
Video 1.1
Sampath Kannan

1Property	of	University	of	Pennsylvania, SampathKannan

What is an algorithm?

Muhammad ibn Musa
al-Khwarizmi: gave rise
to the word “algorithm”

Euclid: Inventor of an
algorithm for computing

greatest common divisors
2Property	of	University	of	Pennsylvania, SampathKannan

3Property	of	University	of	Pennsylvania, SampathKannan

Why study algorithms?

As programs get complicated, thinking algorithmically
allows us to:

›

›

›

reason about their correctness and efficiency
before implementing them
focus on techniques for solving problems
understand relationship between different
computational problems

Induction + Algorithm Design

›

4Property	of	University	of	Pennsylvania, SampathKannan

›

›

A fundamental idea in algorithm design–solve a
problem on bigger data sets using your knowledge
of how to solve it on smaller ones.
This idea embodies the proof technique of
Mathematical Induction.
Example: Towers of Hanoi

Step1

Move n− 1 recursively

Induction + Algorithm Design

›

5Property	of	University	of	Pennsylvania, SampathKannan

›

›

Step2

Move lastbrick

› Move top n-1 disks from
rod A to rod B

A fundamental idea in algorithm design–solve a
problem on bigger data sets using your knowledge
of how to solve it on smaller ones.
This idea embodies the proof technique of
Mathematical Induction.
Example: Towers of Hanoi

Induction + Algorithm Design

›

6Property	of	University	of	Pennsylvania, SampathKannan

›

›

Step3

Move n− 1 recursively again

›

›

Move top n-1 disks from
rod A to rod B
Move disk 1 from rod A
to rod C

A fundamental idea in algorithm design–solve a
problem on bigger data sets using your knowledge
of how to solve it on smaller ones.
This idea embodies the proof technique of
Mathematical Induction.
Example: Towers of Hanoi

Induction + Algorithm Design

›

›

›

Step4

7Property	of	University	of	Pennsylvania, SampathKannan

Done

›

›

›

Move top n-1 disks from
rod A to rod B
Move disk 1 from rod A
to rod C
Move the n-1 disks from
rod B to rod C

A fundamental idea in algorithm design–solve a
problem on bigger data sets using your knowledge
of how to solve it on smaller ones.
This idea embodies the proof technique of
Mathematical Induction.
Example: Towers of Hanoi

8Property	of	University	of	Pennsylvania, SampathKannan

Induction + Algorithm Design
›

›

›

›

›

›

›

Move top n-1 disks from
rod A to rod B
Move disk 1 from rod A
to rod C
Move the n-1 disks from
rod B to rod C
How long does this
take? How can this be
analyzed with
induction?

A fundamental idea in algorithm design–solve a
problem on bigger data sets using your knowledge
of how to solve it on smaller ones.
This idea embodies the proof technique of
Mathematical Induction.
Example: Towers of Hanoi

Another Example: Insertion Sort

5 2 4 6 1 3

9Property	of	University	of	Pennsylvania, SampathKannan

Another Example: Insertion Sort

5 2 4 6 1 3

2 5 4 6 1 3

10Property	of	University	of	Pennsylvania, SampathKannan

Another Example: Insertion Sort

5 2 4 6 1 3

2 5 4 6 1 3

2 4 5 6 1 3

11Property	of	University	of	Pennsylvania, SampathKannan

Another Example: Insertion Sort

5 2 4 6 1 3

2 5 4 6 1 3

2 4 5 6 1 3

2 4 5 6 1 3

12Property	of	University	of	Pennsylvania, SampathKannan

5 2 4 6 1 3

2 5 4 6 1 3

2 4 5 6 1 3

2 4 5 6 1 3

1 2 4 5 6 3

13Property	of	University	of	Pennsylvania, SampathKannan

Another Example: Insertion Sort

5 2 4 6 1 3

2 5 4 6 1 3

2 4 5 6 1 3

2 4 5 6 1 3

1 2 4 5 6 3
1 2 3 4 5 6

14Property	of	University	of	Pennsylvania, SampathKannan

Another Example: Insertion Sort

Another Example: Insertion Sort

15Property	of	University	of	Pennsylvania, SampathKannan

Another Example: Insertion Sort

› If we’ve already sorted
the first k elements of
the array, how long does
it take to place the next
element?

16Property	of	University	of	Pennsylvania, SampathKannan

17Property	of	University	of	Pennsylvania, SampathKannan

Recurrence Relations

› How can we analyze the runtime of an algorithm
that is recursive?

18Property	of	University	of	Pennsylvania, SampathKannan

›

›

How can we analyze the runtime of an algorithm
that is recursive?
Recurrence relation: a function defined in terms
of itself

Recurrence Relations

19Property	of	University	of	Pennsylvania, SampathKannan

Recurrence Relations

›

›

›

How can we analyze the runtime of an algorithm that is
recursive?
Recurrence relation: a function defined in terms of itself
How can we write the runtime of Towers of Hanoi using a
recurrence?

20Property	of	University	of	Pennsylvania, SampathKannan

Recurrence Relations

› T (n) = # operations required to solve a tower with n
disks

21Property	of	University	of	Pennsylvania, SampathKannan

Recurrence Relations

›
›

T (n) = # operations required to solve a tower with n disks
disks T (n − 1) = # operations required to solve a tower
with n− 1 disks

22Property	of	University	of	Pennsylvania, SampathKannan

Recurrence Relations

›
›

T (n) = # operations required to solve a tower with n disks
T (n − 1) = # operations required to solve a tower with n−
1 disks

› Can we write T (n) usingT (n − 1)?

23Property	of	University	of	Pennsylvania, SampathKannan

Recurrence Relations

Towers of Hanoi recurrence: T (n) = 2T (n− 1) + 1

24Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

›

We can expand this recurrence out through telescoping

T (n) = 2T (n− 1) + 1

25Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

›
›

We can expand this recurrence out through telescoping

T (n) = 2T (n− 1) + 1
T (n − 1) = 2T (n − 2) + 1

26Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

›

We can expand this recurrence out through telescoping

substituting in for T (n − 1):

27Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

›

›

We can expand this recurrence out through telescoping
substituting in for T (n − 1):

T (n) = 2(2T (n − 2) + 1) + 1

28Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

›

›

›

We can expand this recurrence out through telescoping
substituting in forT (n − 1):

T (n) = 2(2T (n − 2) + 1) + 1

T (n) = 4T (n− 2) + 2+ 1

29Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

›

We can expand this recurrence out through
telescoping

substituting in again for T (n − 2):

30Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

›
›

We can expand this recurrence out through telescoping

substituting in again for T (n − 2):
T (n) = 8T (n− 3) + 4+ 2+ 1

31Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

›
›

›

We can expand this recurrence out through telescoping

substituting in againfor T (n − 2):
T (n) = 8T (n− 3) + 4+ 2+ 1
Can we generalize this to k?

32Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

We can expand this recurrence out through telescoping
› i=0T (n)= 2kT(n− k) + (∑ k− 12i)

33Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

We can expand this recurrence out through telescoping

T (n)= 2kT(n− k) + (∑ k− 12i)›

›
i=0

T (n)= 2kT (n− k) + (2k− 1)

34Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

We can expand this recurrence out through telescoping

T (n)= 2kT(n− k) + (∑ k− 12i)›

›

›

i=0
T (n)= 2kT (n− k) + (2k− 1)
What is T (1)?

35Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

We can expand this recurrence out through telescoping

T (n)= 2kT(n− k) + (∑ k− 12i)›

›
›

i=0
T (n)= 2kT (n− k) + (2k− 1)
What is T (1)?

) How long does it take to solve
a tower with 1 ring?

36Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

We can expand this recurrence out through telescoping

T (n)= 2kT(n− k) + (∑ k− 12i)›

›
›

i=0
T (n)= 2kT (n− k) + (2k− 1)
What is T (1)?

)

)

How long does it take to solve a
tower with 1 ring?
T (1) = 1. Substitute k = n − 1

› T (n)= 2n−1+ 2n−1− 1

37Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

We can expand this recurrence out through telescoping

T (n)= 2kT(n− k) + (∑ k− 12i)›

›
›

i=0
T (n)= 2kT (n− k) + (2k− 1)
What is T (1)?

