Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 — Nuts and Bolts

Camera Ray Casting

Ravi Ramamoorthi

Outline

= Camera Ray Casting (choose ray directions)
= Ray-object intersections

= Ray-tracing transformed objects

= Lighting calculations

= Recursive ray tracing

Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)
{
Image image = new Image (width, height) ;
for (inti=0;i<height; i++)
for (intj=0;j<width; j++){
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene);
imageli][j] = FindColor (hit) ;
}

return image;

Ray Casting

Virtual Viewpoint Zé

T
11\ \

|

]

7
[]]

-
Virtual Screen Objects

Raytiptestatetatjicissttite kojlusesioiigtas deteri@ipenGL)

Finding Ray Direction

= Goal is to find ray direction for given pixel i and j

= Many ways to approach problem
= Objects in world coord, find dirn of each ray (we do this)
= Camera in canonical frame, transform objects (OpenGL)

= Basic idea
= Ray has origin (camera center) and direction
= Find direction given camera params and i and j

= Camera params as in gluLookAt
= |ookfrom[3], LookAt[3], up[3], fov

Similar to gluLookAt derivation
= gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,
upy, upz)
= Camera at eye, looking at center, with up direction being up
Up vector

Eye

From earlier lecture on deriving gluLookAt

Constructing a coordinate frame?

We want to associate w with a, and v with b
= Buta and b are neither orthogonal nor unit norm
= And we also need to find u

V=WxUu

From basic math lecture - Vectors: Orthonormal Basis Frames

Constructing a coordinate frame
a bxw

W= -— u
Il [bxw|
= We want to position camera at origin, looking down —Z dirn

V=wxUu

= Hence, vector a is given by eye — center

= The vector b is simply the up vector Up vector

Eye

Canonical viewing geometry

_
//

| 4+

1
| ———"]

LA

Y aul

[

Canonical viewing geometry

1

//

| 4+

1
| ———"]

LA

Y qaul

—
—~——

M~

—]
——

-
(fovx_(j—(width/ 2)\}

o =tan| I« _ fovy | ((height/2)-i}
U2) widhi2)

=tan] —L |x] 2=~
A {72)\ height’2)

Canonical viewing geometry

—
1
] ||
///
”a
1 ray:eye+w+’sv-w
-w all e+ v —w|
—~—1 |
—
\\\
(fovx) (j—-(width/2)) 'fovy\‘y_'(height/Z)—f".

o =tan|
L2)

| —— 7| =tan| —= S —
| " width /2) A {727)\ " height 12

Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 — Nuts and Bolts

Ray-Object Intersections

Ravi Ramamoorthi

Outline

Camera Ray Casting (choosing ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing

Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)

{

}

Image image = new Image (width, height) ;
for (inti=0;i<height; i++)
for (intj=0;j<width; j++){
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene);
imageli][j] = FindColor (hit) ;
}

return image;

Ray-Sphere Intersection

ray =P=F+Pt
sphere=(P-C)(P-C)-r?=0

Po

Ray-Sphere Intersection

ray = P=PR +PRt

sphere=(P-C)(P-C)-r* =0
Substitute

Ray-Sphere Intersection

ray = P=PR +PRt
sphere=(P-C)(P-C)-r* =0

Substitute

ray = P=P +Pt
SphereE(Fé.}.Fz[_C)(Po+F:t_c)_r2=0

Simplify

Ray-Sphere Intersection

ray = P=PR +PRt

sphere=(P-C)(P-C)-r* =0
Substitute
ray = P=PR+hRt
sphere = (P, + Bt -C)(F, + Pt —C)—f2 -0
Simplify

£(RR)+2t BB, ~C)+(R,~C)(R, ~C)-r* =0

Ray-Sphere Intersection

Ray-Sphere Intersection

£(PP)+2t R (R, ~C)+(R,~C)(F,~C)~r* =0

Solve quadratic equations for t
= 2 real positive roots: pick smaller root

= Both roots same: tangent to sphere
= One positive, one negative root: ray

origin inside sphere (pick + root) @
= Complex roots: no intersection (check/@

discriminant of equation first)

* Intersection point: ray = P=PF +Pt

= Normal (for sphere, this is same as coordinates
in sphere frame of reference, useful other tasks)
P-C
normal = ——
P-c

Ray-Triangle Intersection

Ray-Triangle Intersection

= One approach: Ray-Plane intersection, then
check if inside triangle

= Plane equation: A B

= One approach: Ray-Plane intersection, then

check if inside triangle _(C-A)«(B-A)
, [c-a)<(B-a)
= Plane equation: A B
C

Ray-Triangle Intersection

Ray-Triangle Intersection

= One approach: Ray-Plane intersection, then
check if inside triangle (C-A)x(B-A)

= Plane equation: B

plane=Pn-An=0

lc-A)=<(B-A)

= One approach: Ray-Plane intersection, then
check if inside triangle (C-A)x(B-A)

Te-AaxB-A)

