 ValidHeaps

2

3 6

4

2

3

9 4 10

3 6

10 8

2InvalidHeaps
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Video 1.7
Sampath Kannan
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Heap Representation

Since the tree for a heap will always been contiguous we
can represent the m implicitly with anarray

2

3 6

107 8

2 3 6 7 10 8
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So the i th level of the tree will occupy spots 2i − 1 to 2i− 1 
(we are using 1 based indexing for convenience)
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Heap Representation

We need to be able to compute positions of the left and right  
children of a given element.

138



Heap Representation

We need to be able to compute positions of the left 
and right children of a given element.

1

2 3

4 5 6 7

e Left child of 1 is 2, left child of 2 is 4, left child of 3 is 6, etc...
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Heap Representation

We need to be able to compute positions of the left 
and right children of a given element.

1

2 3

4 5 6 7

e Left childof 1 is 2, left childof 2 is 4, left child of 3 is 6, etc...
e In general the left child of node k is at position 2k . So the  

right child is at 2k + 1
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Operations on Heaps: Extract Min

We want to remove the minimum element (root) while 
maintaining the two heap properties: order and shape

2

3 6

7 10 8
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Operations on Heaps: Extract Min
Step 1: Swap the root node with the node in the bottom right

8

3 6

7 10 2
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Operations on Heaps: Extract Min
Step 2: Now we can remove(2) while maintaining the shape  
property

8

3 6

7 10
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Operations on Heaps: Extract Min
Step 3: We will fix the order property by swapping (8) with it’s  
smallest child

3

8 6

7 10
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Operations on Heaps: Extract Min

3

7 6

Step 4: Keep fixing the order property by swapping (8) 
with it’s smallest child again

8 10
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Operations on Heaps: Extract Min
Step 5: The heap properties have been preserved 
so we’re done!

3

7 6

8 10

146
Property	of	University	of	Pennsylvania, SampathKannan



Operations on Heaps: Insert

Step 1: Preserve the shape property by inserting the new
element at the bottom right

3

7 6

8 10 4

swim(A, k) :

while k > 1 and A[k/ 2] < A[k]:  
swa p(A[k], A[k/ 2])
k = k/2
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in s e r t ( A , k, va l ) :
N= le ngth(A)  
A[N+1] = va l  
swim(A, N+1)



Operations on Heaps: Insert

Step 2: Fix the order property by swapping (4) with 
its parent since it’s smaller

3

7 4

8 10 6

swim(A, k) :

while k > 1 and A[k/ 2] < A[k]:  
swa p(A[k], A[k/ 2])
k = k/2
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in s e r t ( A , k, va l ) :
N= le ngth(A)  
A[N+1] = va l  
swim(A, N+1)



Operations on Heaps: Insert

Step 3: (4) is bigger than its parent now so
we’re done!

3

7 4

8 10 6

swim(A, k) :
while k > 1 and A[k/ 2] < A[k]:

swa p(A[k], A[k/ 2])  
k = k/2
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in s e r t ( A , k, va l ) :

N= le ngth(A)  
A[N+1] = va l  
swim(A, N+1)
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Heap efficiency

e All operations on the heap are a combination of a 
constant number of operations and sink or swim 
operation.

e Swim operation executes as long as k >1 and divides it by
2 on every iteration
e Can execute at most log2 k times. Since k is initially at most 

n,  the number of elements, swim has a run time that is 
O(logn)

e By the same logic sink has run time that is O(log n) as well.
e So all the operations are O(log n). Except for delete

which must first take potentially O(n) steps to locate 
the given element in the array.



Video 1.8
Sampath Kannan
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Dynamic Dictionaries
Dynamic Dictionaries support three main 
operations:

e insert into adictionary
e delete from adictionary
e search for an element in a dictionary

Dynamic dictionaries are used in applications 
everywhere:

e Databases
e Router lookup tables, ids of IP packets
e Any application that involves storing

information!

