REVENUE MANAGEMENT

An Introduction to Linear Optimization

> 15.071x - The Analytics Edge

Airline Regulation (1938-1978)

- The Civil Aeronautics Board (CAB) set fares, routes, and schedules for all interstate air transport
- Most major airlines favored this system due to guaranteed profits
- Led to inefficiency and higher costs
- Applications for new routes and fares often delayed or dismissed

Airline Deregulation (1978)

- The administration of President Jimmy Carter passed the Airline Deregulation Act in 1978
- The Act encouraged
- More competition: 52 new airlines between 1980 and 2000
- New air routes: saved passengers an estimated $\$ 10.3$ billion each year in travel time
- Lower fares: ticket prices are 40% lower today than they were in 1978
- This led to more passengers
- The number of air passengers increased from 207.5 million in 1974 to 721.1 million in 2010

A Competitive Edge

- More competition led to heavy losses by air carriers
- Need to lower fares while meeting operating costs
- 9 major carriers and more than 100 smaller airlines went bankrupt between 1978 and 2002
- How did airlines compete?

Discount Fares

- On January 17, 1985 American Airlines (AA) launched its Ultimate Super Saver fares to compete with PeopleExpress
- Need to fill at least a minimum number of seats without selling every seat at discount prices
- Sell enough seats to cover fixed operating costs
- Sell remaining seats at higher rates to maximize revenues/profits

How Many Seats to Sell on Discount?

- Passengers have different valuations
- Business people value flexibility (last-minute/refundable)
- People seeking getaways value good deals (early birds)
- Sell too many discounted seats
- Not enough seats for high-paying passengers
- Sell too few discounted seats
- Empty seats at takeoff implying lost revenue
- How should AA allocate its seats among customers to maximize its revenue?

Let's Start Simple

[^0]
Ticket Prices

American Airlines

[^1]
Boeing 757-200 Seat Map

- 166 Economy seats

$<30 \geq 0 \circ$ m

Demand Forecasting

- Demand for different prices can be forecasted using analytics tools, looking at historical data and incorporating models of human behavior
- Time series methods
- Linear regression
- Forecasts could be erroneous
- Need to assess sensitivity to forecast errors
- We'll assume that demand has been forecasted
15.071x - Revenue Management: An Introduction to Linear Optimization

Myopic Solution

- How many discount seats to sell to maximize revenue?

Myopic Solution

- How many discount seats to sell to maximize revenue?

Myopic Solution

- How many discount seats to sell to maximize revenue?
- This seems simple, but what if we had 100 different flights?
- In the next video, we'll see how to formulate this mathematically

Single Route Example

		Price	Demand	Seats to Sell	$\left\{\begin{array}{c} \text { Capacity } \\ 166 \end{array}\right.$
JFK	Regular	617	100		
LAX	Discount	238	150		

- Problem: Find the optimal number of discounted seats and regular seats to sell to maximize revenue
- Let's formulate the problem mathematically

Step 1. Decisions

- What are our decisions?
- Number of regular seats to sell $-R$
- Number of discount seats to sell $-D$
15.071x - Revenue Management: An Introduction to Linear Optimization

Step 2. Objective

- What is our objective?
- Maximizing total airline revenue
- Revenue from each type of seat is equal to the number of that type of seat sold times the seat price
$\max 617^{*} R+238^{*} D$
15.071x - Revenue Management: An Introduction to Linear Optimization

Step 3. Constraints

		Price	Demand	Seats to Sell	$\bigcap_{166}^{\text {Capacity }}$
JFK	Regular	617	100		
LAX	Discount	238	150		

- AA cannot sell more seats than the aircraft capacity
- Total number of seats sold cannot exceed capacity

$$
R+D \leq 166
$$

- AA cannot sell more seats than the demand
- Regular seats sold cannot exceed $100 \quad R \leqslant 100$
- Discount seats sold cannot exceed $150 \quad D \leqslant 150$

Step 4. Non-Negativity

- AA cannot sell a negative number of seats

$$
R \geq 0 \quad D \geqslant 0
$$

Problem Formulation

Maximize Total airline revenue
Subject to Seats sold cannot exceed capacity
Seats sold cannot exceed demand Seats sold cannot be negative