)

)

How long does it take to solve a
tower with 1 ring?
T (1) = 1. Substitute k = n − 1

›

›
T (n)= 2n−1+ 2n−1− 1
T (n) = 2n−1

38Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

Result: Solving Towers of Hanoi requires 2n − 1
operations!

39Property	of	University	of	Pennsylvania, SampathKannan

Towers of Hanoi: Runtime

We can expand this recurrence out through telescoping
›

›
›

›

›

›
›

›

T (n) = 2T (n− 1) + 1
T (n− 1) = 2T (n − 2) + 1
substituting in for T (n− 1):

T (n) = 2(2T (n− 2) + 1) + 1
T (n) = 4T (n− 2) + 2+ 1
substitutingin againfor T (n− 2):
T (n) = 8T (n− 3) + 4+ 2+ 1
Can we generalize this to k?

T (n)= 2kT (n− k) + (∑ k− 1 2i)›

›
i=0

T (n)= 2kT (n− k) + (2k− 1)
› What is T (1)?

)

)

How long does it take to
solve a tower with 1 ring?
T (1) = 1. Substitute k = n − 1

›
›

T (n) = 2n−1 + 2n−1 − 1
T (n) = 2n− 1

Result: Solving Towers of Hanoi requires 2n − 1 operations!

40Property	of	University	of	Pennsylvania, SampathKannan

Recurrence Relations: Back to Insertion Sort

› Can we write Insertion Sort using a recurrence?

41Property	of	University	of	Pennsylvania, SampathKannan

Recurrence Relations: Back to Insertion Sort

›
›

Can we write Insertion Sort using a recurrence?
Not really, it isn’t recursive! Instead, we can analyze
how long each iteration of the loop takes.

42Property	of	University	of	Pennsylvania, SampathKannan

Recurrence Relations: Back to Insertion Sort

›
›

›

Can we write Insertion Sort using a recurrence?
Not really, it isn’t recursive! Instead, we can analyze how long
each iteration of the loop takes.
Key observation: At the kth iteration of the loop, the first k − 1
elements of the array are in sorted order

43Property	of	University	of	Pennsylvania, SampathKannan

Recurrence Relations: Back to Insertion Sort

›
›

›

›

›

Can we write Insertion Sort using a recurrence?
Not really, it isn’t recursive! Instead, we can analyze how long each
iteration of the loop takes.
Key observation: At the kth iteration of the loop, the first k − 1
elements of the array are in sorted order
First iteration of the loop: 0 swaps required (first elementis
trivially sorted)
Last iteration of the loop: at most n− 1 swaps required

44Property	of	University	of	Pennsylvania, SampathKannan

Recurrence Relations: Back to Insertion Sort

›
›

›

›

Can we write Insertion Sort using a recurrence?
Not really, it isn’t recursive !Instead,we can analyze how long each
iteration of the loop takes.
Key observation: At the kth iteration of theloop, the firs k − 1
elements of the array are in sorted order
First iteration of the loop: 0 swaps required (first elementis trivially
sorted)

› Last iteration of the loop: at most n− 1 swaps required
› In general, kth iteration of theloop: at most k − 1 swaps required

45Property	of	University	of	Pennsylvania, SampathKannan

Recurrence Relations: Back to Insertion Sort

›

Finding the total number of swaps:
n

total number of swaps = ∑ i − 1i =0

46Property	of	University	of	Pennsylvania, SampathKannan

Recurrence Relations: Back to Insertion Sort

= 1 + 2 + ... + n − 1
›

›
› = n(n−1)

2

Finding the total number of swaps:
n

total number of swaps = ∑ i − 1i =0

47Property	of	University	of	Pennsylvania, SampathKannan

Recurrence Relations: Back to Insertion Sort

i=0ntotal number of swaps = ∑ i − 1
= 1 + 2 + ...+ n − 1

›

›
› = n(n−1)

2

Finding the total number of swaps:
Number ofswaps

required for
Insertion sort:

n(n−1)
2

Video 1.2
Sampath Kannan

48Property	of	University	of	Pennsylvania, SampathKannan

Asymptotic Bounds
Motivation:

49Property	of	University	of	Pennsylvania, SampathKannan

Motivation:

50Property	of	University	of	Pennsylvania, SampathKannan

›

›

Essentially a way to compare
functions without worrying
about their behavior on small n.

Big-Oh is like ≤ (ignoring constant
factors), and Big-Omega is like ≥

Gives us an idea of how
fast a function grows

Asymptotic Bounds

Asymptotic Bounds
Motivation:

51Property	of	University	of	Pennsylvania, SampathKannan

›

›

Essentially a way to compare
functions without worrying
about their behavior on small n.
In this sense Big-Oh is like ≤
(ignoring constant factors), and
Big-Omega is like ≥
Gives us an idea of how fast a
function grows

›

›

Note: O(f (n)) is a set.
O(n2): the set of all function that do not grow faster
than n2

52Property	of	University	of	Pennsylvania, SampathKannan

Asymptotic Bounds: Examples

Some elements of O(n2):
›

›
›

2n2∈O(n2)
100n2+ n + 1∈O(n2)
n∈O(n2)

Some elements of Ω(n2):
2n2∈Ω(n2)

n2
1000

n∈Ω(n 2)
›

›

› 2n3 ∈Ω(n)

What is the complexity of insertion sort?
T (n) = T (n 1) + n›

› T (n) = n2+n

›
2

T (n)∈O(n2)
Insertion sort has a runtime of O(n2)

Complexity

53Property	of	University	of	Pennsylvania, SampathKannan

Complexity

How does insertion sort perform on an already-
sorted array?

54Property	of	University	of	Pennsylvania, SampathKannan

Complexity

55Property	of	University	of	Pennsylvania, SampathKannan

Complexity

time for inner loop?

56Property	of	University	of	Pennsylvania, SampathKannan

Complexity

›
›

time for inner loop?
Each iteration requires no swaps!
(constant time to check the first
element)

› n 1= n∈O(n)∑ i =1

57Property	of	University	of	Pennsylvania, SampathKannan

Complexity

58Property	of	University	of	Pennsylvania, SampathKannan

›
›

time for inner loop?
Each iteration requires no swaps!
(constant time to check the first
element)

› ∑ n
i =1 1 = n∈O(n)

› is insertion sortO(n), or O(n2)?

Complexity

›
›

time for inner loop?
Each iteration requires no swaps!
(constant time to check the first
element)

› . ni =1 1 = n∈O(n)
› is insertion sort O(n), or O(n2)?

Takeaway: Can’t assume
anything about the input.
Always assume the worst

case!

∑
59Property	of	University	of	Pennsylvania, SampathKannan

Algorithm Design: Divide and Conquer Paradigm

Idea: Solve a problem by splitting it into pieces, solving those
pieces recursively, and merging them to solve the larger

problem

60Property	of	University	of	Pennsylvania, SampathKannan

61Property	of	University	of	Pennsylvania, SampathKannan

Divide and Conquer Example: Triominos

›

›

Input: NxN grid (assume n is a power of 2) with a single
square removed, and a supply of corner shaped triomino tiles
Goal: Fill the grid without any overlapping tiles

Algorithm:

62Property	of	University	of	Pennsylvania, SampathKannan

Divide and Conquer Example: Triominos

›

›

Input: NxN grid (assume n is a powerof 2) with a single square
removed, and a supply of corner shaped triomino tiles
Goal: Fill the grid without any overlapping tiles

Algorithm:
›

›

Divide the grid into 4 squares(size
2n− 1x 2n− 1).
note: 1 of these 4 squares contains
the missing piece

Video 1.3
Sampath Kannan

63Property	of	University	of	Pennsylvania, SampathKannan

64Property	of	University	of	Pennsylvania, SampathKannan

Binary Search
›

›

How long does it take to search for an element in an array?
O(n)
Idea: Can we do better if we know that the array is sorted?