Abstract representation:
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Dynamic Dictionaries

Abstract representation:

next: insert the pair
(3, ”the”)
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Dynamic Dictionaries support three main 
operations:

e insert into adictionary
e delete from adictionary
e search for an element in a dictionary

Dynamic dictionaries are used in applications 
everywhere:

e Databases
e Router lookup tables, ids of IP packets
e Any application that involves storing

information!



Dynamic Dictionaries

Abstract representation:
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Dynamic Dictionaries support three main 
operations:

e insert into adictionary
e delete from adictionary
e search for an element in a dictionary

Dynamic dictionaries are used in applications 
everywhere:

e Databases
e Router lookup tables, ids of IP packets
e Any application that involves storing information!



Dynamic Dictionaries

next: lookup 1
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Dynamic Dictionaries support three main 
operations:

e insert into adictionary
e delete from adictionary
e search for an element in a dictionary

Abstract representation:

Dynamic dictionaries are used in applications 
everywhere:

e Databases
e Router lookup tables, ids of IP packets
e Any application that involves storing information!



Dynamic Dictionaries

next: lookup 1
returns ”hi”
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Dynamic dictionaries are used in applications 
everywhere:

e Databases
e Router lookup tables, ids of IP packets
e Any application that involves storing information!

Dynamic Dictionaries support three main 
operations:

e insert into adictionary
e delete from adictionary
e search for an element in a dictionary

Abstract representation:



Dynamic Dictionaries

next: lookup 1
returns ”hi”  

next: delete 3 from
dictionary
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Dynamic Dictionaries support three main 
operations:

e insert into adictionary
e delete from adictionary
e search for an element in a dictionary

Dynamic dictionaries are used in applications 
everywhere:

e Databases
e Router lookup tables, ids of IP packets
e Any application that involves storing information!

Abstract representation:



Dynamic Dictionaries

Abstract representation:
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Dynamic Dictionaries support three main 
operations:

e insert into adictionary
e delete from adictionary
e search for an element in a dictionary

Dynamic dictionaries are used in applications 
everywhere:

e Databases
e Router lookup tables, ids of IP packets
e Any application that involves storing information!
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Implementations of Dictionaries

) Entire array must be traversed
e insertion, deletion:O(n)

) Array may need to be resized  
(requires copying all elements to  
a new array)

Can we find an efficient implementation for dictionaries?
Attempt 1: Arrays

e search: O(n)

↑

0
search(3):  

1
1 →hi 2 →is 3→ the

2
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Implementations of Dictionaries

) Entire array must be traversed
e insertion, deletion:O(n)

) Array may need to be resized  
(requires copying all elements to  
a new array

Can we find an efficient implementation for dictionaries?
Attempt 1:Arrays

e search: O(n)

0
search(3):

1

↑
1 →hi 2 →is 3→ the

2
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Implementations of Dictionaries

) Entire array must be traversed
e insertion, deletion:O(n)

) Array may need to be resized  
(requires copying all elements to  a 
new array

Can we find an efficient implementation for dictionaries?
Attempt 1:Arrays

e search: O(n)

0
search(3):  

1
1 →hi 2 →is 3→ the

2

↑



Implementations of Dictionaries
Can we find an efficient implementation for dictionaries?

Attempt 1: Arrays
e search: O(n)

) Entire array must be traversed
e insertion, deletion:O(n)

) Array may need to be resized  
(requires copying all elements 
to a new array

Attempt 2: Linked Lists
e search, deletion: O(n)

) Entire list must be traversed
e insertion: O(1)

) Can easily insert at the front 
of the list

0
search(3):  

1
1 →hi 2 →is 3→ the

2

↑

1 →hi 2 →is 3 →the
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Implementations of Dictionaries

1 →hi 2 →is 3 →the

Property	of	University	of	Pennsylvania, SampathKannan 163

Can we find an efficient implementation for dictionaries?
Attempt 1: Arrays

e search: O(n)
) Entire array must be traversed

e insertion, deletion:O(n)
) Array may need to be resized  

(requires copying all elements 
to a new array

0
search(3):  

