
Compilers Handout 4

Programming Assignment IV

1 Introduction

In this assignment, you will implement the static semantics of Cool. You will use the abstract syntax trees
(AST) built by the parser to check that a program conforms to the Cool specification. Your static semantic
component should reject erroneous programs; for correct programs, it must gather certain information
for use by the code generator. The output of the semantic analyzer will be an annotated AST for use by
the code generator.

This assignment has much more room for design decisions than previous assignments. Your program
is correct if it checks programs against the specification. There is no one “right” way to do the assignment,
but there are wrong ways. There are a number of standard practices that we think make life easier, and
we will try to convey them to you. However, what you do is largely up to you. Whatever you decide to
do, be prepared to justify and explain your solution.

You will need to refer to the typing rules, identifier scoping rules, and other restrictions of Cool as
defined in the Cool Reference Manual. You will also need to add methods and data members to the AST
class definitions for this phase. The functions the tree package provides are documented in the Tour of
Cool Support Code.

There is a lot of information in this handout, and you need to know most of it to write a working
semantic analyzer. Please read the handout thoroughly. At a high level, your semantic checker will have
to perform the following major tasks:

1. Look at all classes and build an inheritance graph.

2. Check that the graph is well-formed.

3. For each class

(a) Traverse the AST, gathering all visible declarations in a symbol table.

(b) Check each expression for type correctness.

(c) Annotate the AST with types.

This list of tasks is not exhaustive; it is up to you to faithfully implement the specification in the manual.

2 Files and Directories

To get started with the programming assignments, download the starter code from the OpenClassroom
website and extract it to a convenient directory on your local machine. Make sure you download the
tarball that matches your particular machine architecture. You may also download the pieces of this
assignment individually from the Resources page, but we strongly recommend that you download and
use the complete tarball as is.

Once you have a working copy of the programming assignment source tree, change into the directory
for the current assignment. For the C++ version of the assignment, navigate to

[cool root]/assignments/PA4/

page 1 of 6



Compilers Handout 4

For Java, navigate to

[cool root]/assignments/PA4J/

(notice the “J” in the path name). Typing make in this directory will set up the workspace and copy
a number of files to your directory. As usual, there are several files used in the assignment that are
symbolically linked to your directory. Do not modify these files. Almost all of these files have have been
described in previous assignments. See the instructions in the README file.

We now describe the most important files for each version of the project.

2.1 C++ Version

This is a list of the files that you may want to modify.

• cool-tree.h
This file is where user-defined extensions to the abstract syntax tree nodes are placed. You will likely
need to add additional declarations, but do not modify the existing declarations.

• semant.cc
This is the main file for your implementation of the semantic analysis phase. It contains some symbols
predefined for your convenience and a start to a ClassTable implementation for representing the
inheritance graph. You may choose to use or ignore these.

The semantic analyzer is invoked by calling method semant() of class program class. The class
declaration for program class is in cool-tree.h. Any method declarations you add to cool-tree.h
should be implemented in this file.

• semant.h
This file is the header file for semant.cc. You add any additional declarations you need (not in cool-
tree.h) here.

• good.cl and bad.cl
These files test a few semantic features. You should add tests to ensure that good.cl exercises as many
legal semantic combinations as possible and that bad.cl exercises as many kinds of semantic errors as
possible. It is not possible to exercise all possible combinations in one file; you are only responsible
for achieving reasonable coverage. Explain your tests in these files and put any overall comments in
the README file.

• README
This file will contain the write-up for your assignment. For this assignment, it is critical that you
explain design decisions, how your code is structured, and why you believe that the design is a good
one (i.e., why it leads to a correct and robust program). It is part of the assignment to explain things
in text, as well as to comment your code.