Problem Formulation

Maximize $\quad 617 R+238 D$
Subject to $R+D \leq 166$

$$
\begin{aligned}
& R \leq 100, D \leq 150 \\
& R \geq 0, D \geq 0
\end{aligned}
$$

Visualizing the Problem

- 2D Representation
- Constraints
- Non-negativity

$$
R \geq 0, D \geq 0
$$

Visualizing the Problem

- 2D Representation
- Constraints
- Non-negativity $R \geq 0, D \geq 0$
- Capacity $R+D \leq 166$

Visualizing the Problem

- 2D Representation
- Constraints
- Non-negativity

$$
R \geq 0, D \geq 0
$$

- Capacity $R+D \leq 166$
- Demand
$R \leq 100, D \leq 150$

Visualizing the Problem

- 2D Representation
- Constraints
- Non-negativity

$$
R \geq 0, D \geq 0
$$

- Capacity $R+D \leq 166$
- Demand
$R \leq 100, D \leq 150$
15.071x - Revenue Management: An Introduction to Linear Optimization

Feasible Space

15.071x - Revenue Management: An Introduction to Linear Optimization

Possible Solutions

Best Solution

Marketing Decisions

- Management is trying to figure out whether it would be beneficial to invest in marketing its fares
- AA forecasts that its marketing effort is likely to attract one more unit of demand per $\$ 200$ spent

	Marketing Cost/unit	Marginal Revenue
Discount Fare	$\$ 200$	
Regular Fare	$\$ 200$	

Marketing Discount Fares

- What if AA increases its marketing budget for discount fares
- Higher demand for discount class
- 150
- 175
- 200

Marketing Discount Fares

- What if AA decreases its budget to market discount fares?
- Lower demand for discount fare without affecting revenue

Marketing Discount Fares

- "Shadow Price"
- Marginal revenue of increasing discount demand by 1 unit
- ZERO for
discount demand greater than 66

Marketing Regular Fares

- AA is considering increasing its budget to market regular fares
- Higher demand for regular class
- 100
- 125
- 150

Marketing Regular Fares

15.071x - Revenue Management: An Introduction to Linear Optimization

Marketing Decisions

- Management is trying to figure out whether it would be beneficial to invest in marketing its fares
- AA forecasts that its marketing effort is likely to attract one more unit of demand per $\$ 200$ spent

	Marketing Cost/unit	Marginal Revenue
Discount Fare	$\$ 200$	0
Regular Fare	$\$ 200$	$\$ 379$

Capacity Allocation

- Management is trying to figure out whether it would be beneficial to allocate a bigger aircraft for the 6 hour JFK-LAX leg

	Cost $/$ hr	Total Cost	Seats	Revenue
Original Aircraft	$\$ 12,067$	$\$ 72,402$	166	$\$ 77,408$
Boeing 757-200	$\$ 12,765$	$\$ 76,590$	176	
Boeing 767-300	$\$ 14,557$	$\$ 87,342$	218	

15.071x - Revenue Management: An Introduction to Linear Optimization

Aircraft Capacity

- AA is considering increasing its aircraft capacity
- 166
- 176
- 218

Capacity Allocation

- Management is trying to figure out whether it would be beneficial to allocate a bigger aircraft for the 6 hour JFK-LAX leg

	Total Cost	Revenue	Profit
Original Aircraft	$\$ 72,402$	$\$ 77,408$	$\$ 5,006$
Boeing 757-200	$\$ 76,590$	$\$ 79,788$	$\$ 3,198$
Boeing 767-300	$\$ 87,342$	$\$ 89,784$	$\$ 2,442$

Connecting Flights

[^2]
Step 1. Decisions

			Price	Demand	Seats to Sell	Flight Leg (capacity 166 on each)
$\{$	$\begin{gathered} \text { JFK } \\ - \\ \text { LAX } \end{gathered}$	Regular	428	80	?	$1 \& 2$
		Discount	190	120	?	$1 \& 2$
$\{$	$\begin{gathered} \text { JFK } \\ - \\ \text { DFW } \end{gathered}$	Regular	642	75	?	1
		Discount	224	100	?	1
$\{$	$\begin{gathered} \text { DFW } \\ - \\ \text { LAX } \end{gathered}$	Regular	512	60	?	2
		Discount	190	110	?	2

