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Scalar product maximization

Recall: Scalar product maximization problem

I Given two sequences A = [A1, . . .AN ] and B = [B1, . . .BN ]

I Find permutations P and Q such that
∑N

i=1 APi
· BQi

is maximum possible

I Solution: sort both sequences

7 1 4 6 8 2 9 3 1 4 3 5 9 8 2

3 1 2 8 6 5 4 7 4 9 4 5 1 3 8
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How to prove things like this one?
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Insertion sort

Recall: Insertion sort

procedure InsertionSort(A, ≤)
for i from 1 to |A| by 1 do

k ← i
while (k > 1) and not (A[k − 1] ≤ A[k]) do

A[k − 1]⇔ A[k]
k ← k − 1

end while
end for

end procedure

The only used way to move the elements is swapping neighbors!
We will use this feature to simplify the optimality proof
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The proof method

I Assume we have proven that, for any array A and some relation ≤, whenever we
don’t have Ai ≤ Ai+1 for some index i , we do not make our solution worse if we
swap Ai and Ai+1

I Then an array, sorted by the ≤ relation, yields the best solution, because:
I Every array can be sorted only by swapping the neighbors which are out of order

(this is how insertion sort works)
I Every such swap does not make the solution worse

(this is our assumption)
I Thus, a sorted array is never worse than any other array

I Note that we don’t have to use insertion sort
I Any sorting algorithm, which uses the ≤ relation, will do!
I We may use a more efficient algorithm
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Scalar product maximization: Proof

Problem: Scalar product maximization

I Given two sequences A = [A1, . . .AN ] and B = [B1, . . .BN ]

I Find permutations P and Q such that
∑N

i=1 APi
· BQi

is maximum possible

I Solution: sort both sequences

Proof:
I We can do whatever we want with one of the sequences!

I Let’s sort A – we still free to do everything using permutations of B

I Why should B be sorted?
I Assume we have Bi > Bi+1. In the same time, Ai ≤ Ai+1
I If we swap Bi and Bi+1, nothing will change, except for two addends:

I AiBi + Ai+1Bi+1 ⇒ AiBi+1 + Ai+1Bi

I AiBi+1 + Ai+1Bi − AiBi − Ai+1Bi+1 = (Ai+1 − Ai )(Bi − Bi+1) ≥ 0

I If we swap Bi and Bi+1, the solution will not get worse!
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