
SYSTEMATIC PROGRAM DESIGN PART 1: SYLLABUS

The complete Systematic Program Design course consists of 3 parts, each of which is 5 weeks
long. Each week consists of 1 or 2 modules, and those modules all have a similar structure,
comprised of:

• An overview describing the module learning goals and summarizing the work required to
complete the module.

• A number of blended topic lectures, consisting of video interspersed with questions for
you to answer.

• A set of problems that will let you practice the new design techniques before the quiz.
• A module quiz. Most weeks the module quiz involves a self-assessed design problem.

The nature of this self-assessment will be covered in detail in a later unit. Each of the
three parts of the course ends with a small project in the form of a larger design quiz
that uses peer assessment.

• A module wrap up.

The following chart provides an overview of the course topics:

Week Module Name Lectures Time to complete
Practice
Problems Quiz

 Overall Learning Goal

Beginning Student
Language 8 5-8 Hours 4 none

1 Learn to program with the core programming language used throughout the course.

How to Design
Functions (HtDF) Recipe 6 4-7 Hours 3

Self-Assessed
Design Quiz

2 Learn how to use the HtDF recipe to design functions that consume simple primitive data.

How to Design Data
(HtDD) Recipe 12 5-8 Hours 2

Self-Assessed
Design Quiz

3 Learn how to use the HtDD recipe to design data definitions tor atomic data

How to Design Worlds
(HtDW) Recipe 7 3-6 Hours 1 none

Compound Data 3 2-4 Hours 3
Peer-Assessed
Final Project

4
Learn how to use the HtDW recipe to design interactive programs with atomic and then
compound world state.

Part 2 of the course covers arbitrary-sized data including lists and trees; the use of helper functions;
functions consuming two complex types; and the use of local expressions to improve program clarity
and/or performance.

Part 3 of the course covers abstraction, generative recursion, search, accumulators and graphs.

