## ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 3: Sorting and Search Algorithms
Lecture 3: When to sort? Optimality of sorted sequences

Maxim Buzdalov
Saint Petersburg 2016

Recall: Scalar product maximization problem

- Given two sequences $A=\left[A_{1}, \ldots A_{N}\right]$ and $B=\left[B_{1}, \ldots B_{N}\right]$
- Find permutations $P$ and $Q$ such that $\sum_{i=1}^{N} A_{P_{i}} \cdot B_{Q_{i}}$ is maximum possible

| 7 | 1 | 4 | 6 | 8 | 2 | 9 | 3 | 1 | 4 | 3 | 5 | 9 | 8 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | 2 | 8 | 6 | 5 | 4 | 7 | 4 | 9 | 4 | 5 | 1 | 3 | 8 |

Recall: Scalar product maximization problem

- Given two sequences $A=\left[A_{1}, \ldots A_{N}\right]$ and $B=\left[B_{1}, \ldots B_{N}\right]$
- Find permutations $P$ and $Q$ such that $\sum_{i=1}^{N} A_{P_{i}} \cdot B_{Q_{i}}$ is maximum possible
- Solution: sort both sequences

| 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 8 | 9 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 6 | 7 | 8 | 8 | 9 |

Recall: Scalar product maximization problem

- Given two sequences $A=\left[A_{1}, \ldots A_{N}\right]$ and $B=\left[B_{1}, \ldots B_{N}\right]$
- Find permutations $P$ and $Q$ such that $\sum_{i=1}^{N} A_{P_{i}} \cdot B_{Q_{i}}$ is maximum possible
- Solution: sort both sequences

| 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 8 | 9 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 6 | 7 | 8 | 8 | 9 |

How to prove things like this one?

```
Recall: Insertion sort
procedure Insertion Sort \((A, \leq)\)
    for \(i\) from 1 to \(|A|\) by 1 do
        \(k \leftarrow i\)
        while \((k>1)\) and \(\operatorname{not}(A[k-1] \leq A[k])\) do
            \(A[k-1] \Leftrightarrow A[k]\)
            \(k \leftarrow k-1\)
            end while
    end for
end procedure
```

Recall: Insertion sort

```
procedure InsertionSort \((A, \leq)\)
    for \(i\) from 1 to \(|A|\) by 1 do
        \(k \leftarrow i\)
        while \((k>1)\) and \(\operatorname{not}(A[k-1] \leq A[k])\) do
            \(A[k-1] \Leftrightarrow A[k]\)
                \(k \leftarrow k-1\)
            end while
    end for
    end procedure
```

The only used way to move the elements is swapping neighbors!

Recall: Insertion sort

```
procedure InsertionSort \((A, \leq)\)
    for \(i\) from 1 to \(|A|\) by 1 do
        \(k \leftarrow i\)
        while \((k>1)\) and \(\operatorname{not}(A[k-1] \leq A[k])\) do
            \(A[k-1] \Leftrightarrow A[k]\)
                \(k \leftarrow k-1\)
            end while
    end for
end procedure
```

The only used way to move the elements is swapping neighbors!
We will use this feature to simplify the optimality proof

- Assume we have proven that, for any array $A$ and some relation $\leq$, whenever we don't have $A_{i} \leq A_{i+1}$ for some index $i$, we do not make our solution worse if we swap $A_{i}$ and $A_{i+1}$
- Assume we have proven that, for any array $A$ and some relation $\leq$, whenever we don't have $A_{i} \leq A_{i+1}$ for some index $i$, we do not make our solution worse if we swap $A_{i}$ and $A_{i+1}$
- Then an array, sorted by the $\leq$ relation, yields the best solution, because:
- Assume we have proven that, for any array $A$ and some relation $\leq$, whenever we don't have $A_{i} \leq A_{i+1}$ for some index $i$, we do not make our solution worse if we swap $A_{i}$ and $A_{i+1}$
- Then an array, sorted by the $\leq$ relation, yields the best solution, because:
- Every array can be sorted only by swapping the neighbors which are out of order (this is how insertion sort works)
- Assume we have proven that, for any array $A$ and some relation $\leq$, whenever we don't have $A_{i} \leq A_{i+1}$ for some index $i$, we do not make our solution worse if we swap $A_{i}$ and $A_{i+1}$
- Then an array, sorted by the $\leq$ relation, yields the best solution, because:
- Every array can be sorted only by swapping the neighbors which are out of order (this is how insertion sort works)
- Every such swap does not make the solution worse (this is our assumption)
- Assume we have proven that, for any array $A$ and some relation $\leq$, whenever we don't have $A_{i} \leq A_{i+1}$ for some index $i$, we do not make our solution worse if we swap $A_{i}$ and $A_{i+1}$
- Then an array, sorted by the $\leq$ relation, yields the best solution, because:
- Every array can be sorted only by swapping the neighbors which are out of order (this is how insertion sort works)
- Every such swap does not make the solution worse (this is our assumption)
- Thus, a sorted array is never worse than any other array
- Assume we have proven that, for any array $A$ and some relation $\leq$, whenever we don't have $A_{i} \leq A_{i+1}$ for some index $i$, we do not make our solution worse if we swap $A_{i}$ and $A_{i+1}$
- Then an array, sorted by the $\leq$ relation, yields the best solution, because:
- Every array can be sorted only by swapping the neighbors which are out of order (this is how insertion sort works)
- Every such swap does not make the solution worse (this is our assumption)
- Thus, a sorted array is never worse than any other array
- Note that we don't have to use insertion sort
- Any sorting algorithm, which uses the $\leq$ relation, will do!
- Assume we have proven that, for any array $A$ and some relation $\leq$, whenever we don't have $A_{i} \leq A_{i+1}$ for some index $i$, we do not make our solution worse if we swap $A_{i}$ and $A_{i+1}$
- Then an array, sorted by the $\leq$ relation, yields the best solution, because:
- Every array can be sorted only by swapping the neighbors which are out of order (this is how insertion sort works)
- Every such swap does not make the solution worse (this is our assumption)
- Thus, a sorted array is never worse than any other array
- Note that we don't have to use insertion sort
- Any sorting algorithm, which uses the $\leq$ relation, will do!
- We may use a more efficient algorithm