1
1 →hi 2 →is 3→ the

2

↑

Attempt 2: Linked Lists
e search, deletion: O(n)

)

e insertion: O(1)
) Can easily insert at the front 

of the list

Entire list must be traversed



Implementations of Dictionaries

1 →hi 2 →is 3 →the
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Can we find an efficient implementation for dictionaries?
Attempt 1: Arrays

e search: O(n)
) Entire array must be traversed

e insertion, deletion:O(n)
) Array may need to be resized  

(requires copying all elements 
to a new array

0
search(3):  

1
1 →hi 2 →is 3→ the

2

↑

Attempt 2: Linked Lists
e search, deletion: O(n)

)

e insertion: O(1)
) Can easily insert at the front 

of the list

Entire list must be traversed
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Dictionaries: Binary Search Trees

Attempt 3: Binary Search Tree
e Store items in nodes of a binary tree
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Dictionaries: Binary Search Trees

Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that 
node’s key
All keys to the rightof a node are > that 
node’skey
The left and right subtrees of the node 
also satisfy the search tree property
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Dictionaries: Binary Search Trees

insert (4, ”a”)

Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that 
node’s key
All keys to the rightof a node are > that 
node’skey
The left and right subtrees of the node 
also satisfy the search tree property



Dictionaries: Binary Search Trees

insert (2, ”b”)

4, ”a”
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Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that 
node’s key
All keys to the rightof a node are > that 
node’skey
The left and right subtrees of the node 
also satisfy the search tree property



Dictionaries: Binary Search Trees

insert (7, ”c”)

4,”a”

2,”b”
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Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that 
node’s key
All keys to the rightof a node are > that 
node’skey
The left and right subtrees of the node 
also satisfy the search tree property



Dictionaries: Binary Search Trees

insert (1, ”d”)

4,”a”

2,”b” 7,”c ”
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Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that 
node’s key
All keys to the rightof a node are > that 
node’skey
The left and right subtrees of the node 
also satisfy the search tree property



Dictionaries: Binary Search Trees

insert (3, ”e”)

4,”a”

2,”b” 7,”c ”

1,”d”
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Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that 
node’s key
All keys to the rightof a node are > that 
node’skey
The left and right subtrees of the node 
also satisfy the search tree property



Dictionaries: Binary Search Trees

4,”a”

2,”b” 7,”c ”

1,”d” 3,”e”
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Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that 
node’s key
All keys to the rightof a node are > that 
node’skey
The left and right subtrees of the node 
also satisfy the search tree property



Dictionaries: Binary Search Trees

search(3)

4,”a”

2,”b” 7,”c ”

1,”d” 3,”e”
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Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that 
node’s key
All keys to the rightof a node are > that 
node’skey
The left and right subtrees of the node 
also satisfy the search tree property



Dictionaries: Binary Search Trees

3 <4

4,”a”

2,”b” 7,”c ”

1,”d” 3,”e”
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Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that 
node’s key
All keys to the rightof a node are > that 
node’skey
The left and right subtrees of the node 
also satisfy the search tree property



Dictionaries: Binary Search Trees

3 >2

4,”a”

2,”b” 7,”c ”

1,”d” 3,”e”
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Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that 
node’s key
All keys to the rightof a node are > that 
node’skey
The left and right subtrees of the node 
also satisfy the search tree property



Dictionaries: Binary Search Trees

Search (3)
return ”e”

4,”a”

2,”b” 7,”c ”

1,”d” 3,”e”
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Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that 
node’s key
All keys to the rightof a node are > that 
node’skey
The left and right subtrees of the node 
also satisfy the search tree property



Dictionaries: Binary Search Trees

Search (3)
Return ”e”

4,”a”

2,”b” 7,”c ”

1, ”d ” 3,”e”

Time to insert, search and delete is proportional to the height of 
the tree! 177
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Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that 
node’s key
All keys to the rightof a node are > that 
node’skey
The left and right subtrees of the node 
also satisfy the search tree property
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Binary Search Trees: Runtime

e Insert, Deletion and Search take time
proportional to height of the tree

178
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Binary Search Trees: Runtime

e Insert, Deletion and Search take time 
proportional to height of the tree

e But how bad can the height be?