2.2 Java Version

This is a list of the files that you may want to modify.

page 2 of 6



Compilers Handout 4

• cool-tree.java
This file contains the definitions for the AST nodes and is the main file for your implementation of the
semantic analysis phase. You will need to add the code for your semantic analysis phase in this file.
The semantic analyzer is invoked by calling method semant() of class program. Do not modify the
existing declarations.

• ClassTable.java
This class is a placeholder for some useful methods (including error reporting and initialization of basic
classes). You may wish to enhance it for use in your analyzer.

• TreeConstants.java
This file defines some useful symbol constants.

• good.cl and bad.cl
These files test a few semantic features. You should add tests to ensure that good.cl exercises as many
legal semantic combinations as possible and that bad.cl exercises as many kinds of semantic errors as
possible. It is not possible to exercise all possible combinations in one file; you are only responsible
for achieving reasonable coverage. Explain your tests in these files and put any overall comments in
the README file.

• README
This file will contain the write-up for your assignment. For this assignment it is critical that you
explain design decisions, how your code is structured, and why you believe that the design is a good
one (i.e., why it leads to a correct and robust program). It is part of the assignment to explain things
in text as well as to comment your code.

3 Tree Traversal

As a result of assignment III, your parser builds abstract syntax trees. The method dump with types,
defined on most AST nodes, illustrates how to traverse the AST and gather information from it. This
algorithmic style—a recursive traversal of a complex tree structure—is very important, because it is a
very natural way to structure many computations on ASTs.

Your programming task for this assignment is to (1) traverse the tree, (2) manage various pieces of
information that you glean from the tree, and (3) use that information to enforce the semantics of Cool.
One traversal of the AST is called a “pass”. You will probably need to make at least two passes over the
AST to check everything.

You will most likely need to attach customized information to the AST nodes. To do so, you may
edit cool-tree.h (C++) or cool-tree.java (Java) directly. In the C++ version, the method implementations
you wish to add should go into semant.cc.

4 Inheritance

Inheritance relationships specify a directed graph of class dependencies. A typical requirement of most
languages with inheritance is that the inheritance graph be acyclic. It is up to your semantic checker
to enforce this requirement. One fairly easy way to do this is to construct a representation of the type
graph and then check for cycles.

page 3 of 6



Compilers Handout 4

In addition, Cool has restrictions on inheriting from the basic classes (see the manual). It is also an
error if class A inherits from class B but class B is not defined.

The project skeleton includes appropriate definitions of all the basic classes. You will need to
incorporate these classes into the inheritance hierarchy.

We suggest that you divide your semantic analysis phase into two smaller components. First, check
that the inheritance graph is well-defined, meaning that all the restrictions on inheritance are satisfied. If
the inheritance graph is not well-defined, it is acceptable to abort compilation (after printing appropriate
error messages, of course!). Second, check all the other semantic conditions. It is much easier to implement
this second component if one knows the inheritance graph and that it is legal.

5 Naming and Scoping

A major portion of any semantic checker is the management of names. The specific problem is determining
which declaration is in effect for each use of an identifier, especially when names can be reused. For
example, if i is declared in two let expressions, one nested within the other, then wherever i is referenced
the semantics of the language specify which declaration is in effect. It is the job of the semantic checker
to keep track of which declaration a name refers to.

As discussed in class, a symbol table is a convenient data structure for managing names and scoping.
You may use our implementation of symbol tables for your project. Our implementation provides methods
for entering, exiting, and augmenting scopes as needed. You are also free to implement your own symbol
table, of course.

Besides the identifier self, which is implicitly bound in every class, there are four ways that an object
name can be introduced in Cool:

• attribute definitions;

• formal parameters of methods;

• let expressions;

• branches of case statements.

In addition to object names, there are also method names and class names. It is an error to use any
name that has no matching declaration. In this case, however, the semantic analyzer should not abort
compilation after discovering such an error. Remember that neither classes, methods, nor attributes need
be declared before use. Think about how this affects your analysis.