Binary-search(A,val):
return Binary-search(A, val, 0,(length(A)-1))

Binary-search(A, val, low, high): if
high < low

return -1 (not found)
mid <- (low + high) / 2 if
A[mid] > val

return Binary-search(A, val, low, mid-1)
else if A[mid] <val

return Binary-search(A, val, mid+1, hi)
else returnmid

Each step of the algorithm, the size of the input halves.
T (n) = T (n) + 1

›
›
›

2

How to solve this recurrence: How many times can we halve
2 4

N before reaching1? N , N , ...
N = 1,k = lg2N›

›
2k

binary search runs in O(lgN)

› merging runs in O(n + m) time
65Property	of	University	of	Pennsylvania, SampathKannan

Merging two sorted lists
Input: two sorted arrays of size n and m
Output: a single sorted array of size n+m

↑
3 7 12 18

↑
2 5 16 21

↑

merge(A,B):
C = new array[len(A) + len(B)]
i, j, k <- 0
while i < len(A) and j < len(B):

if A[i] < B[j]:
C[k] <-A[i]
i++, k++

else:
C[k] <-B[j]
j++, k++

while i < len(A):
C[k++] <-A[i++]

while j < len(B):
C[k++]<- B[j++]

return C

›
›
›

How long does this take?
Every time a comparison is made, either i or j is incremented
Total number of comparisons is n + m

Merging two sorted lists
Input: two sorted arrays of size n and m
Output: a single sorted array of size n+m

↑
3 7 12 18

↑
2 5 16 21

↑
2

merge(A,B):
C = new array[len(A) + len(B)]
i, j, k <- 0
while i < len(A) and j < len(B):

if A[i] < B[j]:
C[k] <-A[i]
i++, k++

else:
C[k] <-B[j]
j++, k++

while i < len(A):
C[k++] <-A[i++]

while j < len(B):
C[k++]<- B[j++]

return C

›
›
›
›

Property	of	University	of	Pennsylvania, SampathKannan 66

› merging runs in O(n + m) time

›
›
›

How long does this take?
Every time a comparison is made, either i or j is incremented
Total number of comparisons is n + m

Merging two sorted lists
Input: two sorted arrays of size n and m
Output: a single sorted array of size n+m

↑
3 7 12 18

↑
2 5 16 21

↑
2 3

merge(A,B):
C = new array[len(A) + len(B)]
i, j, k <- 0
while i < len(A) and j < len(B):

if A[i] < B[j]:
C[k] <-A[i]
i++, k++

else:
C[k] <-B[j]
j++, k++

while i < len(A):
C[k++] <-A[i++]

while j < len(B):
C[k++]<- B[j++]

return C

›
›
›
›

Property	of	University	of	Pennsylvania, SampathKannan 67

› merging runs in O(n + m) time

›
›
›

How long does this take?
Every time a comparison is made, either i or j is incremented
Total number of comparisons is n + m

68Property	of	University	of	Pennsylvania, SampathKannan

Merging two sorted lists
Input: two sorted arrays of size n and m
Output: a single sorted array of size n+m

↑3 7 12 18

↑
2 5 16 21

2 3 5
↑

merge(A,B):
C = new array[len(A) + len(B)]
i, j, k <- 0
while i < len(A) and j < len(B):

if A[i] < B[j]:
C[k] <-A[i]
i++, k++

else:
C[k] <-B[j]
j++, k++

while i < len(A):
C[k++] <-A[i++]

while j < len(B):
C[k++]<- B[j++]

return C

› merging runs in O(n + m) time

›
›
›

How long does this take?
Every time a comparison is made, either i or j is incremented
Total number of comparisons is n + m

More on Divide and Conquer: Mergesort

Input: An array of size n, Output: A sorted array of size n

Can we apply the Divide and Conquer paradigm to sorting?
Idea: Split the array, sort halves recursively, merge the result

mergesort(A):
mergesort(A, 0,len(A)-1)

mergesort(A, aux, lo, hi):
if (hi - lo <= 1)return
mid = (lo + hi) / 2
mergesort(A, lo, mid)
mergesort(A, mid+1,hi)
C = merge(A[lo:mid], A[mid+1:hi])
copy elements from C back intoA

69Property	of	University	of	Pennsylvania, SampathKannan

More on Divide and Conquer: Mergesort

mergesort(A):
mergesort(A, 0,len(A)-1)

mergesort(A, aux, lo, hi):
if (hi - lo <= 1)return
mid = (lo + hi) / 2
mergesort(A, lo, mid)
mergesort(A, mid+1,hi)
C = merge(A[lo:mid],A[mid+1:hi])
copy elements from C back intoA

70Property	of	University	of	Pennsylvania, SampathKannan

Input: An array of size n, Output: A sorted array of size n

Can we apply the Divide and Conquer paradigm to sorting?
Idea: Split the array, sort halves recursively, merge the result

More on Divide and Conquer: Mergesort

mergesort(A):
mergesort(A, 0,len(A)-1)

mergesort(A, aux, lo, hi):
if (hi - lo <= 1)return
mid = (lo + hi) / 2
mergesort(A, lo, mid)
mergesort(A, mid+1,hi)
C = merge(A[lo:mid], A[mid+1:hi])
copy elements from C back intoA

71Property	of	University	of	Pennsylvania, SampathKannan

Input: An array of size n, Output: A sorted array of size n

Can we apply the Divide and Conquer paradigm to sorting?
Idea: Split the array, sort halves recursively, merge the result

More on Divide and Conquer: Mergesort

mergesort(A):
mergesort(A, 0,len(A)-1)

mergesort(A, aux, lo, hi):
if (hi - lo <= 1)return
mid = (lo + hi) / 2
mergesort(A, lo, mid)
mergesort(A, mid+1,hi)
C = merge(A[lo:mid], A[mid+1:hi])
copy elements from C back intoA

72Property	of	University	of	Pennsylvania, SampathKannan

Input: An array of size n, Output: A sorted array of size n

Can we apply the Divide and Conquer paradigm to sorting?
Idea: Split the array, sort halves recursively, merge the result

More on Divide and Conquer: Mergesort

mergesort(A):
mergesort(A, 0,len(A)-1)

mergesort(A, aux, lo, hi):
if (hi - lo <= 1)return
mid = (lo + hi) / 2
mergesort(A, lo, mid)
mergesort(A, mid+1,hi)
C = merge(A[lo:mid], A[mid+1:hi])
copy elements from C back intoA

73Property	of	University	of	Pennsylvania, SampathKannan

Input: An array of size n, Output: A sorted array of size n

Can we apply the Divide and Conquer paradigm to sorting?
Idea: Split the array, sort halves recursively, merge the result

More on Divide and Conquer: Mergesort

mergesort(A):
mergesort(A, 0,len(A)-1)

mergesort(A, aux, lo, hi):
if (hi - lo <= 1)return
mid = (lo + hi) / 2
mergesort(A, lo, mid)
mergesort(A, mid+1,hi)
C = merge(A[lo:mid], A[mid+1:hi])
copy elements from C back intoA

74Property	of	University	of	Pennsylvania, SampathKannan

Input: An array of size n, Output: A sorted array of size n

Can we apply the Divide and Conquer paradigm to sorting?
Idea: Split the array, sort halves recursively, merge the result

More on Divide and Conquer: Mergesort

mergesort(A):
mergesort(A, 0,len(A)-1)

mergesort(A, aux, lo, hi):
if (hi - lo <= 1)return
mid = (lo + hi) / 2
mergesort(A, lo, mid)
mergesort(A, mid+1,hi)
C = merge(A[lo:mid], A[mid+1:hi])
copy elements from C back intoA

75Property	of	University	of	Pennsylvania, SampathKannan

Input: An array of size n, Output: A sorted array of size n

Can we apply the Divide and Conquer paradigm to sorting?
Idea: Split the array, sort halves recursively, merge the result

Video 1.4
Sampath Kannan

76Property	of	University	of	Pennsylvania, SampathKannan

77Property	of	University	of	Pennsylvania, SampathKannan

Algorithm Design: Using Randomness

e Remember from Insertion Sort: Algorithm performance can
depend on the input:

)

)

on a sorted list: O(n) comparisons
on a reversed list: O(n2) comparisons
In general: somewhere between n and n(n+1) comparisons)

) However, the worst-case is still O(n2)2

e An ”adversary” can repeatedly construct an input to our
algorithm that causes it to perform as poorly as possible

e Can we prevent our algorithm performance from
depending on the input?

) Shift the dependency: from input to randomization
e Idea: Write algorithms that toss a coin!

