Advanced High School Statistics

Preliminary Edition

Chapter 7

Inference for numerical data

7.4 Comparing many means with ANOVA
(special topic)

Sometimes we want to compare means across many groups. We might initially think to
do pairwise comparisons; for example, if there were three groups, we might be tempted to
compare the first mean with the second, then with the third, and then finally compare the
second and third means for a total of three comparisons. However, this strategy can be
treacherous. If we have many groups and do many comparisons, it is likely that we will
eventually find a difference just by chance, even if there is no difference in the populations.

In this section, we will learn a new method called analysis of variance (ANOVA)
and a new test statistic called F. ANOVA uses a single hypothesis test to check whether
the means across many groups are equal:

Hy: The mean outcome is the same across all groups. In statistical notation, p1 = us =
-+ = uy, where p; represents the mean of the outcome for observations in category i.

H,: At least one mean is different.
Generally we must check three conditions on the data before performing ANOVA:

e the observations are independent within and across groups,
e the data within each group are nearly normal, and
e the variability across the groups is about equal.

When these three conditions are met, we may perform an ANOVA to determine whether
the data provide strong evidence against the null hypothesis that all the u; are equal.
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® Example 7.34 College departments commonly run multiple lectures of the same
introductory course each semester because of high demand. Consider a statistics
department that runs three lectures of an introductory statistics course. We might
like to determine whether there are statistically significant differences in first exam
scores in these three classes (A, B, and C). Describe appropriate hypotheses to
determine whether there are any differences between the three classes.

The hypotheses may be written in the following form:

Hy: The average score is identical in all lectures. Any observed difference is due to
chance. Notationally, we write ua = up = pc.

H 4: The average score varies by class. We would reject the null hypothesis in favor
of the alternative hypothesis if there were larger differences among the class
averages than what we might expect from chance alone.

Strong evidence favoring the alternative hypothesis in ANOVA is described by un-
usually large differences among the group means. We will soon learn that assessing the
variability of the group means relative to the variability among individual observations
within each group is key to ANOVA’s success.

@® Example 7.35 Examine Figure 7.23. Compare groups I, II, and III. Can you visu-
ally determine if the differences in the group centers is due to chance or not? Now
compare groups IV, V, and VI. Do these differences appear to be due to chance?
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Figure 7.23: Side-by-side dot plot for the outcomes for six groups.

Any real difference in the means of groups I, II, and III is difficult to discern, because
the data within each group are very volatile relative to any differences in the average
outcome. On the other hand, it appears there are differences in the centers of groups
IV, V, and VI. For instance, group V appears to have a higher mean than that of
the other two groups. Investigating groups IV, V, and VI, we see the differences in
the groups’ centers are noticeable because those differences are large relative to the
variability in the individual observations within each group.
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7.4.1 Is batting performance related to player position in MLB?

We would like to discern whether there are real differences between the batting performance
of baseball players according to their position: outfielder (OF), infielder (IF), designated
hitter (DH), and catcher (C). We will use a data set called bat10, which includes batting
records of 327 Major League Baseball (MLB) players from the 2010 season. Six of the 327
cases represented in bat10 are shown in Table 7.24, and descriptions for each variable are
provided in Table 7.25. The measure we will use for the player batting performance (the
outcome variable) is on-base percentage (0BP). The on-base percentage roughly represents
the fraction of the time a player successfully gets on base or hits a home run.

name team  position AB H HR RBI AVG OBP

1 ISuzuki SEA OF 680 214 6 43 0.315 0.359
D Jeter NYY [IF 663 179 10 67 0.270 0.340

3 M Young TEX IF 656 186 21 91 0.284 0.330
325 B Molina SF C 202 52 3 17 0.257 0.312
326 J Thole NYM C 202 56 3 17 0.277 0.357
327 C Heisey CIN OF 201 51 8 21 0.254 0.324

Table 7.24: Six cases from the bat10 data matrix.

variable description

name Player name

team The abbreviated name of the player’s team

position The player’s primary field position (OF, IF, DH, C)

AB Number of opportunities at bat

H Number of hits

HR Number of home runs

RBI Number of runs batted in

AVG Batting average, which is equal to H/AB

0BP On-base percentage, which is roughly equal to the fraction

of times a player gets on base or hits a home run

Table 7.25: Variables and their descriptions for the bat10 data set.

() Guided Practice 7.36 The null hypothesis under consideration is the following:
Lor = M1r = Mpr = Mc. Write the null and corresponding alternative hypotheses in
plain language.”’

