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Suppose a linear system Ax = b (A ∈ Rm×n) has no solution. Commonly
we then settle for the value of x that minimizes the error defined as the
distance between the right and left hand vectors.

min ‖Ax− b‖2. (1.1)

Problem (1.1), known as the least square problem is the problem of
computing the point b∗ in the column space C(A) of A that is closest to
b. The point b∗ is the base of the perpendicular line from C(A) to b, also
called the projection of b onto the column space. The optimal solution (x∗1,
. . ., x∗n) is the vector of coefficients used to combine A·1, . . ., A·n into b∗.
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Optimization problems

An optimization in general can be written in one of the following forms.

max or min f(x)
s.t. gi(x) ≤ or ≥ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , p.
(1.2)

By a feasible solution, we mean a solution x satisfying every
constraint. We denote by F the set of feasible solutions.

A feasible solution x∗ is said to be optimal if it provides the largest
(or the smallest) of objective function f(x).
A feasible solution x is called a local optimum if it is optimal in a
neighborhood: there is a ball Bε(x) centered at x with radius ε > 0
such that f(x) is the smallest over Bε(x) ∩ F .
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If an optimization problem has a few variables, we can illustrate it in the
space of variables using the level sets of objective function.

max f(x) = x1x2

sub. to g1(x) = x1 +2x2 − 10 ≤ 0
g2(x) = x2

1 −x2 ≤ 0
x ≥ 0

c© 2022 Sung-Pil Hong. All rights reserved.

Principles of nonlinear optimization Optimization problems 5 / 40



For a function f : R3 → R2, x = [x1, x2, x3]T 7→ f(x) = [f1(x1, x2, x3),
f2(x1, x2, x3)]T , its derivative Df(x̄) is defined as a linear transformation
which approximates f around x = x̄ with an error dominated by the
distance from x̄: ‖f(x̄ + y) − f(x̄) − Df(x̄)y‖2 = o(‖y‖2). Specifically,
Df(x̄) is given by

Df(x̄) =

[ ∂f1

∂x1
(x̄) ∂f1

∂x2
(x̄) ∂f1

∂x3
(x̄)

∂f2

∂x1
(x̄) ∂f2

∂x2
(x̄) ∂f2

∂x3
(x̄)

]
(1.3)

Definition: h(λ) is o(λ) ⇐⇒ limλ→0
h(λ)

λ = 0.
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Gradient and hessian are important resources in designing optimization
algorithms. We now take a look at some preliminary facts about gradient
in an informal manner.

Definition 1.1

Gradient: For f : Rn → R, its gradient vector at x = x̄ is

∇f(x̄) =


∂f
∂x1

(x̄)
...

∂f
∂xn

(x̄)

 . (1.4)

Hessian: For f : Rn → R, its hessian at x = x̄ is defined by the
derivative at x = x̄ of the gradient x 7→ ∇f(x):

∇2f(x̄) =


∂2f

∂x1∂x1
(x̄) · · · ∂2f

∂xn∂x1
(x̄)

...
...

∂2f
∂x1∂xn

(x̄) · · · ∂2f
∂xn∂xn

(x̄)

 (1.5)
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When f is real-valued, Df(x̄) approximates f as follows:

f(x̄ + y) ≈ f(x̄) +
[

∂f

∂x1
(x̄),

∂f

∂x2
(x̄),

∂f

∂x3
(x̄)

]
y.

If f is a linear function Ax, its derivative is A at every point. Thus
the derivative of cT x is cT .
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Proposition 1.2

If h : Rn → Rm and g : Rm → Rp have derivatives, their composition
f := g ◦ h : Rn → Rp, x 7→ g(h(x)) also has a derivative, given by

Df(x) = D(g ◦ h)(x) = Dg(h(x))Dh(x).

f : R3 → R, Df(x) = [ ∂f
∂x1

, ∂f
∂x2

, ∂f
∂x3

] ∈ R1×3. g : R → R3, Dg(t) =
[g′1(t), g

′
2(t), g

′
3(t)]

T ∈ R3×1. Then the function t 7→ (f ◦ g)(t) =
f(g1(t), g2(t), g3(t)) has derivative

h′(t) = Df(g(t))Dg(t)

= [ ∂f
∂x1

(g(t)), ∂f
∂x2

(g(t)), ∂f
∂x3

(g(t))]

 g′1(t)
g′2(t)
g′3(t)


= ∇f(g(t))T Dg(t).