= Plane equation: B

plane=Pn-An=0
t:An—an

= Combine with ray equation o
]

ray =P=F+PFt C
(R +Ftn=An

Ray inside Triangle
= Once intersect with plane, need to find if in triangle

= Many possibilities for triangles, general polygons

= We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)
B

A

P=aA+ pB+7C
az0, 820,720
a+fB+y=1

Ray inside Triangle

P=aA+ fB+7C
az0 420720
axfey=1

AB

C
P-A=pB(B-A)+7(C-A)
O=sp=1,0=y21
B+r=1

Other primitives

Much early work in ray tracing focused on ray-primitive
intersection tests

Cones, cylinders, ellipsoids
Boxes (especially useful for bounding boxes)
General planar polygons

Many more

Ray Scene Intersection

Intersection (ray, scene) {

mindist = infinity; hitobject = NULL ;

For each object in scene { // Find closest intersection; test all objects
t = Intersect (ray, object) ;
if (t >0 && t < mindist) // closer than previous closest object

mindist =t ; hitobject = object ;

}

return Intersectioninfo(mindist, hitobject) ; // may already be in Intersect()

}

Outline

= Camera Ray Casting (choosing ray directions)
= Ray-object intersections

= Ray-tracing transformed objects

= Lighting calculations

= Recursive ray tracing

Ray-Tracing Transformed Objects

We have an optimized ray-sphere test
= But we want to ray trace an ellipsoid...

Solution: Ellipsoid transforms sphere
= Apply inverse transform to ray, use ray-sphere
= Allows for instancing (traffic jam of cars)
= Same idea for other primitives

Transformed Objects

Consider a general 4x4 transform M (matrix stacks)

Apply inverse transform M-1 to ray

= Locations stored and transform in homogeneous coordinates

= Vectors (ray directions) have homogeneous coordinate set
to 0 [so there is no action because of translations]

Do standard ray-surface intersection as modified

Transform intersection back to actual coordinates
= Intersection point p transforms as Mp
» Normals n transform as M*n. Do all this before lighting

Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 — Nuts and Bolts
Lighting Calculations

Ravi Ramamoorthi

Outline

= Camera Ray Casting (choosing ray directions)
= Ray-object intersections

= Ray-tracing transformed objects

Lighting calculations

= Recursive ray tracing

Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)
{
Image image = new Image (width, height) ;
for (inti=0;i<height; i++)
for (intj=0;j<width; j++){
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene);
image[i][j] = FindColor (hit) ;
}

return image;

Shadows Light Source

Virtual Screen Objects
Stetbowragitadidiyhisisiilcked: cijsttvisibleadow

Shadows: Numerical Issues

* Numerical inaccuracy may cause intersection to be
below surface (effect exaggerated in figure)

¢ Causing surface to incorrectly shadow itself

« Move a little towards light before shooting shadow ray

¢

/

Lighting Model
= Similar to OpenGL

= Lighting model parameters (global)
= Ambientrghb L,

Material Model

= Attenuation const linear quadratic L= const +in*d +quad * d?

= Per light model parameters
= Directional light (direction, RGB parameters)
= Point light (location, RGB parameters)
= Some differences from HW 2 syntax

= Diffuse reflectance (r g b)

= Specular reflectance (r g b)
= Shininess s

= Emission (r g b)

All as in OpenGL

Shading Model

=K, +K, + Zn:\/,L,(Kd max (I, n,0) + K ,(max(h, n,0))*)

i=1

Global ambient term, emission from material
= For each light, diffuse specular terms
= Note visibility/shadowing for each light (not in OpenGL)

= Evaluated per pixel per light (not per vertex)

Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 — Nuts and Bolts

Recursive Ray Tracing

Ravi Ramamoorthi

Outline

= Camera Ray Casting (choosing ray directions)
= Ray-object intersections

= Ray-tracing transformed objects

= Lighting calculations

= Recursive ray tracing

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,

Get reflections and refractions of objects

Basic idea

For each pixel
= Trace Primary Eye Ray, find intersection

= Trace Secondary Shadow Ray(s) to all light(s)
= Color = Visible ? Illumination Model : 0 ;

= Trace Reflected Ray
= Color += reflectivity * Color of reflected ray

Recursive Shading Model
1=K, +K, +i‘\/‘.LI‘(Kd max (I, n,0)+ K (max(h, n,0))°)+ K.y + K/,

i=1
= Highlighted terms are recursive specularities [mirror
reflections] and transmission (latter is extra)

= Trace secondary rays for mirror reflections and
refractions, include contribution in lighting model

= GetColor calls RayTrace recursively (the | values in
equation above of secondary rays are obtained by
recursive calls)

Problems with Recursion

= Reflection rays may be traced forever

= Generally, set maximum recursion depth

= Same for transmitted rays (take refraction into account

Some basic add ons

= Area light sources and soft shadows: break into
grid of n x n point lights
= Use jittering: Randomize direction of shadow ray
within small box for given light source direction
= Jittering also useful for antialiasing shadows when
shooting primary rays

= More complex reflectance models
= Simply update shading model
= But at present, we can handle only mirror global
illumination calculations