First: An Introduction to Probability

e For a stronger introduction,see:
https://www.coursera.org/learn/probability- intro

e Random Variable: A function X from the results of an
experiment to numbers

e E [X]: the expected value of the random variable X
(a ”weighted average”)

e Formula: E [X]= Σ i ∗ P (X = i) (for all values i that X can take on)

e Example:

78Property	of	University	of	Pennsylvania, SampathKannan

Intro to Probability: Continued

e What is the expected sum of two dice?
e X = the sum of two dice. Want to find E [X].
e X can take on values from 2...12
e E.x. P (X = 5). Can result from two die rolls of:

) (1, 4)
) (4, 1)
) (2, 3)
) (3, 2)

Calculation is not trivial. Solution: Linearity of Expectation!

79Property	of	University	of	Pennsylvania, SampathKannan

80Property	of	University	of	Pennsylvania, SampathKannan

Intro to Probability: Continued

e Linearity of Expectation: For n random variables, X1, .., Xn, E
[X1 + .. + Xn] = E [X1] + .. + E [Xn]

e Example:
)

)

)

)

)

)

)

)

What is the expected sum of rolling 2 dice?
let Xi be the random variable denoting the value of the i’th die
rolled
let X be the r.v. denoting the sum of all 2 dice
then X = X1 + X2
E [X] = E [X1 + X2]
E [X] = E [X1] + E [X2] (by lin. of exp.)

as shown above, for each i, E [Xi]= 3.5
E [X] = 3.5 + 3.5 = 7

Expectation Example: Hat Checking
N people go to a restaurant, take off their hats and throw
them in a pile. Afterwards, they each take a hat from the
pile at random. What is the expected number of people who
get their hat back?

e We can analyze using random variables!
e Let:) X = the number of people who get their hats back

Xi=
. 1

0 person i chooses their own hat
person i doesnt t choose their ownhat

e What is E [Xi]?
) From the definition:
) E [Xi] = 1 ∗ P(choose their hat) + 0P (donjt choose their hat)
) E [Xi] = P (choose hat)=1

n
e Again, X = X1 + X2 + .. + Xn

e E [X]= E [X1 + .. + Xn] = E [X1] + .. + E [Xn] by lin. of exp.

e E [X] = n1 = 1n
In expectation, one person will correctly take their own hat!

81Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: An Introduction

Goal: Another sorting algorithm that uses divide-and-conquer
e Idea:

82Property	of	University	of	Pennsylvania, SampathKannan

) Select an element in the array
) Partition the other elements of the
array around it

e Is the array more sorted than it
was before?

e Answer: yes!
e Next step: recursively sort the left

and right sides of the array as
well.

Problem: What about ”adversarial inputs”? This algorithm
will perform better on some inputs than others.

Quicksort: Randomized

Can we write an algorithm for sorting that uses coin tossing
(randomness)?

e Idea:

83Property	of	University	of	Pennsylvania, SampathKannan

)

)

)

Randomly select an element in the array
Partition the other elements of the array
around it
Recursively sort the left and right sides
of the array

Result: Another divide and conquer algorithm for sorting, that
uses randomness.

Video 1.5
Sampath Kannan

84Property	of	University	of	Pennsylvania, SampathKannan

85Property	of	University	of	Pennsylvania, SampathKannan

Quicksort

Idea: Choose an element at random. Partition the array
around this element. Recursively sort the left and right side.

Quicksort

Property	of	University	of	Pennsylvania, SampathKannan
86

quicksort(A):
quicksort(A, 0, len(A)-1)

quicksort(A, lo, hi):
if(lo >= hi) return
pivot_location <- partition(A, lo, hi)
quicksort(A, lo, pivot_location - 1)
quicksort(A, pivot_location +1, hi)

partition(A, lo, hi):
pivot_index <- random(lo, hi)
swap(A, pivot_index, hi)
pivot <- A[hi]
I <- lo, j <- hi, C <- new array
for k = lo to hi -1

if A[k] <= pivot:
C[i++] <- A[k]

else:
C[j--] <- A[k]

C[i] <- A[hi] (copy the pivot in)
copy C[lo : hi] back into A
return i

Idea: Choose an element at random. Partition the array
around this element. Recursively sort the left and right side.

Property	of	University	of	Pennsylvania, SampathKannan

Quicksort

Quicksort (compare to Mergesort)

87

88
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort

Quicksort (compare to Mergesort)
e divide-and-conquer algorithm
e First partition, then sort recursively

89
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort

Quicksort (compare to Mergesort)
e divide-and-conquer algorithm
e First partition, then sort recursively

e Can be done with no extra space
e runtime: See next slide

90
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis
e First: the recurrence for quicksort
e Step 1: Partition requires O(n)
e Step 2: Recursively sort left and right sides of the array

91
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis
e First: the recurrence for quicksort
e Step 1: Partition requires O(n)
e Step 2: Recursively sort left and right sides of the array

What are the sizes of these two arrays?)

) k and n − k − 1, for some k
e T (n) = T (k) + T (n − k − 1) + O(n)

92
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis
e First: the recurrence for quicksort
e Step 1: Partition requiresO(n)
e Step 2: Recursively sort left and right sides of the array

What are the sizes of these two arrays?)
) k and n − k − 1, for some k

e T (n) = T (k) + T (n − k − 1) + O(n)

Worstcase (bad partition):
e partition does not split array at all
at every step(k = 1 or n − 1)
e T (n) = T (1) + T (n − 1) + n
e T (n) = O(n2) (similar to insertion sort)

93
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis

)

2

Best case(good partition):
e partition splits array evenly at
every step (k= n)

2 2e T (n) = T (n) + T (n) + O(n)
e T (n) = O(nlgn)
(recall from merge sort)

e First: the recurrence for quicksort
e Step 1: Partition requiresO(n)
e Step 2: Recursively sort left and right sides of the array

What are the sizes of these two arrays?
) k and n − k − 1, for some k

e T (n) = T (k) + T (n − k − 1)
+ O(n)

Worstcase (bad partition):
e partition does not split array at all
at every step(k = 1 or n − 1)
e T (n) = T (1) + T (n − 1) + n
e T (n) = O(n2) (similar to insertion
sort)

94
Property	of	University	of	Pennsylvania, SampathKannan

How does the algorithm perform on average?
We can analyze with expectation

Quicksort: Analysis

)

2

Best case(good partition):
e partition splits array evenly at
every step (k= n)

2 2e T (n) = T (n) + T (n) + O(n)
e T (n) = O(nlgn)
(recall from merge sort)

e First: the recurrence for quicksort
e Step 1: Partition requiresO(n)
e Step 2: Recursively sort left and right sides of the array

What are the sizes of these two arrays?
) k and n − k − 1, for some k

e T (n) = T (k) + T (n − k − 1)
+ O(n)

Worstcase (bad partition):
e partition does not split array at all
at every step(k = 1 or n − 1)
e T (n) = T (1) + T (n − 1) + n
e T (n) = O(n2) (similar to insertion
sort)

Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis

Recurrence for quicksort:

95

96
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis

Recurrence for quicksort:
e taking the expected value overall possible i:

Quicksort: Analysis

Recurrence for quicksort:
e taking the expected value overall possible i:
e T (n) = 1 Σ n

97
Property	of	University	of	Pennsylvania, SampathKannan

n i=1
T (i) + T (n− i)+ O(n)

Quicksort: Analysis

Recurrence for quicksort:
e taking the expected value overall possible i:
e T (n) = n

98
Property	of	University	of	Pennsylvania, SampathKannan

1 n
Σ i=1 T (i) + T (n− i)+ O(n)

e This is difficult to analyze! Can we find a better way to analyze
quicksort?

Quicksort: Analysis

Recurrence for quicksort:
e taking the expected value overall possible i:
e T (n) = n

1 Σ n
i =1 T (i) + T (n− i)+ O(n)

e This is difficult to analyze! Can we find a better
way to analyze quicksort?

Partition step

Idea: Any two elements are never
compared more than once

e What happens after an element is compared to
the partitioning element?