If g(t) = x + ty (x, y ∈ R3), since Dg(t) = y we have h′(t) =
∇f(x + ty)T y. We call h′(0) = ∇f(x)T y, the directional derivative of f
at x into y.
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The gradient ∇f(x) = [1, 1]T of a linear function f(x1, x2) = x1 + x2 is
the direction of the fastest growth and is normal to the contour at every
point. The growth rate is ‖∇f(1, 1)‖2 =

√
2.

In general, the gradient ∇f(x̄) of a function f(x) at x = x̄, which is
identical to the gradient of the linear function whose graph is tangent
plane to the graph of f(x) at (x̄, f(x̄), is the direction f of the largest
instantaneous rate of growth at x = x̄. The rate is ‖∇f(x̄)‖2.
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Level sets of f(x) = x1 + 2x2 and f(x) = x2
1 + 2x2

2.

A linear function f(x) = cT x increases in the direction y at the rate of
cT y/‖y‖ from any point. Hence if ∇f(x̄)T y < 0, f decreases at a
constant rate along the half line from x̄ in the direction y. In general,
when f is nonlinear, although not decreasing at a constant rate, there is an
interval immediately after x̄ along the line on which f is smaller than f(x̄).
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Proposition 1.3

If ∇f(x̄)T y < 0, y is a descent direction from x = x̄: ∃ λ̄ > 0 : f(x̄ + λy)
< f(x̄) ∀ 0 < λ < λ̄.

Proof: We take the single-variable case as given. For the x ∈ Rn case,
consider g(λ) := f(x̄ + λy), a function of λ ∈ R. By the chain rule,

g′(0) = ∇f(x̄)T y < 0. (1.6)

By the proposition for the single-variable case, there is λ̄ > 0 such that

∀ 0 < λ ≤ λ̄, f(x̄ + λy) < f(x̄).

Exercise 1.4

1 Restate the proposition for ascent directions and provide a proof.

2 Sketch the gradient, contours, and the ascent directions of f(x) =
(x1 − 2x2)2 at x = (1, 1).
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Exercise 1.5

Indicate the descent directions of the objective function from
x0 = [7,−3]T .

min 3
4x2

1 +x2
2

sub.to 2x1 −x2 ≥ 2,
2x1 +x2 ≥ 2,
x1 +4x2 ≤ 19,
x1 ≤ 7,
x1 +5x2 ≥ −8.
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Definition 1.6
We call y a feasible direction from x ∈ F if we can move in the
direction y for a positive distance maintaining feasibility; that is, ∃ λ̄
> 0: x + λy ∈ F , ∀ 0 < λ < λ̄.

According to Proposition 1.3, if g(x) ≤ 0 (g(x) ≥ 0) is an active
constraint of x̄, any y such that ∇g(x̄)T y < 0 (∇g(x̄)T y > 0, resp.) is a
feasible direction of x̄.
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If there is more than one active constraint gi(x) ≤ 0, then a direction y
satisfying ∇gT

i (x̄)y < 0 for all i is a feasible direction of x̄. The inactive
constraints do not restrict feasible direction set, as x̄ satisfies each of them
with a strict inequality.

Exercise 1.7

Compute the feasible directions of x0 in the optimization problem in
Exercise 1.5. Is x0 optimal? Explain.
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Optimality conditions
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There is no known necessary and sufficient optimality condition for a
general optimization problem which we can recognize or implement in an
efficient manner. And it is believed that such a condition is unlikely to
exist.

Today, we are interested in a necessary condition of optimality, known as
KKT optimality conditions. We will derive it by combining the previous
observations and, interestingly, the duality theory of linear programming.

To this end, we define improving directions.