6 Type Checking

Type checking is another major function of the semantic analyzer. The semantic analyzer must check
that valid types are declared where required. For example, the return types of methods must be declared.
Using this information, the semantic analyzer must also verify that every expression has a valid type
according to the type rules. The type rules are discussed in detail in the Cool Reference Manual and the
course lecture notes.

One difficult issue is what to do if an expression doesn’t have a valid type according to the rules.
First, an error message should be printed with the line number and a description of what went wrong. It
is relatively easy to give informative error messages in the semantic analysis phase, because it is generally

page 4 of 6



Compilers Handout 4

obvious what the error is. We expect you to give informative error messages. Second, the semantic
analyzer should attempt to recover and continue. We do expect your semantic analyzer to recover, but
we do not expect it to avoid cascading errors. A simple recovery mechanism is to assign the type Object
to any expression that cannot otherwise be given a type (we used this method in coolc).

7 Code Generator Interface

For the semantic analyzer to work correctly with the rest of the coolc compiler, some care must be taken
to adhere to the interface with the code generator. We have deliberately adopted a very simple, näıve
interface to avoid cramping your creative impulses in semantic analysis. However, there is one thing you
must do. For every expression node, its type field must be set to the Symbol naming the type inferred by
your type checker. This Symbol must be the result of the add string (C++) or addString (Java) method
of the idtable. The special expression no expr must be assigned the type No type which is a predefined
symbol in the project skeleton.

8 Expected Output

For incorrect programs, the output of semantic analysis is error messages. You are expected to recover
from all errors except for ill-formed class hierarchies. You are also expected to produce complete and
informative errors. Assuming the inheritance hierarchy is well-formed, the semantic checker should catch
and report all semantic errors in the program. Your error messages need not be identical to those of
coolc.

We have supplied you with simple error reporting methods ostream&
ClassTable::semant error(Class ) (C++) and PrintStream ClassTable.semantError(class )
(Java). This routine takes a Class (C++) or class (Java) node and returns an output stream that you
can use to write error messages. Since the parser ensures that Class /class nodes store the file in which
the class was defined (recall that class definitions cannot be split across files), the line number of the
error message can be obtained from the AST node where the error is detected and the filename from the
enclosing class.

For correct programs, the output is a type-annotated abstract syntax tree. The semantic phase
should correctly annotate ASTs with types and should work correctly with the coolc code generator.

9 Testing the Semantic Analyzer

You will need a working scanner and parser to test your semantic analyzer. You may use either your
own scanner/parser or the coolc scanner/parser. By default, the coolc phases are used; to change that,
replace the lexer and/or parser executable (which are symbolic links in your project directory) with your
own scanner/parser. Even if you use your own scanner and/or parser, it is wise to test your semantic
analyzer with the coolc scanner and parser at least once.

You will run your semantic analyzer using mysemant, a shell script that “glues” together the analyzer
with the parser and the scanner. Note that mysemant takes a -s flag for debugging the analyzer; using
this flag merely causes semant debug (a global variable in the C++ version and a static field of class
Flags in the Java version) to be set. Adding the actual code to produce useful debugging information is
up to you. See the project README for details.

page 5 of 6



Compilers Handout 4

Once you are confident that your semantic analyzer is working, try running mycoolc to invoke your
analyzer together with other compiler phases. You should test this compiler on both good and bad inputs
to see if everything is working. Remember, bugs in the semantic analyzer may manifest themselves in
the code generated or only when the compiled program is executed under spim.

10 Remarks

The semantic analysis phase is by far the largest component of the compiler so far. Our solution is
approximately 1300 lines of well-documented C++. You will find the assignment easier if you take some
time to design the semantic checker prior to coding. Ask yourself:

• What requirements do I need to check?

• When do I need to check a requirement?

• When is the information needed to check a requirement generated?

• Where is the information I need to check a requirement?

If you can answer these questions for each aspect of Cool, implementing a solution should be straight-
forward.

page 6 of 6