29Hy: The average on-base percentage is equal across the four positions.
H,4: The average on-base percentage varies across some (or all) groups.
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Figure 7.27: Side-by-side box plot of the on-base percentage for 327 players
across four groups. There is one prominent outlier visible in the infield
group, but with 154 observations in the infield group, this outlier is not a
concern.

@® Example 7.37 The player positions have been divided into four groups: outfield
(OF), infield (IF), designated hitter (DH), and catcher (C). What would be an appro-
priate point estimate of the on-base percentage by outfielders, pgr?

A good estimate of the on-base percentage by outfielders would be the sample average
of AVG for just those players whose position is outfield: Zop = 0.334.

Table 7.26 provides summary statistics for each group. A side-by-side box plot for
the on-base percentage is shown in Figure 7.27. Notice that the variability appears to
be approximately constant across groups; nearly constant variance across groups is an
important assumption that must be satisfied before we consider the ANOVA approach.

OF IF DH C
Sample size (n;) 120 154 14 39
Sample mean (Z;) 0.334 0.332 0.348 0.323
Sample SD (s;) 0.029 0.037 0.036 0.045

Table 7.26: Summary statistics of on-base percentage, split by player posi-
tion.
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@ Example 7.38 The largest difference between the sample means is between the
designated hitter and the catcher positions. Consider again the original hypotheses:

Ho: por = piar = pior = pe
H,: The average on-base percentage (u;) varies across some (or all) groups.

Why might it be inappropriate to run the test by simply estimating whether the
difference of upy and ug is statistically significant at a 0.05 significance level?

The primary issue here is that we are inspecting the data before picking the groups
that will be compared. It is inappropriate to examine all data by eye (informal
testing) and only afterwards decide which parts to formally test. This is called data
snooping or data fishing. Naturally we would pick the groups with the large
differences for the formal test, leading to an inflation in the Type 1 Error rate. To
understand this better, let’s consider a slightly different problem.

Suppose we are to measure the aptitude for students in 20 classes in a large elementary
school at the beginning of the year. In this school, all students are randomly assigned
to classrooms, so any differences we observe between the classes at the start of the
year are completely due to chance. However, with so many groups, we will probably
observe a few groups that look rather different from each other. If we select only
these classes that look so different, we will probably make the wrong conclusion that
the assignment wasn’t random. While we might only formally test differences for a
few pairs of classes, we informally evaluated the other classes by eye before choosing
the most extreme cases for a comparison.

For additional information on the ideas expressed in Example 7.38, we recommend
reading about the prosecutor’s fallacy.*"

In the next section we will learn how to use the F statistic and ANOVA to test
whether observed differences in means could have happened just by chance even if there
was no difference in the respective population means.

7.4.2 Analysis of variance (ANOVA) and the F test

The method of analysis of variance in this context focuses on answering one question:
is the variability in the sample means so large that it seems unlikely to be from chance
alone? This question is different from earlier testing procedures since we will simultaneously
consider many groups, and evaluate whether their sample means differ more than we would
expect from natural variation. We call this variability the mean square between groups
(MS@), and it has an associated degrees of freedom, dfe = k — 1 when there are k groups.
The M SG can be thought of as a scaled variance formula for means. If the null hypothesis
is true, any variation in the sample means is due to chance and shouldn’t be too large.
Details of MSG calculations are provided in the footnote,®' however, we typically use
software for these computations.

308ee, for example, www.stat.columbia.edu/~cook/movabletype/archives/2007 /05 /the_prosecutors.html.
31Let & represent the mean of outcomes across all groups. Then the mean square between groups is
computed as

k
1 1
MSG=—SSG=——> "n;(z; — )"
afc ] i:1nz (xz 33)

where SSG is called the sum of squares between groups and n; is the sample size of group i.


http://www.stat.columbia.edu/~cook/movabletype/archives/2007/05/the_prosecutors.html
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The mean square between the groups is, on its own, quite useless in a hypothesis test.
We need a benchmark value for how much variability should be expected among the sample
means if the null hypothesis is true. To this end, we compute a pooled variance estimate,
often abbreviated as the mean square error (M SE), which has an associated degrees of
freedom value dfg = n — k. It is helpful to think of M SE as a measure of the variability
within the groups. Details of the computations of the M SE are provided in the footnote®?
for interested readers.