Definition 2.1

For minimization problems, improving directions = descent directions
∩ feasible directions. For maximization problems, . . . .
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As a preliminary, we first show that any linear inequality system defined by
linearly independent vectors has an interior feasible solution:

Proposition 2.2

If v1, . . ., vm are linearly independent, K◦ = {x : vT
1 x < 0, . . ., vT

mx < 0}
6= ∅.

Proof: Assume, to get a contradiction, that K◦ = ∅. Take any
1 ≤ i′ ≤ m. Then ∀ x: V T

−i′x < 0 we have vT
i′ x ≥ 0, where V−i′ =[

v1, . . . , vi′−1, vi′+1, . . ., vm

]
. Since linear functions are continuous, 0 =

min{vT
i′ x : V T

−i′x ≤ 0}. The dual problem is max {0T y : V−i′y = vi′ ,
y ≤ 0}. Hence, by strong duality, there is y ≤ 0: V−i′y = vi′ . This
contradicts the independence of vi’s.
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The KKT conditions are about nonexistence of a particular type of
improving direction at local optima. To illustrate the idea, we consider a
problem max {f(x) : g1(x) ≤ 0, . . ., gm(x) ≤ 0} and its feasible solution
x̄ having the first two constrains as the active constraints.

The vectors having a negative inner product with each gradient of the
active constraints of x̄ are feasible directions. If the gradients are linearly
independent, by Proposition 2.2, their set is nonempty. Thus if x̄ is a
(local) optimum, there is no such a feasible direction whose inner product
with the gradient of objective function is positive and which is hence an
ascent direction.
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The green region represents the feasible directions x whose inner product
with the gradient of every active constraint at x = x̄ is negative:
∇g1(x̄)T x < 0 and ∇g2(x̄)T x < 0. The blue region indicate the directions
x whose inner product with the gradient of objective function at x = x̄ is
positive, ∇f(x̄)T x, hence ascent directions.
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As in the picture, if x̄ is a local optimum, the blue and red regions should
not intersect. That is ∇f(x̄)T x ≤ 0 for every x: ∇g1(x̄)T x < 0, and
∇g2(x̄)T x < 0. Thus from the continuity of linear function and the
feasibility of 0, we conclude 0 = max {∇f(x̄)T x : ∇g1(x̄)T x ≤ 0,
∇g2(x̄)T x ≤ 0}.

The dual problem is min
{

0T λ : [∇g1(x̄)∇g2(x̄)]λ = ∇f(x̄), λ1 ≥ 0,

λ2 ≥ 0
}

. The strong duality implies the existence of λ1 and λ2 such that

∇f(x̄) = ∇g1(x̄)λ1 + ∇g2(x̄)λ2, λ1 ≥ 0, λ2 ≥ 0. This condition is
equivalent to the existence of λ = (λ1, . . .. λm) such that

∇f(x̄) = ∇g1(x̄)λ1 + · · ·∇gm(x̄)λm,

λ ≥ 0, and

g(x̄)T λ = 0.

Clearly, the arguments can be applied to a general case. And we have
established the KKT conditions for inequality constrained optimization.
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Let’s review the arguments through the next nonlinear optimization.

max f(x) = x1x2

sub. to g1(x) = x1 +2x2 − 10 ≤ 0
g2(x) = x2

1 −x2 ≤ 0
x ≥ 0

(2.7)
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First note that the gradients [1, 2] and [4,−1] of the active constraints of
x̄ = (2, 4) are linearly independent. Hence we have a nonempty set of
directions having a negative inner product with them. Thus since x̄ =
(2, 4) is a (local) optimum, there is no such a feasible direction whose
inner product with the objective gradient [4, 2]T is positive and which is
hence an ascent direction at x̄ = (2, 4).

Hence we have ∇f(x̄)T x = [2, 4]x ≤ 0 for every x such that ∇g1(x̄)T x =
[1, 2]x < 0, ∇g2(x̄)T x = [4,−1]x < 0. Since ∇f(x̄)T x is a continuous
function and x = 0 is a feasible solution, it implies 0 = max {[2, 4]x :
[1, 2]x ≤ 0, [4,−1]x ≤ 0}.