- Number of regular seats to sell

$$
R_{\mathrm{JFK}-\mathrm{LAX}}, R_{\mathrm{JFK}-\mathrm{DFW}}, R_{\mathrm{DFW}-\mathrm{LAX}}
$$

- Number of discount seats to sell

$$
D_{\text {JFK-LAX }}, D_{\text {JFK-DFW }}, D_{\text {DFW-LAX }}
$$

Step 2. Objective

		Price	Demand	Seats to Sell	Flight Leg (capacity 166 on each)
$\begin{gathered} \text { JFK } \\ - \\ \text { LAX } \end{gathered}$	Regular	428	80	?	$1 \& 2$
	Discount	190	120	?	$1 \& 2$
$\begin{gathered} \text { JFK } \\ - \\ \text { DFW } \end{gathered}$	Regular	642	75	?	1
	Discount	224	100	?	1
$\begin{gathered} \text { DFW } \\ - \\ \text { LAX } \end{gathered}$	Regular	512	60	?	2
	Discount	190	110	?	2

- Maximize total revenue

$$
\left\{\begin{array}{r}
428 R_{\mathrm{JFK}-\mathrm{LAX}}+190 D_{\mathrm{JFK}-\mathrm{LAX}} \\
+642 R_{\mathrm{JFK}-\mathrm{DFW}}+224 D_{\mathrm{JFK}-\mathrm{DFW}} \\
+512 R_{\mathrm{DFW}-\mathrm{LAX}}+190 D_{\mathrm{DFW}-\mathrm{LAX}}
\end{array}\right.
$$

Step 3. Constraints

		Price	Demand	Seats to Sell	Flight Leg (capacity 166 on each)
$\begin{gathered} \text { JFK } \\ - \\ \text { LAX } \end{gathered}$	Regular	428	80	?	$1 \& 2$
	Discount	190	120	?	$1 \& 2$
$\begin{gathered} \text { JFK } \\ - \\ \text { DFW } \end{gathered}$	Regular	642	75	?	1
	Discount	224	100	?	1
$\begin{gathered} \text { DFW } \\ - \\ \text { LAX } \end{gathered}$	Regular	512	60	?	2
	Discount	190	110	?	2

- AA cannot sell more seats that the aircraft capacity
- First leg - JFK-DFW

$$
R_{\mathrm{JFK}-\mathrm{LAX}}+D_{\mathrm{JFK}-\mathrm{LAX}}+R_{\mathrm{JFK}-\mathrm{DFW}}+D_{\mathrm{JFK}-\mathrm{DFW}} \leq 166
$$

- Second leg - DFW-LAX

$$
R_{\mathrm{JFK}-\mathrm{LAX}}+D_{\mathrm{JFK}-\mathrm{LAX}}+R_{\mathrm{DFW}-\mathrm{LAX}}+D_{\mathrm{DFW}-\mathrm{LAX}} \leq 166
$$

15.071x - Revenue Management: An Introduction to Linear Optimization

Step 3. Constraints

		Price	Demand	Seats to Sell	Flight Leg (capacity 166 on each)
$\begin{gathered} \text { JFK } \\ - \\ \text { LAX } \end{gathered}$	Regular	428	80	?	$1 \& 2$
	Discount	190	120	?	$1 \& 2$
$\begin{gathered} \text { JFK } \\ - \\ \text { DFW } \end{gathered}$	Regular	642	75	?	1
	Discount	224	100	?	1
$\begin{gathered} \text { DFW } \\ - \\ \text { LAX } \end{gathered}$	Regular	512	60	?	2
	Discount	190	110	?	2

- AA cannot sell more seats than the demand
$\left\{\begin{array}{rc}R_{\text {JFK-LAX }} \leq 80 & D_{\text {JFK-LAX }} \leq 120 \\ R_{\text {JFK-DFW }} \leq 75 & D_{\text {JFK-DFW }} \leq 100 \\ R_{\text {DFW-LAX }} \leq 60 & D_{\text {DFW-LAX }} \leq 110\end{array}\right.$