189
Property	of	University	of	Pennsylvania, SampathKannan

Binary Search Trees: Runtime

e Insert, Deletion and Search take  time 
proportional to height of the tree

e But how bad can the height be?
insert (1, ”a”)



Binary Search Trees: Runtime

e Insert, Deletion and Search take time 
proportional to height of the tree

e But how bad can the height be?

insert (2, ”b”)

1, ”a”
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Binary Search Trees:  Runtime

e Insert, Deletion and Search take time 
proportional to height of the tree

e But how bad can the height be?

insert (3,”c”)

1, ”a”

2,”b”
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Binary Search Trees:  Runtime

e Insert, Deletion and Search take time 
proportional to height of the tree

e But how bad can the height be?

insert (4,”d”)

1, ”a”

2,”b”

3,”c ”
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Binary Search Trees:  Runtime

e Insert, Deletion and Search take time 
proportional to heightof the tree

e But how bad can the height be?

insert (5,”e”)

1, ”a”

2,”b”

3,”c ”

4,”d”
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Binary Search Trees:  Runtime

e Insert, Deletion and Search take time 
proportional to height of the tree

e But how bad can the height be?

1,”a”

2,”b”

3,”c ”

4,”d”

5,”e
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Binary Search Trees: Runtime

e Insert, Deletion and Search take time 
proportional to height of the tree

e But how bad can the height be?
e Worst case: height of tree is O(n)  

(number of elements inserted)

1,”a”

2,”b”

3,”c ”

4,”d”

5,”e
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Binary Search Trees:  Runtime

e Insert, Deletion and Search take 
time proportional to height of the 
tree

e But how bad can the height be?
e Worst case: height of tree is O(n) 

(number of elements inserted)
e However, common case: tree is 

balanced.

1,”a”

2,”b”

3,”c ”

4,”d”

5,”e
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Binary Search Trees:  Runtime

)

)

1st level: 1 node
2nd level: 2nodes

) kth level: 2k nodes
) n = 1 + 2 + 22 + ... + 2k

) 2k+1 − 1 = n, k = O(lgn)

1,”a”

2,”b”

3,”c ”

4,”d”

5,”e
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e Insert, Deletion and Search take 
time proportional to height of the 
tree

e But how bad can the height be?
e Worst case: height of tree is O(n) 

(number of elements inserted)
e However, common case: tree is 

balanced.



Binary Search Trees:  Runtime

) n = 1 + 2 + 22 + ... + 2k

) 2k+1 − 1 = n, k = O(lgn)
e common case: height is O(lgn)

1,”a”

2,”b”

3,”c ”

4,”d”

5,”e
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e Insert, Deletion and Search take 
time proportional to height of the 
tree

e But how bad can the height be?
e Worst case: height of tree is O(n) 

(number of elements inserted)
e However, common case: tree is 

balanced.
)

)

1st level: 1 node
2nd level: 2nodes

) kth level: 2k nodes



Binary Search Trees: Runtime
1,”a”

2,”b”

3,”c ”

4,”d”

5,”e

Is there anything we can do to limit the worst-case height of a
binary search tree?
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) n = 1 + 2 + 22 + ... + 2k

) 2k+1 − 1 = n, k = O(lgn)
e common case: height is O (lgn)

e Insert, Deletion and Search take 
time proportional to height of the 
tree

e But how bad can the height be?
e Worst case: height of tree is O(n) 

(number of elements inserted)
e However, common case: tree is 

balanced.
)

)

1st level: 1 node
2nd level: 2nodes

) kth level: 2k nodes



Video 1.9
Sampath Kannan
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Balanced Binary Search  Trees

e BSTs can become unbalanced leading to O(n) run times for
operations.