Problem: Scalar product maximization

- Given two sequences $A=\left[A_{1}, \ldots A_{N}\right]$ and $B=\left[B_{1}, \ldots B_{N}\right]$
- Find permutations $P$ and $Q$ such that $\sum_{i=1}^{N} A_{P_{i}} \cdot B_{Q_{i}}$ is maximum possible
- Solution: sort both sequences

Problem: Scalar product maximization

- Given two sequences $A=\left[A_{1}, \ldots A_{N}\right]$ and $B=\left[B_{1}, \ldots B_{N}\right]$
- Find permutations $P$ and $Q$ such that $\sum_{i=1}^{N} A_{P_{i}} \cdot B_{Q_{i}}$ is maximum possible
- Solution: sort both sequences

Proof:

- We can do whatever we want with one of the sequences!
- Let's sort $A$ - we still free to do everything using permutations of $B$

Problem: Scalar product maximization

- Given two sequences $A=\left[A_{1}, \ldots A_{N}\right]$ and $B=\left[B_{1}, \ldots B_{N}\right]$
- Find permutations $P$ and $Q$ such that $\sum_{i=1}^{N} A_{P_{i}} \cdot B_{Q_{i}}$ is maximum possible
- Solution: sort both sequences

Proof:

- We can do whatever we want with one of the sequences!
- Let's sort $A$ - we still free to do everything using permutations of $B$
- Why should $B$ be sorted?
- Assume we have $B_{i}>B_{i+1}$. In the same time, $A_{i} \leq A_{i+1}$

Problem: Scalar product maximization

- Given two sequences $A=\left[A_{1}, \ldots A_{N}\right]$ and $B=\left[B_{1}, \ldots B_{N}\right]$
- Find permutations $P$ and $Q$ such that $\sum_{i=1}^{N} A_{P_{i}} \cdot B_{Q_{i}}$ is maximum possible
- Solution: sort both sequences

Proof:

- We can do whatever we want with one of the sequences!
- Let's sort $A$ - we still free to do everything using permutations of $B$
- Why should $B$ be sorted?
- Assume we have $B_{i}>B_{i+1}$. In the same time, $A_{i} \leq A_{i+1}$
- If we swap $B_{i}$ and $B_{i+1}$, nothing will change, except for two addends:
- $A_{i} B_{i}+A_{i+1} B_{i+1} \Rightarrow A_{i} B_{i+1}+A_{i+1} B_{i}$

Problem: Scalar product maximization

- Given two sequences $A=\left[A_{1}, \ldots A_{N}\right]$ and $B=\left[B_{1}, \ldots B_{N}\right]$
- Find permutations $P$ and $Q$ such that $\sum_{i=1}^{N} A_{P_{i}} \cdot B_{Q_{i}}$ is maximum possible
- Solution: sort both sequences

Proof:

- We can do whatever we want with one of the sequences!
- Let's sort $A$ - we still free to do everything using permutations of $B$
- Why should $B$ be sorted?
- Assume we have $B_{i}>B_{i+1}$. In the same time, $A_{i} \leq A_{i+1}$
- If we swap $B_{i}$ and $B_{i+1}$, nothing will change, except for two addends:
- $A_{i} B_{i}+A_{i+1} B_{i+1} \Rightarrow A_{i} B_{i+1}+A_{i+1} B_{i}$
- $A_{i} B_{i+1}+A_{i+1} B_{i}-A_{i} B_{i}-A_{i+1} B_{i+1}=\left(A_{i+1}-A_{i}\right)\left(B_{i}-B_{i+1}\right) \geq 0$

Problem: Scalar product maximization

- Given two sequences $A=\left[A_{1}, \ldots A_{N}\right]$ and $B=\left[B_{1}, \ldots B_{N}\right]$
- Find permutations $P$ and $Q$ such that $\sum_{i=1}^{N} A_{P_{i}} \cdot B_{Q_{i}}$ is maximum possible
- Solution: sort both sequences

Proof:

- We can do whatever we want with one of the sequences!
- Let's sort $A$ - we still free to do everything using permutations of $B$
- Why should $B$ be sorted?
- Assume we have $B_{i}>B_{i+1}$. In the same time, $A_{i} \leq A_{i+1}$
- If we swap $B_{i}$ and $B_{i+1}$, nothing will change, except for two addends:
- $A_{i} B_{i}+A_{i+1} B_{i+1} \Rightarrow A_{i} B_{i+1}+A_{i+1} B_{i}$
- $A_{i} B_{i+1}+A_{i+1} B_{i}-A_{i} B_{i}-A_{i+1} B_{i+1}=\left(A_{i+1}-A_{i}\right)\left(B_{i}-B_{i+1}\right) \geq 0$
- If we swap $B_{i}$ and $B_{i+1}$, the solution will not get worse!