Step 4. Non-Negativity

	Price	Demand	Seats to Sell	Flight Leg (capacity 166 on each)	
JFK	Regular	428	80	$?$	$1 \& 2$
LAX	Discount	190	120	$?$	$1 \& 2$
JFK	Regular	642	75	$?$	1
DFW	Discount	224	100	$?$	1
DFW - LAX	Regular	Discount	512	60	$?$

- AA cannot sell a negative number of seats

$$
\left\{\begin{array}{cc}
R_{\text {JFK-LAX }} \geq 0 & D_{\text {JFK-LAX }} \geq 0 \\
R_{\text {JFK-DFW }} \geq 0 & D_{\text {JFK-DFW }} \geq 0 \\
R_{\text {DFW-LAX }} \geq 0 & D_{\text {DFW-LAX }} \geq 0
\end{array}\right.
$$

15.071x - Revenue Management: An Introduction to Linear Optimization

Complex Network

15.071x - Revenue Management: An Introduction to Linear Optimization

Multiple Fare Classes

Fare	Domestic Upg.	International Upg.	ERP	EQM	Milleago	Fare	Domestic Upg.	International Upg.	EQP	EQM	Milleage
A	First Class	First Class	1.5	1.0	150\%	N	Yes	No	. 5	1.0	100\%
8	Yes	Yes	1.5	1.0	100\%	0	Yes*	No	. 5	1.0	100\%
θ	NA	Business Upgrade	N/A	N/A	N/A	$\stackrel{\rightharpoonup}{0}$	First Class Fare	First Class Fare	1.5	1.0	150\%
D	NA	Business Fare	1.5	1.0	125\%	Q	Yes	No	. 5	1.0	100\%
E	No	No	N/A	N/A	N/A	8	NA	Business Class Upgrade or waitlist	N/A	N/A	N/A
F	First Class Fare	First Class	1.5	1.0	150\%	5	Yes*	No	. 5	1.0	100\%
						T	Coach Award	No	N/A	N/A	N/A
	ernment	Governm	. 5	1.0	100\%	1	NA	Business Class Award	N/A	N/A	N/A
H	Yes*	Waitlist only	1.0	1.0	100\%	V	Yes*	No	1.0	1.0	100\%
1	NA	Business Class Fare	1.5	1.0	125\%	M	Yes*	No	1.0	1.0	100\%
\pm	NA	Business Class Fare	1.5	1.0	125\%	Σ	First Class Upgrade	Business Class Upgrade	N/A	N/A	N/A
K	Yes	No	1.0	1.0	100\%	\mathbf{Y}	Yes	Yes	1.5	1.0	100\%
L	Yes	No	1.0	1.0	100\%	7	First Class Award	NA	N/A	N/A	N/A
M	Yes	No	1.0	1.0	100\%	EQP: Elite-Qualifying Points / EQM: Elite-Qualifying Miles					

The Competitive Strategy of AA

- PEOPLExpress could not compete with AA's Ultimate Super Savers fares
"We were a vibrant, profitable company from 1981 to 1985, and then we tipped right over into losing 50 million a month."
"We had been profitable from the day we started until American came at us with Ultimate Super Savers."

Donald Burr, CEO of PEOPLExpress (1985)

The Competitive Strategy of AA

- Selling the right seats to the right customers at the right prices
"Revenue management is the single most important technical development in transportation management since we entered the era of airline deregulation."
"We estimate that revenue management has generated $\$ 1.4$ billion in incremental revenue in the last three years.'

$$
\text { Robert Crandall, former CEO of AA }(\sim 1985)
$$

The Edge of Revenue Management

- Sabre Holdings
- Built revenue management system for AA
- As of November 2012, ranked 133 among America's largest private companies with $\$ 3.15$ billion in sales
- 400 airlines, 90,000 hotels, 30 car-rental companies
- Today, companies prosper from revenue management
- Delta airlines increased annual revenue by $\$ 300$ million
- Marriott hotels increased annual revenue by $\$ 100$ million

[^0]: 15.071x - Revenue Management: An Introduction to Linear Optimization

[^1]: 15.071x - Revenue Management: An Introduction to Linear Optimization

[^2]: 15.071x - Revenue Management: An Introduction to Linear Optimization