) these two elements won’t be compared
again

99
Property	of	University	of	Pennsylvania, SampathKannan

100
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis

Analyze with random variables:
e denote the kth smallest element in the array as ek

101
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis

Analyze with random variables:
e denote the kth smallest element in the array as ek

e X = total number of comparisons
e

Xij=
. 1

0
eiand ejarecompared
eiand ejare not compared

102
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis

Analyze with random variables:
e denote the kth smallest element in the array as ek

e X = total number of comparisons
e

Xij=
. 1

0
ei and ej are compared
ei and ej are not compared

e Then X= n− 1 n
i=1 j=i+1X ij∑ ∑

103
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis

e E [X] = E [Σ Σ X ij] = Σ Σ E [Xij]by lin. of exp.

e Recall: E [Xij]= 1∗P(Xij = 1) + 0 ∗P(Xij = 0)
e E [Xij]= P (Xij = 1)

e Then X= n− 1 n
i=1 j=i+1X ij∑ ∑

Analyze with random variables:
e denote the kth smallest element in the array as ek

e X = total number of comparisons
e

Xij=
. 1

0
ei and ej are compared
ei and ej are not compared

104
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis

Analyze with random variables:

What is the probability that ei and ej are compared?

105
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis

Analyze with random variables:

What is the probability that ei and ej are compared?
e ei and ej will be compared if either is selected as a pivot

106
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis

Analyze with random variables:

What is the probability that ei and ej are compared?
e ei and ej will be compared if either is selected as a pivot
e ei andej will not be compared if some ek , i< k < j is

selected as a pivot first
) ei willbe to the left of ek , and ej willbe to the right.

107
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis

e Which pivots must be chosen for ei and ej to be compared?
) either ei or ej (2 total)

108
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis

e Which pivots must be chosen for ei and ej to be compared?
) either ei or ej (2 total)

e Which pivots for ei and ej not to be compared?
) ei +1, ei +2, ..., or ej−1 (j − i − 1 total)

109
Property	of	University	of	Pennsylvania, SampathKannan

Quicksort: Analysis

e Elements are chosen as pivots randomly
2e E [Xij] = 2 =

e

(j− i−1)+2 j−i+1

n−1 n 2
i=1 j=i +1 j− i+1

e E [X]≤ 2nlgn∈O(nlgn)

E [X]= ∑ ∑

e Which pivots must be chosen for ei and ej to be compared?
) either ei or ej (2 total)

e Which pivots for ei and ej not to be compared?
) ei +1, ei +2, ..., or ej−1 (j − i − 1 total)

Quicksort: Analysis

110
Property	of	University	of	Pennsylvania, SampathKannan

Result: Randomized Quicksort makes an expected O(nlgn)
comparisons!

2e E [Xij] = 2 =

e

(j− i−1)+2 j−i+1

n−1 n 2
i=1 j=i +1 j− i+1

e E [X]≤ 2nlgn∈O(nlgn)

E [X]= ∑ ∑

e Which pivots must be chosen for ei and ej to be compared?
) either ei or ej (2 total)

e Which pivots for ei and ej not to be compared?
) ei +1, ei +2, ..., or ej−1 (j − i − 1 total)

Property	of	University	of	Pennsylvania, SampathKannan

Quick Select

Goal: select the kth smallest element of an array

111

112
Property	of	University	of	Pennsylvania, SampathKannan

Quick Select

Goal: select the kth smallest element of an array

Option 1:

e Use quicksort to sort the array A
e Select the kth smallest element (A[k − 1])
e Time required: O(nlgn) to sort the array
e Are we doing unnecessary work? Can we do better?

113
Property	of	University	of	Pennsylvania, SampathKannan

Quick Select

Goal: select the kth smallest element of an array

Option 1:

e Use quicksort to sort the array A
e Select the kth smallest element (A[k − 1])
e Time required: O(nlgn) to sort the array
e Are we doing unnecessary work? Can we do better?

Key Idea:
e When we partition the array, the kth smallest element will only be
on one side of this partition
e No need to recursively sort both sides of the array: Only the side

containing the element we want

Quick select

114
Property	of	University	of	Pennsylvania, SampathKannan

quicksort(A):
quicksort(A, 0, len(A)-1)

quicksort(A, lo, hi):
if(lo == hi) return A[lo]
pivot_location <- partition(A, lo, hi)
if pivot_location == k:

return A[k]
else if pivot_location < k:

return quickselect(A, lo, pivot_location -1, k)
else:

return quickselect(A, pivot_location +1, hi, k-pivot_location + !)

Quickselect

e Analysis?

115
Property	of	University	of	Pennsylvania, SampathKannan

quicksort(A):
quicksort(A, 0, len(A)-1)

quicksort(A, lo, hi):
if(lo == hi) return A[lo]
pivot_location <- partition(A, lo, hi)
if pivot_location == k:

return A[k]
else if pivot_location < k:

return quickselect(A, lo, pivot_location -1, k)
else:

return quickselect(A, pivot_location +1, hi, k-pivot_location + !)

Quickselect

e Analysis?
)

)

We will use a similar analysis to Quicksort
What will change? Are certain elements less likely to be
compared?

116
Property	of	University	of	Pennsylvania, SampathKannan

quicksort(A):
quicksort(A, 0, len(A)-1)

quicksort(A, lo, hi):
if(lo == hi) return A[lo]
pivot_location <- partition(A, lo, hi)
if pivot_location == k:

return A[k]
else if pivot_location < k:

return quickselect(A, lo, pivot_location -1, k)
else:

return quickselect(A, pivot_location +1, hi, k-pivot_location + !)

Property	of	University	of	Pennsylvania, SampathKannan

Quickselect: Analysis

Analyze with random variables:

117

118
Property	of	University	of	Pennsylvania, SampathKannan

Quickselect: Analysis

Analyze with random variables:
e denote the kth smallest element in the array as ek
e What is the probability that ei and ej are compared when

selecting ek ?
e 3 cases:

Quickselect: Analysis

Analyze with random variables:
e denote the kth smallest element in the array as ek
e What is the probability that ei and ej are compared when

selecting ek ?
e 3 cases:

119
Property	of	University	of	Pennsylvania, SampathKannan

Quickselect: Analysis

Analyze with random variables:
e denote the kth smallest element in the array as ek
e What is the probability that ei and ej are compared when

selecting ek ?
e 3 cases:

120
Property	of	University	of	Pennsylvania, SampathKannan

Quickselect: Analysis

Analyze with random variables:
e denote the kth smallest element in the array as ek
e What is the probability that ei and ej are compared

when selecting ek ?
e 3 cases:

121
Property	of	University	of	Pennsylvania, SampathKannan

122
Property	of	University	of	Pennsylvania, SampathKannan

Quickselect: Analysis

Runtime:
e Similar to quick sort analysis, how many total comparisons

are we making?

Quickselect: Analysis

Runtime:
e Similar to quick sort analysis, how many total comparisons are

we making?
e Sum over all pairs of elements ei , ej (split among the 3 cases)

e Non obvious sum, but yields E [X]= O(n)!

123
Property	of	University	of	Pennsylvania, SampathKannan

Quickselect: Analysis

Outcome:
e Quick select is faster than quick sort!
e Note: quick select is randomized
e Can we make it deterministic, and still keep the worstcase O(n)?
e Yes, with some extra work

124
Property	of	University	of	Pennsylvania, SampathKannan

Runtime:
e Similar to quick sort analysis, how many total comparisons are

we making?
e Sum over all pairs of elements ei , ej (split among the 3 cases)

e Non obvious sum, but yields E [X]= O(n)!

Video 1.6
Sampath Kannan

125Property	of	University	of	Pennsylvania, SampathKannan

Queues

Enqueue Dequeue

126
Property	of	University	of	Pennsylvania, SampathKannan

e Sometimes we want to extract elements not in the order we
insert them but instead in the order of some given keys. We
call this a priorityqueue

e For example your operating systemis constantly getting jobs to
complete, it needs a fast way of getting the highest priority
job to schedule next

Operations of Priority Queues

10

8 6 2 1

3 4

127
Property	of	University	of	Pennsylvania, SampathKannan

Operations of Priority Queues

10

8 6 2

3 4

Extract Min:
1

128
Property	of	University	of	Pennsylvania, SampathKannan

Operations of Priority Queues

10

8 6 2

3 4

Find Min:
2

129
Property	of	University	of	Pennsylvania, SampathKannan

Operations of Priority Queues

10

8 6 2

3 4

Insert(11):

11

130
Property	of	University	of	Pennsylvania, SampathKannan

Operations of Priority Queues

10

6 2

4

8

Delete(3):

11

131
Property	of	University	of	Pennsylvania, SampathKannan

Trees

left
:

v:A right:

left: v:B right: left
:

v:C right:

left
:

v:F right:left: v:D right:

left: v:E right: left
:

v:G right:

In order to make an efficient priority heap we will
usea more general data structure called a tree.