When the null hypothesis is true, any differences among the sample means are only
due to chance, and the MSG and MSE should be about equal. As a test statistic for
ANOVA, we examine the fraction of M SG and MSE:

MSG

The M SG represents a measure of the between-group variability, and M SE measures the
variability within each of the groups.

(9 Guided Practice 7.40 For the baseball data, MSG = 0.00252 and MSE =
0.00127. Identify the degrees of freedom associated with MSG and MSE and verify
the F statistic is approximately 1.994.%

We can use the F' statistic to evaluate the hypotheses in what is called an F test.
A p-value can be computed from the F' statistic using an F distribution, which has two
associated parameters: df; and dfs. For the F statisticin ANOVA, df; = df¢ and dfs = dfg.
An F distribution with 3 and 323 degrees of freedom, corresponding to the F' statistic for
the baseball hypothesis test, is shown in Figure 7.28.

The larger the observed variability in the sample means (M SG) relative to the within-
group observations (M SE), the larger F' will be and the stronger the evidence against the
null hypothesis. Because larger values of F' represent stronger evidence against the null
hypothesis, we use the upper tail of the distribution to compute a p-value.

32Let Z represent the mean of outcomes across all groups. Then the sum of squares total (SST) is
computed as

SST = zn: (z; — )2

i=1

where the sum is over all observations in the data set. Then we compute the sum of squared errors
(SSE) in one of two equivalent ways:

SSE = SST — SSG
= (m1 — 1)s7 + (n2 — 1)s3 + - -+ + (ng — )sj

where s? is the sample variance (square of the standard deviation) of the residuals in group i. Then the
MSE is the standardized form of SSE: MSE = g~ SSE.

33There are k = 4 groups, so dfg = k — 1 =E3. There are n = n1 + n2 + n3 + ng = 327 total
observations, so dfp = n — k = 323. Then the F statistic is computed as the ratio of M SG and MSE:
F = %gg = 8:88?3? =1.984 ~ 1.994. (F = 1.994 was computed by using values for M SG and M SE that
were not rounded.)
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Figure 7.28: An F' distribution with df; = 3 and dfs = 323.

The F statistic and the F' test

Analysis of variance (ANOVA) is used to test whether the mean outcome differs
across 2 or more groups. ANOVA uses a test statistic F', which represents a
standardized ratio of variability in the sample means relative to the variability
within the groups. If Hj is true and the model assumptions are satisfied, the
statistic I follows an F' distribution with parameters dfi = k—1 and dfy =n —k.
The upper tail of the F' distribution is used to represent the p-value.

O

Guided Practice 7.41 The test statistic for the baseball example is F' = 1.994.
Shade the area corresponding to the p-value in Figure 7.28.

Example 7.42 The p-value corresponding to the shaded area in the solution of
Guided Practice 7.41 is equal to about 0.115. Does this provide strong evidence
against the null hypothesis?

The p-value is larger than 0.05, indicating the evidence is not strong enough to reject
the null hypothesis at a significance level of 0.05. That is, the data do not provide
strong evidence that the average on-base percentage varies by player’s primary field
position.

7.4.3 Reading an ANOVA table from software

The calculations required to perform an ANOVA by hand are tedious and prone to human
error. For these reasons, it is common to use statistical software to calculate the F' statistic
and p-value.

An ANOVA can be summarized in a table very similar to that of a regression summary,

which we will see in Chapter 8. Table 7.29 shows an ANOVA summary to test whether the
mean of on-base percentage varies by player positions in the MLB. Many of these values

34
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should look familiar; in particular, the F' test statistic and p-value can be retrieved from
the last columns.

Df Sum Sq Mean Sq F value Pr(>F)

position 3 0.0076 0.0025 1.9943 0.1147
Residuals 323 0.4080 0.0013

Spooled = 0.036 on df =323

Table 7.29: ANOVA summary for testing whether the average on-base
percentage differs across player positions.

7.4.4 Graphical diagnostics for an ANOVA analysis

There are three conditions we must check for an ANOVA analysis: all observations must
be independent, the data in each group must be nearly normal, and the variance within
each group must be approximately equal.

Independence. If the data are a simple random sample from less than 10% of the pop-

ulation, this condition is satisfied. For processes and experiments, carefully consider
whether the data may be independent (e.g. no pairing). For example, in the MLB
data, the data were not sampled. However, there are not obvious reasons why inde-
pendence would not hold for most or all observations.

