Upper and lower bounds

- The big-O notation gives an upper bound
 - \(f(n) \in O(g(n)) \) means that \(f(n) \) has an upper bound \(g(n) \)

- But sometimes we need a lower bound, i.e., \(f(n) \) is at least \(g(n) \) (minimum work to do a computation)
 - We introduce a new concept: \(f(n) \in \Omega(g(n)) \)

- And sometimes we would like to have both a lower and upper bound for \(f(n) \)
 - We introduce a new concept: \(f(n) \in \Theta(g(n)) \)

- *We can use* \(O(g(n)) \) *to define* \(\Omega(g(n)) \) *and* \(\Theta(g(n)) \)
Defining big-Ω and big-Θ

• Ω (Big Omega) denotes a *lower bound*:

\[
f(n) \in \Omega(g(n)) \iff g(n) \in O(f(n))
\]

For example: $n^3 \in \Omega(n^2)$ since $n^2 \in O(n^3)$
Intuition: $g(n)$ defines the floor and $f(n)$ is always above the floor

• Θ (Big Theta) denotes lower and upper bounds at the same time (*asymptotic equivalence*):

\[
f(n) \in \Theta(g(n)) \iff f(n) \in O(g(n)) \text{ and } f(n) \in \Omega(g(n))
\]

For example: $400n - 3 \in \Theta(n)$
Intuition: $g(n)$ defines a “corridor” (with both floor and ceiling) and $f(n)$ always stays in the corridor
What’s the difference between big-O and big-Θ?

- Let’s say we have a program that takes a list of integers and returns the position of the first negative element
 - \(I = \{ \text{FirstNegative} \ L \} \)

- If \(L \) has size \(n \) then we can have
 - Worst case time \(f_{\text{worst}}(n) \in \Theta(n) \Rightarrow \text{for the inputs we consider (all elements positive except for the last one), time is always proportional to } n, \text{ never less} \)
 - Average case time \(f_{\text{average}}(n) \in O(n) \Rightarrow \text{for the inputs we consider (all possible lists), time is bounded above by } n, \text{ but it might be less for some inputs (say, if first element is negative)} \)