The dual problem is min
{

0T λ :
[

1 4
2 −1

]
λ =

[
2
4

]
, λ ≥ 0

}
. The

strong duality implies the existence of y:[
2
4

]
=

[
1
2

]
λ1 +

[
4
−1

]
λ2, λ1 ≥ 0, λ2 ≥ 0.
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Proposition 2.3

Suppose x̄ is a local optimum of max{f(x) | g(x) ≤ 0}. Let A(x̄) be the
indices of active constraints of x̄. If a regularity condition is satisfied,
namely that {∇gi(x̄) : i ∈ A(x̄)} are linearly independent, then there is λ
∈ Rm such that

0 = ∇f(x̄)−
m∑

i=1

λi∇gi(x̄),

λ ≥ 0,

g(x̄)T λ = 0 or equivalently, λi = 0,∀i /∈ A(x̄).

(2.8)

Exercise 2.4

Restate the necessary condition for min{f(x) : gi(x) ≥ 0, 1 ≤ i ≤ m}.

Exercise 2.5

Repeat for min{f(x) : gi(x) ≤ 0, 1 ≤ i ≤ m} and max{f(x) : gi(x) ≥ 0,
1 ≤ i ≤ m}.
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Example 2.6

Find every local minimum and maximum of f(x) = x2
1− x2

2 over the set of
x satisfying g(x) = x2

1 + x2
2 −1 ≤ 0.

Since (0, 0) is not a local optimum, every minimum or maximum has a
nonzero gradient ∇g(x). Hence the regularity condition holds and they are
necessarily a KKT point: there is λ ≥ 0 (≤ 0) such that ∇f(x) − λ∇g(x)
= 0 for a local maximum (minimum, resp. ).

∇f(x)− λ∇g(x) =
[

2x1

−2x2

]
− λ

[
2x1

2x2

]
= 0. (2.9)

From (2.9) and x2
1 + x2

2 = 1, we get two groups of KKT points: (+1, 0)
and (−1, 0) for λ = 1 and (0,+1) and (0,−1) for λ = −1. In fact, the
first two points are maximizers and the last two points are minimizers.
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To see this, we need to rely on extra information. In the following sketch
of the optimization problem, we can confirm that they are indeed maxima
and minima.
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Example 2.7

Consider the following optimization problem:

max log x1 + log x2

sub. to x1 + 2x2 ≤ 20
x1 ≤ 8

Let’s solve this problem analytically. The gradients [1, 2] and [1, 0] of two
constraints are linearly independent. By KKT necessity, the optimal value
of x must satisfy the KKT conditions. Therefore, if we find all the values
of x and λ, the optimum must exist among them. Let λ1 and λ2 denote
the Lagrange multipliers for the first and second constraint, respectively.
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There are four cases:

1 λ1 = λ2 = 0. Then we must have ∇f(x) = [1/x1, 1/x2]T = 0. There
is no feasible solution, because . . . .

2 λ1 > 0, λ2 = 0. Then we must have

∇f(x) = [1/x1, 1/x2]T = λ1∇g1(x) = λ1[1, 2]T and
g1(x) = x1 + 2x2 = 20. Solving these equations, we find
x1 = 10, x2 = 5, and λ1 = 1/10, which is infeasible because x1 > 8.

3 λ1 = 0, λ2 > 0. Then we must have

∇f(x) = [1/x1, 1/x2]T = λ2∇g2(x) = λ2[1, 0]T and g2(x) = x1 = 8.
There is no feasible solution, because . . . .

4 λ1 > 0, λ2 > 0. Then we must have ∇f(x) = [1/x1, 1/x2]T =
λ1∇g1(x) + λ2∇g2(x) = λ1[1, 2]T + λ2[1, 0]T , and
g1(x) = x1 + 2x2 = 20 and g2(x) = x1 = 8. Solving, we find
x1 = 8, x2 = 6, λ1 = 1/12, and λ2 = 1/24, which is feasible.

