Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 — Nuts and Bolts

Camera Ray Casting

Ravi Ramamoorthi

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{
Image image = new Image (width, height) ;
for (inti=0;i< height ; i++)
for (intj=0;j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Finding Ray Direction

Goal is to find ray direction for given pixel i and j

Many ways to approach problem
Objects in world coord, find dirn of each ray (we do this)
Camera in canonical frame, transform objects (OpenGL)

Basic idea
Ray has origin (camera center) and direction
Find direction given camera params and i and j

Camera params as in gluLookAt
Lookfrom[3], LookAt[3], up[3], fov

Outline

Camera Ray Casting (choose ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Similar to gluLookAt derivation

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,
upy, upz)

Camera at eye, looking at center, with up direction being up
Up vector

From earlier lecture on deriving gluLookAt

Constructing a coordinate frame? Constructing a coordinate frame

] " . _a _ bxw _
We want to associate w with a, and v with b W—HaH u_||b><w|| V=wxu

But a and b are neither orthogonal nor unit norm " o) .
A i alse mese) e gl We want to position camera at origin, looking down —Z dirn

Hence, vector a is given by eye — center

The vector b is simply the up vector Up vector

Eye

From basic math lecture - Vectors: Orthonormal Basis Frames

Canonical viewing geometry Canonical viewing geometry

o tan(fovx) [J —(w:dth/Q)J =tan

(fovy (height/2)—i]
2)"\ width/2

X
|2 height | 2

Canonical viewing geometry
Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 — Nuts and Bolts
au+pv-w

Y= ‘au+ Bv— w‘

Ray-Object Intersections

Ravi Ramamoorthi

a:tan(fovx % j—(WIdth/Z)} B=tan fovy]>< (helgﬁt/Z)—l
2 width / 2 2) \ height/2

Outline Outline in Code

. . . . Image Raytrace (Camera cam, Scene scene, int width, int height)
Camera Ray Casting (choosing ray directions) {

Ray—object intersections Image image = new Image (width, height) ;
for (inti=0 ;i< height ; i++)
Ray-tracing transformed objects for (intj = 05 j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;

Lighting calculations Intersection hit = Intersect (ray, scene) ;

Recursive ray tracing i)mage[i][i] = FindColor (hit) ;

return image ;

Ray-Sphere Intersection Ray-Sphere Intersection
ray = P=P +Pt ray =P=P+Pt

sphere=(P-C)+(P-C)-r’=0 sphere=(P—C)«(P-C)-r>=0
Substitute

here Intersection Ray ere Intersection
ray =P=P+Pt ray =P=P+Pt
sphere=(P-C)+«(P-C)-r?=0 sphere=(P-C)+«(P-C)-r?=0
Substitute L Substitute L
ray = P=P +Pt ray = P=P +Pt
sphere = (P, +Pt-C)+(P,+Pt-C)-r?=0 sphere = (P, +Pt-C)+(P,+Pt-C)-r?=0
Simplify Simplify

t2(P,+P)+2t P,+(P,-C)+(P,-C

0

Ray here Intersection

t2(P+P)+2t P +(P,—C)+(P,~C)+(P,-C)-r*=0
Solve quadratic equations for t
2 real positive roots: pick smaller root

Both roots same: tangent to sphere @
O

One positive, one negative root: ray
origin inside sphere (pick + root)

Complex roots: no intersection (check
discriminant of equation first)

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then
check if inside triangle

Plane equation:

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then
check if inside triangle

, [c-Ax(B-4)
Plane equation: B

plane=P+fi—-A-ii=0

_(C-A)x(B-A)

Ray here Intersection
Intersection point: ray = P=P,+Pt

Normal (for sphere, this is same as coordinates
in sphere frame of reference, useful other tasks)

p_C
normal = ——
o

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then
check if inside triangle _ (C-A)x(B-A)

, lc-AxB-a)
Plane equation: B

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then
check if inside triangle _(C=A)x(B-A)

: ~|c-A)x(B-A)
Plane equation:

plane=P+fi—A-fi=0

Combine with ray equation
ray =P=P+Pt
(P,+Pt)efi=Ahi

Ray inside Triangle

Once intersect with plane, need to find if in triangle
Many possibilities for triangles, general polygons

