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Foundations of Computer Graphics 

 Online Lecture 4: Transformations 2 

Homogeneous Coordinates 

 

Ravi Ramamoorthi 

To Do 
§  Start doing HW 1 

§  Specifics of HW 1 
§  Last lecture covered basic material on transformations in 2D 
    Likely need this lecture to understand full 3D transformations 

§  Last lecture: full derivation of 3D rotations.  You only need final formula 

§  gluLookAt derivation later this lecture helps clarifying some ideas 

Outline 

§  Translation: Homogeneous Coordinates 

§  Transforming Normals 

§  Rotations revisited: coordinate frames 

§  gluLookAt (quickly) 

Translation 
§  E.g. move x by +5 units, leave y, z unchanged 

§  We need appropriate matrix.  What is it? 

Transformations game demo 
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Homogeneous Coordinates 
§  Add a fourth homogeneous coordinate (w=1) 

§  4x4 matrices very common in graphics, hardware 

§  Last row always 0 0 0 1 (until next lecture) 
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Representation of Points (4-Vectors) 

Homogeneous coordinates 

§  Divide by 4th coord (w) to get                                
(inhomogeneous) point 

§  Multiplication by w > 0, no effect 

§  Assume w ≥ 0.  For w > 0, normal                                                                  
finite point.  For w = 0, point at infinity                                      
(used for vectors to stop translation) 
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Advantages of Homogeneous Coords 

§  Unified framework for translation, viewing, rot… 

§  Can concatenate any set of transforms to 4x4 matrix 

§  No division (as for perspective viewing) till end 

§  Simpler formulas, no special cases 

§  Standard in graphics software, hardware 

General Translation Matrix 
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Combining Translations, Rotations 

§  Order matters!!  TR is not the same as RT (demo) 

§  General form for rigid body transforms 

§  We show rotation first, then translation (commonly 
used to position objects) on next slide.  Slide after 
that works it out the other way  

§  Demos with applet 

                                

Combining Translations, Rotations 

  P ' = (TR)P = MP = RP +T

Transformations game demo 

Combining Translations, Rotations 

  P ' = (TR)P = MP = RP +T
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Transformations game demo 

Combining Translations, Rotations 

  P ' = (RT )P = MP = R(P +T ) = RP +RT
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Combining Translations, Rotations 

  P ' = (RT )P = MP = R(P +T ) = RP +RT
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Transformations game demo 

Foundations of Computer Graphics 

 Online Lecture 4: Transformations 2 

Transforming Normals 

 

Ravi Ramamoorthi 

Outline 
§  Translation: Homogeneous Coordinates 

§  Transforming Normals 

§  Rotations revisited: coordinate frames 

§  gluLookAt (quickly) 

Normals 
§  Important for many tasks in graphics like lighting 

§  Do not transform like points e.g. shear 

§  Algebra tricks to derive correct transform 
Incorrect to  
transform  
like points 

Finding Normal Transformation 
  t → Mt n→Qn Q = ?

  n
Tt = 0

Finding Normal Transformation 
  t → Mt n→Qn Q = ?

  n
Tt = 0

  n
TQTMt = 0 ⇒ QTM = I



4 

Finding Normal Transformation 
  t → Mt n→Qn Q = ?

  n
Tt = 0

  n
TQTMt = 0 ⇒ QTM = I

  Q = (M −1)T

Foundations of Computer Graphics 

 Online Lecture 4: Transformations 2 

Rotations Revisited: Coordinate Frames 

 

Ravi Ramamoorthi 

Outline 

§  Translation: Homogeneous Coordinates 

§  Transforming Normals 

§  Rotations revisited: coordinate frames 

§  gluLookAt (quickly) 

Coordinate Frames 
§  All of discussion in terms of operating on points 

§  But can also change coordinate system  

§  Example, motion means either point moves 
backward, or coordinate system moves forward 

  P = (2,1)   P
' = (1,1)   P = (1,1)

Coordinate Frames: In general 
§  Can differ both origin and orientation (e.g. 2 people) 

§  One good example: World, camera coord frames (H1) 
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Coordinate Frames: Rotations 

 x

 y

 P

  P '

θ

  
R =

cosθ −sinθ
sinθ cosθ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 P

α α
θ

 v

 u

  

u
v

⎛

⎝⎜
⎞

⎠⎟
=

cosθ −sinθ
sinθ cosθ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x
y

⎛

⎝
⎜

⎞

⎠
⎟



5 

Geometric Interpretation 3D Rotations 
§  Rows of matrix are 3 unit vectors of new coord frame 
§  Can construct rotation matrix from 3 orthonormal vectors 
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Axis-Angle formula (summary) 
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Derivation of gluLookAt 

 

Ravi Ramamoorthi 

Outline 
§  Translation: Homogeneous Coordinates 

§  Transforming Normals 

§  Rotations revisited: coordinate frames 

§  gluLookAt (quickly) 

Case Study: Derive gluLookAt 
Defines camera, fundamental to how we view images 

§  gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz) 

§  Camera is at eye, looking at center, with the up direction being up 

§  May be important for HW1 

§  Combines many concepts discussed in lecture 

§  Core function in OpenGL for later assignments 

Eye 

Up vector 

Center 

Steps 
§  gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz) 

§  Camera is at eye, looking at center, with the up direction being up 

§  First, create a coordinate frame for the camera 

§  Define a rotation matrix 

§  Apply appropriate translation for camera (eye) location 
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Constructing a coordinate frame? 

 
w = a

a

We want to associate w with a, and v with b 
§  But a and b are neither orthogonal nor unit norm 
§  And we also need to find u 

 
u = b ×w

b ×w

 v = w × u
From basic math lecture - Vectors: Orthonormal Basis Frames 

Constructing a coordinate frame 

 
w = a

a

 

    

§  We want to position camera at origin, looking down –Z dirn 

§  Hence, vector a is given by eye – center 

§  The vector b is simply the up vector 

 
u = b ×w

b ×w  v = w × u

Eye 

Up vector 

Center 

Steps 
§  gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz) 

§  Camera is at eye, looking at center, with the up direction being up 

§  First, create a coordinate frame for the camera 

§  Define a rotation matrix 

§  Apply appropriate translation for camera (eye) location 

Geometric Interpretation 3D Rotations 
§  Rows of matrix are 3 unit vectors of new coord frame 
§  Can construct rotation matrix from 3 orthonormal vectors 
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Steps 
§  gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz) 

§  Camera is at eye, looking at center, with the up direction being up 

§  First, create a coordinate frame for the camera 

§  Define a rotation matrix 

§  Apply appropriate translation for camera (eye) location 

Translation 
§  gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz) 

§  Camera is at eye, looking at center, with the up direction being up 

§  Cannot apply translation after rotation 

§  The translation must come first (to bring camera to 
origin) before the rotation is applied 
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Combining Translations, Rotations 

  P ' = (RT )P = MP = R(P +T ) = RP +RT
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gluLookAt final form 

  

xu yu zu 0

xv yv zv 0

xw yw zw 0

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 0 0 −ex

0 1 0 −ey

0 0 1 −ez

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

gluLookAt final form 
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