e We need a way to modify them so that their height is
O(log n) instead of O(n).

e Intuitively we can get this property if the left and right
sub-trees always have similar heights

e Modifications must preserve search tree property



Rotations

x

y

T3

y

x

T1

Right Rotation

Left Rotation
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T3
T1 T2 T2

We use rotations to keep left and right sub-trees balanced. In an
AVL tree we maintain the invariant that all left and right sub-trees
have a height difference of at most 1.
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Hashing

e To use an array to implement a dictionary we need a way
to map elements from our universe to indices. This
mapping is called a hash function and the array is called
a hash table

e Example: If our universe is all the integers and we have a
hash table of size 37 we could use h(x) = x mod 37 as
our hash function.

e If only one item gets mapped to each index then all
operations are O(1)!
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Load factor

e Suppose we have m different keys and a hash table of 
size n, and suppose that for each key we randomly 
choose an index to map it to.

195
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Load factor

e P(h(k ) = i) = 1/n.

e Suppose we have m different keys and a hash table of 
size n, and suppose that for each key we randomly 
choose an index to map it to.



Load factor

e Let Xi be the number of keys mapped to index i and
E [X] = P(h(k) = i)∗(1)= (1/n) ∗(1)= m/n

e load factor = α .
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e P(h(k ) = i) = 1/n.

e Suppose we have m different keys and a hash table of 
size n, and suppose that for each key we randomly 
choose an index to map it to.



Handling Collisions

e Can’t get rid of collisions so we need to store multiple 
items in a single bin

e One approach to this is chaining:

e Instead of storing each item directly in the array,
we store a linked list of all the items that map to 
that index

e Run-time of all operations is now proportional to the length
of the linked lists at the index we are operating on. We
just saw that this gives expected O(α ) performance.

e Note that the worst case is still O(m)!
198
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e Pros: No extra storage required, we don’t have to 
deal with pointers

e Cons: Deletion is very tricky and easy to mess up

Handling Collisions 2

e Instead of chaining we can use open addressing where keys
that map to the same index are stored in separate
locations in the table.

e One approach to this is double hashing, where we use 2 
hash  functions h(x) and g (x ).

e When there is a collision at h(x ) we try to insert at
h(x ) + g (x ), then h(x ) + 2g(x), ... etc

h(x)



Handling Collisions2

h(x)

e Instead of chaining we can use open addressing where
keys that map to the same index are stored in separate
locations in the table.

e One approach to this is double hashing, where we use
2 hash  functions h(x) and g (x ).

e When there is a collision at h(x ) we try to insert at
h(x ) + g (x ), then h(x ) + 2g(x), ... etc

+g(x)

e Pros: No extra storage required, we don’t have to deal
with pointers
e Cons: Deletion is very tricky and easy to mess up
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Handling Collisions2

h(x)
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+g (x) +g(x)

e Pros: No extra storage required, we don’t have to deal with
pointers

e Cons: Deletion is very tricky and easy to mess up

e Instead of chaining we can use open addressing where keys
that map to the same index are stored in separate
locations in the table.

e One approach to this is double hashing, where we use 2 
hash  functions h(x) and g (x ).

e When there is a collision at h(x ) we try to insert at
h(x ) + g (x ), then h(x ) + 2g(x), ... etc



Handling Collisions2

h(x)
+g (x ) +g (x ) +g(x)

202
Property	of	University	of	Pennsylvania, SampathKannan

e Instead of chaining we can use open addressing where keys
that map to the same index are stored in separate
locations in the table.

e One approach to this is double hashing, where we use 2 
hash  functions h(x) and g (x ).

e When there is a collision at h(x ) we try to insert at
h(x ) + g (x ), then h(x ) + 2g(x), ... etc

e Pros: No extra storage required, we don’t have to deal with
pointers

e Cons: Deletion is very tricky and easy to mess up