Root Node

132
Property	of	University	of	Pennsylvania, SampathKannan

Trees

left
:

v:A right:

left: v:B right: left
:

v:C right:

left
:

v:F right:left: v:D right:

left: v:E right: left
:

v:G right:

Height =3

133
Property	of	University	of	Pennsylvania, SampathKannan

In order to make an efficient priority heap we will
usea more general data structure called a tree.

Heaps as trees

3 6

4 10 8 9

2

134
Property	of	University	of	Pennsylvania, SampathKannan

We can use a tree to make a heap by enforcing the properties that
node will have a key value that is less than both of it’s children,
and that the tree will always be complete except for the last layer.

e This makes finding the minimum very
easy. It’s always on top!

e We will see that removing the root
(minimum) element can be done in a
number of operations proportional to
the height.

e However if we want to find an arbitrary
element we will have to search the
whole tree.

Heaps Shapes

2

3 6

4 10 8

2

3 6

9 4 10

3 6

4 10 8

2 ValidHeaps

2

3 6

4

2

3

9 4 10

3 6

10 8

2InvalidHeaps

135
Property	of	University	of	Pennsylvania, SampathKannan

Video 1.7
Sampath Kannan

136Property	of	University	of	Pennsylvania, SampathKannan

Heap Representation

Since the tree for a heap will always been contiguous we
can represent the m implicitly with anarray

2

3 6

107 8

2 3 6 7 10 8

Property	of	University	of	Pennsylvania, SampathKannan

So the i th level of the tree will occupy spots 2i − 1 to 2i− 1
(we are using 1 based indexing for convenience)

137

Property	of	University	of	Pennsylvania, SampathKannan

Heap Representation

We need to be able to compute positions of the left and right
children of a given element.

138

Heap Representation

We need to be able to compute positions of the left
and right children of a given element.

1

2 3

4 5 6 7

e Left child of 1 is 2, left child of 2 is 4, left child of 3 is 6, etc...

139
Property	of	University	of	Pennsylvania, SampathKannan

Heap Representation

We need to be able to compute positions of the left
and right children of a given element.

1

2 3

4 5 6 7

e Left childof 1 is 2, left childof 2 is 4, left child of 3 is 6, etc...
e In general the left child of node k is at position 2k . So the

right child is at 2k + 1

149
Property	of	University	of	Pennsylvania, SampathKannan

Operations on Heaps: Extract Min

We want to remove the minimum element (root) while
maintaining the two heap properties: order and shape

2

3 6

7 10 8

141
Property	of	University	of	Pennsylvania, SampathKannan

Operations on Heaps: Extract Min
Step 1: Swap the root node with the node in the bottom right

8

3 6

7 10 2

142
Property	of	University	of	Pennsylvania, SampathKannan

Operations on Heaps: Extract Min
Step 2: Now we can remove(2) while maintaining the shape
property

8

3 6

7 10

143Property	of	University	of	Pennsylvania, SampathKannan

Operations on Heaps: Extract Min
Step 3: We will fix the order property by swapping (8) with it’s
smallest child

3

8 6

7 10

144Property	of	University	of	Pennsylvania, SampathKannan

Operations on Heaps: Extract Min

3

7 6

Step 4: Keep fixing the order property by swapping (8)
with it’s smallest child again

8 10

145
Property	of	University	of	Pennsylvania, SampathKannan

Operations on Heaps: Extract Min
Step 5: The heap properties have been preserved
so we’re done!

3

7 6

8 10

146
Property	of	University	of	Pennsylvania, SampathKannan

Operations on Heaps: Insert

Step 1: Preserve the shape property by inserting the new
element at the bottom right

3

7 6

8 10 4

swim(A, k) :

while k > 1 and A[k/ 2] < A[k]:
swa p(A[k], A[k/ 2])
k = k/2

147
Property	of	University	of	Pennsylvania, SampathKannan

in s e r t (A , k, va l) :
N= le ngth(A)
A[N+1] = va l
swim(A, N+1)

Operations on Heaps: Insert

Step 2: Fix the order property by swapping (4) with
its parent since it’s smaller

3

7 4

8 10 6

swim(A, k) :

while k > 1 and A[k/ 2] < A[k]:
swa p(A[k], A[k/ 2])
k = k/2

148
Property	of	University	of	Pennsylvania, SampathKannan

in s e r t (A , k, va l) :
N= le ngth(A)
A[N+1] = va l
swim(A, N+1)

Operations on Heaps: Insert

Step 3: (4) is bigger than its parent now so
we’re done!

3

7 4

8 10 6

swim(A, k) :
while k > 1 and A[k/ 2] < A[k]:

swa p(A[k], A[k/ 2])
k = k/2

149
Property	of	University	of	Pennsylvania, SampathKannan

in s e r t (A , k, va l) :

N= le ngth(A)
A[N+1] = va l
swim(A, N+1)

150
Property	of	University	of	Pennsylvania, SampathKannan

Heap efficiency

e All operations on the heap are a combination of a
constant number of operations and sink or swim
operation.

e Swim operation executes as long as k >1 and divides it by
2 on every iteration
e Can execute at most log2 k times. Since k is initially at most

n, the number of elements, swim has a run time that is
O(logn)

e By the same logic sink has run time that is O(log n) as well.
e So all the operations are O(log n). Except for delete

which must first take potentially O(n) steps to locate
the given element in the array.

Video 1.8
Sampath Kannan

151Property	of	University	of	Pennsylvania, SampathKannan

Dynamic Dictionaries
Dynamic Dictionaries support three main
operations:

e insert into adictionary
e delete from adictionary
e search for an element in a dictionary

Dynamic dictionaries are used in applications
everywhere:

e Databases
e Router lookup tables, ids of IP packets
e Any application that involves storing

information!

Abstract representation:

152
Property	of	University	of	Pennsylvania, SampathKannan

Dynamic Dictionaries

Abstract representation:

next: insert the pair
(3, ”the”)

153
Property	of	University	of	Pennsylvania, SampathKannan

Dynamic Dictionaries support three main
operations:

e insert into adictionary
e delete from adictionary
e search for an element in a dictionary

Dynamic dictionaries are used in applications
everywhere:

e Databases
e Router lookup tables, ids of IP packets
e Any application that involves storing

information!

Dynamic Dictionaries

Abstract representation:

154
Property	of	University	of	Pennsylvania, SampathKannan

Dynamic Dictionaries support three main
operations:

e insert into adictionary
e delete from adictionary
e search for an element in a dictionary

Dynamic dictionaries are used in applications
everywhere:

e Databases
e Router lookup tables, ids of IP packets
e Any application that involves storing information!

Dynamic Dictionaries

next: lookup 1

155
Property	of	University	of	Pennsylvania, SampathKannan

Dynamic Dictionaries support three main
operations:

e insert into adictionary
e delete from adictionary
e search for an element in a dictionary

Abstract representation:

Dynamic dictionaries are used in applications
everywhere:

e Databases
e Router lookup tables, ids of IP packets
e Any application that involves storing information!

Dynamic Dictionaries

next: lookup 1
returns ”hi”

156
Property	of	University	of	Pennsylvania, SampathKannan

Dynamic dictionaries are used in applications
everywhere:

e Databases
e Router lookup tables, ids of IP packets
e Any application that involves storing information!

Dynamic Dictionaries support three main
operations:

e insert into adictionary
e delete from adictionary
e search for an element in a dictionary

Abstract representation:

Dynamic Dictionaries

next: lookup 1
returns ”hi”

next: delete 3 from
dictionary

157
Property	of	University	of	Pennsylvania, SampathKannan

Dynamic Dictionaries support three main
operations:

e insert into adictionary
e delete from adictionary
e search for an element in a dictionary

Dynamic dictionaries are used in applications
everywhere:

e Databases
e Router lookup tables, ids of IP packets
e Any application that involves storing information!