Approximately normal. As with one- and two-sample testing for means, the normality

assumption is especially important when the sample size is quite small. The normal
probability plots for each group of the MLB data are shown in Figure 7.30; there
is some deviation from normality for infielders, but this isn’t a substantial concern
since there are about 150 observations in that group and the outliers are not extreme.
Sometimes in ANOVA there are so many groups or so few observations per group that
checking normality for each group isn’t reasonable. See the footnote’” for guidance
on how to handle such instances.

Constant variance. The last assumption is that the variance in the groups is about equal

from one group to the next. This assumption can be checked by examining a side-
by-side box plot of the outcomes across the groups, as in Figure 7.27 on page 300.
In this case, the variability is similar in the four groups but not identical. We see in
Table 7.26 on page 300 that the standard deviation varies a bit from one group to the
next. Whether these differences are from natural variation is unclear, so we should
report this uncertainty with the final results.

Caution: Diagnostics for an ANOVA analysis

Independence is always important to an ANOVA analysis. The normality condition
is very important when the sample sizes for each group are relatively small. The
constant variance condition is especially important when the sample sizes differ
between groups.

35First calculate the residuals of the baseball data, which are calculated by taking the observed values
and subtracting the corresponding group means. For example, an outfielder with OBP of 0.435 would have
a residual of 0.405 —Zppr = 0.071. Then to check the normality condition, create a normal probability plot
using all the residuals simultaneously.
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Figure 7.30: Normal probability plot of OBP for each field position.

7.4.5 Multiple comparisons and controlling Type 1 Error rate

When we reject the null hypothesis in an ANOVA analysis, we might wonder, which of
these groups have different means? To answer this question, we compare the means of each
possible pair of groups. For instance, if there are three groups and there is strong evidence
that there are some differences in the group means, there are three comparisons to make:
group 1 to group 2, group 1 to group 3, and group 2 to group 3. These comparisons can
be accomplished using a two-sample ¢ test, but we use a modified significance level and
a pooled estimate of the standard deviation across groups. Usually this pooled standard
deviation can be found in the ANOVA table, e.g. along the bottom of Table 7.29.
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Class 1 A B C

n; o8 %) o1
Z; 75.1 720 78.9
i 13.9 138 13.1

Table 7.31: Summary statistics for the first midterm scores in three different
lectures of the same course.
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Figure 7.32: Side-by-side box plot for the first midterm scores in three
different lectures of the same course.

Example 7.43 Example 7.34 on page 298 discussed three statistics lectures, all
taught during the same semester. Table 7.31 shows summary statistics for these
three courses, and a side-by-side box plot of the data is shown in Figure 7.32. We
would like to conduct an ANOVA for these data. Do you see any deviations from the
three conditions for ANOVA?

In this case (like many others) it is difficult to check independence in a rigorous way.

Instead, the best we can do is use common sense to consider reasons the assumption
of independence may not hold. For instance, the independence assumption may not
be reasonable if there is a star teaching assistant that only half of the students may
access; such a scenario would divide a class into two subgroups. No such situations
were evident for these particular data, and we believe that independence is acceptable.

The distributions in the side-by-side box plot appear to be roughly symmetric and
show no noticeable outliers.

The box plots show approximately equal variability, which can be verified in Ta-
ble 7.31, supporting the constant variance assumption.

Guided Practice 7.44 An ANOVA was conducted for the midterm data, and
summary results are shown in Table 7.33. What should we conclude?*°

36The p-value of the test is 0.0330, less than the default significance level of 0.05. Therefore, we reject
the null hypothesis and conclude that the difference in the average midterm scores are not due to chance.
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Df Sum Sq Mean Sq F value Pr(>F)
lecture 2 1290.11 645.06 3.48  0.0330
Residuals 161 29810.13 185.16

Spooled = 13.61 on df = 161

Table 7.33: ANOVA summary table for the midterm data.

There is strong evidence that the different means in each of the three classes is not
simply due to chance. We might wonder, which of the classes are actually different? As
discussed in earlier chapters, a two-sample ¢ test could be used to test for differences in each
possible pair of groups. However, one pitfall was discussed in Example 7.38 on page 301:
when we run so many tests, the Type 1 Error rate increases. This issue is resolved by using
a modified significance level.

Multiple comparisons and the Bonferroni correction for a

The scenario of testing many pairs of groups is called multiple comparisons.
The Bonferroni correction suggests that a more stringent significance level is
more appropriate for these tests:

o =a/K

where K is the number of comparisons being considered (formally or informally).
k(k—1)
——.