We find parametrically [barycentric coordinates]. Also
useful for other aBppIications (texture mapping)

w

P=aA+pB+yC
20,420,720
a+p+y=1

Other primitives

Much early work in ray tracing focused on ray-primitive
intersection tests

Cones, cylinders, ellipsoids
Boxes (especially useful for bounding boxes)
General planar polygons

Many more

Outline

Camera Ray Casting (choosing ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing

Ray inside Triangle
A V B

P=aA+pBB+yC
a>0,20,y=0
oa+f+y=1

©
P-A=p(B-A)+y(C-A)
0<B<1,0<y<1
B+y <1

Ray Scene Intersection
Intersection (ray, scene) {
mindist = infinity; hitobject = NULL ;
For each object in scene { // Find closest intersection; test all objects
t = Intersect (ray, object) ;
if (t > 0 && t < mindist) // closer than previous closest object
mindist = t ; hitobject = object ;
}
return Intersectioninfo(mindist, hitobject) ; // may already be in Intersect()

}

Ray-Tracing Transformed Objects

We have an optimized ray-sphere test
But we want to ray trace an ellipsoid...

Solution: Ellipsoid transforms sphere
Apply inverse transform to ray, use ray-sphere
Allows for instancing (traffic jam of cars)
Same idea for other primitives

Transformed Objects

Consider a general 4x4 transform M (matrix stacks)

Apply inverse transform M- to ray
Locations stored and transform in homogeneous coordinates
Vectors (ray directions) have homogeneous coordinate set
to 0 [so there is no action because of translations]

Do standard ray-surface intersection as modified

Transform intersection back to actual coordinates
Intersection point p transforms as Mp
Normals n transform as M*n. Do all this before lighting

Outline

Camera Ray Casting (choosing ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing

Shadows Light Source

Virtual Viewpoint

Virtual Screen Objects
Shatiowras yddifighisiattibeked: objectvizishadow

Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 — Nuts and Bolts
Lighting Calculations

Ravi Ramamoorthi

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{
Image image = new Image (width, height) ;
for (inti=0;i< height ; i++)
for (intj =0 ;j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Shadows: Numerical Issues

* Numerical inaccuracy may cause intersection to be
below surface (effect exaggerated in figure)

* Causing surface to incorrectly shadow itself

» Move a little towards light before shooting shadow ray

/

Lighting Model
Similar to OpenGL

Lighting model parameters (global)
Ambientrgb L

0

Attenuation const linear quadratic L= const+ lin* d + quad * d?

Per light model parameters
Directional light (direction, RGB parameters)
Point light (location, RGB parameters)
Some differences from HW 2 syntax

Shading Model

I=K +K_ + 2\//Li(Kd max (I, «n,0)+ K (max(h, +n,0))*)

i=1
Global ambient term, emission from material
For each light, diffuse specular terms
Note visibility/shadowing for each light (not in OpenGL)

Evaluated per pixel per light (not per vertex)

Outline

Camera Ray Casting (choosing ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing

Material Model

Diffuse reflectance (r g b)
Specular reflectance (r g b)
Shininess s

Emission (r g b)

All as in OpenGL

Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 — Nuts and Bolts

Recursive Ray Tracing

Ravi Ramamoorthi

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,

Get reflections and refractions of objects

Basic idea

For each pixel
Trace Primary Eye Ray, find intersection

Trace Secondary Shadow Ray(s) to all light(s)

Color = Visible ? lllumination Model : 0 ;

Trace Reflected Ray
Color += reflectivity * Color of reflected ray

Problems with Recursion

Reflection rays may be traced forever

Generally, set maximum recursion depth

Same for transmitted rays (take refraction into account)

Recursive Shading Model
I=K,+K, +i\/fo(Kd max (I, «n,0)+ K_(max(h, - n,0))°) +

i=1
Highlighted terms are recursive specularities [mirror
reflections] and transmission (latter is extra)

Trace secondary rays for mirror reflections and
refractions, include contribution in lighting model

GetColor calls RayTrace recursively (the | values in
equation above of secondary rays are obtained by
recursive calls)

Some basic add ons

Area light sources and soft shadows: break into
grid of n x n point lights
Use jittering: Randomize direction of shadow ray
within small box for given light source direction
Jittering also useful for antialiasing shadows when
shooting primary rays

More complex reflectance models
Simply update shading model
But at present, we can handle only mirror global
illumination calculations