Abstract representation:

Dynamic Dictionaries

Abstract representation:

158
Property	of	University	of	Pennsylvania, SampathKannan

Dynamic Dictionaries support three main
operations:

e insert into adictionary
e delete from adictionary
e search for an element in a dictionary

Dynamic dictionaries are used in applications
everywhere:

e Databases
e Router lookup tables, ids of IP packets
e Any application that involves storing information!

159
Property	of	University	of	Pennsylvania, SampathKannan

Implementations of Dictionaries

) Entire array must be traversed
e insertion, deletion:O(n)

) Array may need to be resized
(requires copying all elements to
a new array)

Can we find an efficient implementation for dictionaries?
Attempt 1: Arrays

e search: O(n)

↑

0
search(3):

1
1 →hi 2 →is 3→ the

2

160
Property	of	University	of	Pennsylvania, SampathKannan

Implementations of Dictionaries

) Entire array must be traversed
e insertion, deletion:O(n)

) Array may need to be resized
(requires copying all elements to
a new array

Can we find an efficient implementation for dictionaries?
Attempt 1:Arrays

e search: O(n)

0
search(3):

1

↑
1 →hi 2 →is 3→ the

2

161
Property	of	University	of	Pennsylvania, SampathKannan

Implementations of Dictionaries

) Entire array must be traversed
e insertion, deletion:O(n)

) Array may need to be resized
(requires copying all elements to a
new array

Can we find an efficient implementation for dictionaries?
Attempt 1:Arrays

e search: O(n)

0
search(3):

1
1 →hi 2 →is 3→ the

2

↑

Implementations of Dictionaries
Can we find an efficient implementation for dictionaries?

Attempt 1: Arrays
e search: O(n)

) Entire array must be traversed
e insertion, deletion:O(n)

) Array may need to be resized
(requires copying all elements
to a new array

Attempt 2: Linked Lists
e search, deletion: O(n)

) Entire list must be traversed
e insertion: O(1)

) Can easily insert at the front
of the list

0
search(3):

1
1 →hi 2 →is 3→ the

2

↑

1 →hi 2 →is 3 →the

162
Property	of	University	of	Pennsylvania, SampathKannan

Implementations of Dictionaries

1 →hi 2 →is 3 →the

Property	of	University	of	Pennsylvania, SampathKannan 163

Can we find an efficient implementation for dictionaries?
Attempt 1: Arrays

e search: O(n)
) Entire array must be traversed

e insertion, deletion:O(n)
) Array may need to be resized

(requires copying all elements
to a new array

0
search(3):

1
1 →hi 2 →is 3→ the

2

↑

Attempt 2: Linked Lists
e search, deletion: O(n)

)

e insertion: O(1)
) Can easily insert at the front

of the list

Entire list must be traversed

Implementations of Dictionaries

1 →hi 2 →is 3 →the

164
Property	of	University	of	Pennsylvania, SampathKannan

Can we find an efficient implementation for dictionaries?
Attempt 1: Arrays

e search: O(n)
) Entire array must be traversed

e insertion, deletion:O(n)
) Array may need to be resized

(requires copying all elements
to a new array

0
search(3):

1
1 →hi 2 →is 3→ the

2

↑

Attempt 2: Linked Lists
e search, deletion: O(n)

)

e insertion: O(1)
) Can easily insert at the front

of the list

Entire list must be traversed

165
Property	of	University	of	Pennsylvania, SampathKannan

Dictionaries: Binary Search Trees

Attempt 3: Binary Search Tree
e Store items in nodes of a binary tree

166
Property	of	University	of	Pennsylvania, SampathKannan

Dictionaries: Binary Search Trees

Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that
node’s key
All keys to the rightof a node are > that
node’skey
The left and right subtrees of the node
also satisfy the search tree property

167
Property	of	University	of	Pennsylvania, SampathKannan

Dictionaries: Binary Search Trees

insert (4, ”a”)

Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that
node’s key
All keys to the rightof a node are > that
node’skey
The left and right subtrees of the node
also satisfy the search tree property

Dictionaries: Binary Search Trees

insert (2, ”b”)

4, ”a”

168
Property	of	University	of	Pennsylvania, SampathKannan

Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that
node’s key
All keys to the rightof a node are > that
node’skey
The left and right subtrees of the node
also satisfy the search tree property

Dictionaries: Binary Search Trees

insert (7, ”c”)

4,”a”

2,”b”

169
Property	of	University	of	Pennsylvania, SampathKannan

Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that
node’s key
All keys to the rightof a node are > that
node’skey
The left and right subtrees of the node
also satisfy the search tree property

Dictionaries: Binary Search Trees

insert (1, ”d”)

4,”a”

2,”b” 7,”c ”

170
Property	of	University	of	Pennsylvania, SampathKannan

Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that
node’s key
All keys to the rightof a node are > that
node’skey
The left and right subtrees of the node
also satisfy the search tree property

Dictionaries: Binary Search Trees

insert (3, ”e”)

4,”a”

2,”b” 7,”c ”

1,”d”

171
Property	of	University	of	Pennsylvania, SampathKannan

Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that
node’s key
All keys to the rightof a node are > that
node’skey
The left and right subtrees of the node
also satisfy the search tree property

Dictionaries: Binary Search Trees

4,”a”

2,”b” 7,”c ”

1,”d” 3,”e”

172
Property	of	University	of	Pennsylvania, SampathKannan

Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that
node’s key
All keys to the rightof a node are > that
node’skey
The left and right subtrees of the node
also satisfy the search tree property

Dictionaries: Binary Search Trees

search(3)

4,”a”

2,”b” 7,”c ”

1,”d” 3,”e”

173
Property	of	University	of	Pennsylvania, SampathKannan

Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that
node’s key
All keys to the rightof a node are > that
node’skey
The left and right subtrees of the node
also satisfy the search tree property

Dictionaries: Binary Search Trees

3 <4

4,”a”

2,”b” 7,”c ”

1,”d” 3,”e”

174
Property	of	University	of	Pennsylvania, SampathKannan

Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that
node’s key
All keys to the rightof a node are > that
node’skey
The left and right subtrees of the node
also satisfy the search tree property

Dictionaries: Binary Search Trees

3 >2

4,”a”

2,”b” 7,”c ”

1,”d” 3,”e”

175
Property	of	University	of	Pennsylvania, SampathKannan

Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that
node’s key
All keys to the rightof a node are > that
node’skey
The left and right subtrees of the node
also satisfy the search tree property

Dictionaries: Binary Search Trees

Search (3)
return ”e”

4,”a”

2,”b” 7,”c ”

1,”d” 3,”e”

176
Property	of	University	of	Pennsylvania, SampathKannan

Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that
node’s key
All keys to the rightof a node are > that
node’skey
The left and right subtrees of the node
also satisfy the search tree property

Dictionaries: Binary Search Trees

Search (3)
Return ”e”

4,”a”

2,”b” 7,”c ”

1, ”d ” 3,”e”

Time to insert, search and delete is proportional to the height of
the tree! 177

Property	of	University	of	Pennsylvania, SampathKannan

Attempt 3:Binary Search Tree
e Store items in nodes of a binary tree
e Keys in the tree are ordered.

search tree property:
)

)

)

All keys to the left of a node are < that
node’s key
All keys to the rightof a node are > that
node’skey
The left and right subtrees of the node
also satisfy the search tree property

Property	of	University	of	Pennsylvania, SampathKannan

Binary Search Trees: Runtime

e Insert, Deletion and Search take time
proportional to height of the tree

178

179
Property	of	University	of	Pennsylvania, SampathKannan

Binary Search Trees: Runtime

e Insert, Deletion and Search take time
proportional to height of the tree

e But how bad can the height be?