If there are k groups, then usually all possible pairs are compared and K =

@® Example 7.45 In Guided Practice 7.44, you found strong evidence of differences in
the average midterm grades between the three lectures. Complete the three possible
pairwise comparisons using the Bonferroni correction and report any differences.

We use a modified significance level of o* = 0.05/3 = 0.0167. Additionally, we use
the pooled estimate of the standard deviation: Spopieq = 13.61 on df = 161, which is
provided in the ANOVA summary table.

Lecture A versus Lecture B: The estimated difference and standard error are, respec-

tively,

13.612 n 13.612
58 55

Ta—2Zp="T751-72=31 SE = = 2.56

This results in a T score of 1.21 on df = 161 (we use the df associated with Spoeied)-
Statistical software was used to precisely identify the two-tailed p-value since the
modified significance of 0.0167 is not found in the ¢ table. The p-value (0.228) is
larger than o* = 0.0167, so there is not strong evidence of a difference in the means
of lectures A and B.

Lecture A versus Lecture C: The estimated difference and standard error are 3.8 and
2.61, respectively. This results in a 7" score of 1.46 on df = 161 and a two-tailed
p-value of 0.1462. This p-value is larger than o, so there is not strong evidence of a
difference in the means of lectures A and C.

Lecture B versus Lecture C: The estimated difference and standard error are 6.9 and
2.65, respectively. This results in a 7' score of 2.60 on df = 161 and a two-tailed
p-value of 0.0102. This p-value is smaller than a*. Here we find strong evidence of a
difference in the means of lectures B and C.
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We might summarize the findings of the analysis from Example 7.45 using the following
notation:

?

? ?
1A = [iB 1A = po UB # pe

The midterm mean in lecture A is not statistically distinguishable from those of lectures
B or C. However, there is strong evidence that lectures B and C are different. In the first
two pairwise comparisons, we did not have sufficient evidence to reject the null hypothesis.
Recall that failing to reject Hy does not imply Hj is true.

Caution: Sometimes an ANOVA will reject the null but no groups will
have statistically significant differences

It is possible to reject the null hypothesis using ANOVA and then to not subse-
quently identify differences in the pairwise comparisons. However, this does not
invalidate the ANOVA conclusion. It only means we have not been able to success-
fully identify which groups differ in their means.

The ANOVA procedure examines the big picture: it considers all groups simultane-
ously to decipher whether there is evidence that some difference exists. Even if the test
indicates that there is strong evidence of differences in group means, identifying with high
confidence a specific difference as statistically significant is more difficult.

Consider the following analogy: we observe a Wall Street firm that makes large quanti-
ties of money based on predicting mergers. Mergers are generally difficult to predict, and if
the prediction success rate is extremely high, that may be considered sufficiently strong ev-
idence to warrant investigation by the Securities and Exchange Commission (SEC). While
the SEC may be quite certain that there is insider trading taking place at the firm, the
evidence against any single trader may not be very strong. It is only when the SEC consid-
ers all the data that they identify the pattern. This is effectively the strategy of ANOVA:
stand back and consider all the groups simultaneously.



Appendix A

End of chapter exercise
solutions

7 Inference for numerical data

7.35 (a) False. As the number of groups in- creases, so does the number of comparisons and hence
the modified significance level decreases. (b) True. (c) True. (d) False. We need obser- vations to be
independent regardless of sample size.

7.37 (a) Ho: Average score difference is the same for all treatments. H 4: At least one pair of means
are different. (b) We should check conditions. If we look back to the earlier ex- ercise, we will see
that the patients were ran- domized, so independence is satisfied. There are some minor concerns
about skew, especially with the third group, though this may be ac- ceptable. The standard
deviations across the groups are reasonably similar. Since the p-value is less than 0.05, reject Ho.
The data provide convincing evidence of a difference between the average reduction in score among
treatments. (¢) We determined that at least two means are different in part (b), so we now conduct
K =3 x 2/2 = 3 pairwise ¢ tests that each use o = 0.05/3 = 0.0167 for a significance level. Use the
following hypotheses for each pairwise test. Hp: The two means are equal. H 4: The two

means are different. The sample sizes are equal and we use the pooled SD, so we can compute SE =
3.7 with the pooled df = 39. The p-value only for Trmt 1 vs. Trmt 3 may be statistically significant:
0.01 < p-value < 0.02. Since we cannot tell, we should use a computer to get the

p-value, 0.015, which is statistically significant for the adjusted significance level. That is, we have
identified Treatment 1 and Treatment 3 as having different effects. Checking the other two
comparisons, the differences are not statistically significant.
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