189
Property	of	University	of	Pennsylvania, SampathKannan

Binary Search Trees: Runtime

e Insert, Deletion and Search take time
proportional to height of the tree

e But how bad can the height be?
insert (1, ”a”)

Binary Search Trees: Runtime

e Insert, Deletion and Search take time
proportional to height of the tree

e But how bad can the height be?

insert (2, ”b”)

1, ”a”

181Property	of	University	of	Pennsylvania, SampathKannan

Binary Search Trees: Runtime

e Insert, Deletion and Search take time
proportional to height of the tree

e But how bad can the height be?

insert (3,”c”)

1, ”a”

2,”b”

182Property	of	University	of	Pennsylvania, SampathKannan

Binary Search Trees: Runtime

e Insert, Deletion and Search take time
proportional to height of the tree

e But how bad can the height be?

insert (4,”d”)

1, ”a”

2,”b”

3,”c ”

183Property	of	University	of	Pennsylvania, SampathKannan

Binary Search Trees: Runtime

e Insert, Deletion and Search take time
proportional to heightof the tree

e But how bad can the height be?

insert (5,”e”)

1, ”a”

2,”b”

3,”c ”

4,”d”

184Property	of	University	of	Pennsylvania, SampathKannan

Binary Search Trees: Runtime

e Insert, Deletion and Search take time
proportional to height of the tree

e But how bad can the height be?

1,”a”

2,”b”

3,”c ”

4,”d”

5,”e

185Property	of	University	of	Pennsylvania, SampathKannan

Binary Search Trees: Runtime

e Insert, Deletion and Search take time
proportional to height of the tree

e But how bad can the height be?
e Worst case: height of tree is O(n)

(number of elements inserted)

1,”a”

2,”b”

3,”c ”

4,”d”

5,”e

186Property	of	University	of	Pennsylvania, SampathKannan

Binary Search Trees: Runtime

e Insert, Deletion and Search take
time proportional to height of the
tree

e But how bad can the height be?
e Worst case: height of tree is O(n)

(number of elements inserted)
e However, common case: tree is

balanced.

1,”a”

2,”b”

3,”c ”

4,”d”

5,”e

187Property	of	University	of	Pennsylvania, SampathKannan

Binary Search Trees: Runtime

)

)

1st level: 1 node
2nd level: 2nodes

) kth level: 2k nodes
) n = 1 + 2 + 22 + ... + 2k

) 2k+1 − 1 = n, k = O(lgn)

1,”a”

2,”b”

3,”c ”

4,”d”

5,”e

188Property	of	University	of	Pennsylvania, SampathKannan

e Insert, Deletion and Search take
time proportional to height of the
tree

e But how bad can the height be?
e Worst case: height of tree is O(n)

(number of elements inserted)
e However, common case: tree is

balanced.

Binary Search Trees: Runtime

) n = 1 + 2 + 22 + ... + 2k

) 2k+1 − 1 = n, k = O(lgn)
e common case: height is O(lgn)

1,”a”

2,”b”

3,”c ”

4,”d”

5,”e

189Property	of	University	of	Pennsylvania, SampathKannan

e Insert, Deletion and Search take
time proportional to height of the
tree

e But how bad can the height be?
e Worst case: height of tree is O(n)

(number of elements inserted)
e However, common case: tree is

balanced.
)

)

1st level: 1 node
2nd level: 2nodes

) kth level: 2k nodes

Binary Search Trees: Runtime
1,”a”

2,”b”

3,”c ”

4,”d”

5,”e

Is there anything we can do to limit the worst-case height of a
binary search tree?

190Property	of	University	of	Pennsylvania, SampathKannan

) n = 1 + 2 + 22 + ... + 2k

) 2k+1 − 1 = n, k = O(lgn)
e common case: height is O (lgn)

e Insert, Deletion and Search take
time proportional to height of the
tree

e But how bad can the height be?
e Worst case: height of tree is O(n)

(number of elements inserted)
e However, common case: tree is

balanced.
)

)

1st level: 1 node
2nd level: 2nodes

) kth level: 2k nodes

Video 1.9
Sampath Kannan

191Property	of	University	of	Pennsylvania, SampathKannan

192
Property	of	University	of	Pennsylvania, SampathKannan

Balanced Binary Search Trees

e BSTs can become unbalanced leading to O(n) run times for
operations.

e We need a way to modify them so that their height is
O(log n) instead of O(n).

e Intuitively we can get this property if the left and right
sub-trees always have similar heights

e Modifications must preserve search tree property

Rotations

x

y

T3

y

x

T1

Right Rotation

Left Rotation

193
Property	of	University	of	Pennsylvania, SampathKannan

T3
T1 T2 T2

We use rotations to keep left and right sub-trees balanced. In an
AVL tree we maintain the invariant that all left and right sub-trees
have a height difference of at most 1.

194
Property	of	University	of	Pennsylvania, SampathKannan

Hashing

e To use an array to implement a dictionary we need a way
to map elements from our universe to indices. This
mapping is called a hash function and the array is called
a hash table

e Example: If our universe is all the integers and we have a
hash table of size 37 we could use h(x) = x mod 37 as
our hash function.

e If only one item gets mapped to each index then all
operations are O(1)!

Property	of	University	of	Pennsylvania, SampathKannan

Load factor

e Suppose we have m different keys and a hash table of
size n, and suppose that for each key we randomly
choose an index to map it to.

195

196
Property	of	University	of	Pennsylvania, SampathKannan

Load factor

e P(h(k) = i) = 1/n.

e Suppose we have m different keys and a hash table of
size n, and suppose that for each key we randomly
choose an index to map it to.

Load factor

e Let Xi be the number of keys mapped to index i and
E [X] = P(h(k) = i)∗(1)= (1/n) ∗(1)= m/n

e load factor = α .

197
Property	of	University	of	Pennsylvania, SampathKannan

e P(h(k) = i) = 1/n.

e Suppose we have m different keys and a hash table of
size n, and suppose that for each key we randomly
choose an index to map it to.

Handling Collisions

e Can’t get rid of collisions so we need to store multiple
items in a single bin

e One approach to this is chaining:

e Instead of storing each item directly in the array,
we store a linked list of all the items that map to
that index

e Run-time of all operations is now proportional to the length
of the linked lists at the index we are operating on. We
just saw that this gives expected O(α) performance.

e Note that the worst case is still O(m)!
198

Property	of	University	of	Pennsylvania, SampathKannan

199
Property	of	University	of	Pennsylvania, SampathKannan

e Pros: No extra storage required, we don’t have to
deal with pointers

e Cons: Deletion is very tricky and easy to mess up

Handling Collisions 2

e Instead of chaining we can use open addressing where keys
that map to the same index are stored in separate
locations in the table.

e One approach to this is double hashing, where we use 2
hash functions h(x) and g (x).

e When there is a collision at h(x) we try to insert at
h(x) + g (x), then h(x) + 2g(x), ... etc

h(x)

Handling Collisions2

h(x)

e Instead of chaining we can use open addressing where
keys that map to the same index are stored in separate
locations in the table.

e One approach to this is double hashing, where we use
2 hash functions h(x) and g (x).

e When there is a collision at h(x) we try to insert at
h(x) + g (x), then h(x) + 2g(x), ... etc

+g(x)

e Pros: No extra storage required, we don’t have to deal
with pointers
e Cons: Deletion is very tricky and easy to mess up

200
Property	of	University	of	Pennsylvania, SampathKannan

Handling Collisions2

h(x)

201
Property	of	University	of	Pennsylvania, SampathKannan

+g (x) +g(x)

e Pros: No extra storage required, we don’t have to deal with
pointers

e Cons: Deletion is very tricky and easy to mess up

e Instead of chaining we can use open addressing where keys
that map to the same index are stored in separate
locations in the table.

e One approach to this is double hashing, where we use 2
hash functions h(x) and g (x).

e When there is a collision at h(x) we try to insert at
h(x) + g (x), then h(x) + 2g(x), ... etc

Handling Collisions2

h(x)
+g (x) +g (x) +g(x)

202
Property	of	University	of	Pennsylvania, SampathKannan

e Instead of chaining we can use open addressing where keys
that map to the same index are stored in separate
locations in the table.

e One approach to this is double hashing, where we use 2
hash functions h(x) and g (x).

e When there is a collision at h(x) we try to insert at
h(x) + g (x), then h(x) + 2g(x), ... etc

e Pros: No extra storage required, we don’t have to deal with
pointers

e Cons: Deletion is very tricky and easy to mess up