We conclude that x∗ = (8, 6) is the optimal solution, since it is the only
point that satisfies the KKT conditions.
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Exercise 2.8

Smallest enclosing sphere Consider a set of points p1 · · · pm in Rn.
What is the smallest sphere centered at the origin that encloses all of
these points?
Let x denote the radius of the sphere. Then pj is in the sphere if and only
if ‖pj‖2 ≤ x, and the optimization problem is

min x

sub. to x ≥ ‖pj‖2, j = 1 . . .m

Each of the j constraints is linear. Under the assumption that
‖pj‖2 6= ‖pk‖2, let j∗ = arg maxj{‖pj‖2}. The optimal solution is given
by x∗ = ‖pj∗‖2 (why?).

1 At x∗, there is only one binding constraint. What is it?

2 Determine the values of the Lagrange multipliers λ1 · · ·λm at x∗ and
show that they satisfy the KKT conditions.
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Exercise 2.9

min 3x2
1 + 3x2

2 − 2x1x2 − 2x1 + 6x2 + 3

sub. to −x1 + x2 ≥ −1

(x1 − 2)2 + x2
2 ≤ 1

(2.10)
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Now we explore optimality condition for the equality constrained cases.

min f(x)

s.t. g(x) =

 g1(x)
· · ·

gm(x)

 = 0
(2.11)

Proposition 2.10

Suppose x∗ is a local optimum of (2.11). Assume ∇gi(x∗)’s are linearly
independent. Then there is λ∗: ∇f(x∗) = λ∗1∇g1(x∗) + · · · +
λ∗m∇gm(x∗).

Although we are doing it informally, it will introduce us to an alternative
proof of KKT conditions and deepen our insight on the optimality
structure. To do so, we first make some observations on the row and null
spaces of a matrix.
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Consider the set of the solutions of (2.12), called the null space of A.

Ax =
[

1 −1 0
0 1 −1

] x1

x2

x3

 =
[

0
0

]
(2.12)

The null space is exactly the set of vectors orthogonal to the row vectors
of A, hence also to their linear combinations, called the row space of A.
By solving (2.12), it is the set of multiples of vector [1, 1, 1]T , the
intersection of the blue and red planes in the picture.
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Hence the dimension of the null space is 1. The dimension of the row
space is 2 since [1,−1, 0]T and [0, 1,−1]T are independent. The two
spaces are orthogonal to each other and the sum of their dimensions is
equal to 3, the dimension of the whole space. We call this rank-and-nullity
theorem.

Since the row space are orthogonal to vector [1, 1, 1], the it is included in
{x : x1 + x2 + x3 = 0}, the null space of the matrix B =

[
1 1 1

]
,

the grey plane. Since the row space has two independent vectors, it is the
same as the two dimensional grey plane, the null space of B.

We have observed the following.

Lemma 2.11

The set of vectors orthogonal to the null space of a matrix A is the row
space of A. Namely, the null space of the null space of A is the row space
of A.

Bookmark this lemma in your mind as it will be used in the (sketch of)
proof of Proposition 2.10.
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Let c : R → Rn be a differentiable curve imbedded in the solution set
g(x) = 0, i.e. g(c(t)) = 0 ∀ t with c(0) = x∗. Let m = 1 as in the picture.
Then 0 = (g(c(0)))′ = ∇g(c(0))T c′(0) = ∇g(x∗)T c′(0). Notice that there
are an infinite number of ways of arranging an imbedded curve on the
surface g(x) = 0 passing through x∗. It suggests c′(0) of such curves
covers the supporting hyperplane perpendicular to ∇g(x∗).

We call the set of y = c′(0) of such curves the tangent plane to the
surface at x∗ which is in fact the null space {y : ∇g(x∗)T y = 0}.
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In general, the tangent plane to the set

{
x : g(x) =

[
g1(x)
. . .

gm(x)

]
= 0

}
is

the null space of Dg(x∗), the y’s such that ∇gi(x∗)T y = 0, 1 ≤ i ≤ m,
the grey line in the next picture illustrating a case when m = 2.
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Since x∗ = c(0) is a local minimum, t = 0 is a local minimum of h(t) :=
f(c(t)). Hence h′(0) = ∇f(c(0))T c′(0) = ∇f(x∗)T c′(0) = 0. Thus
∇f(x∗) is perpendicular to every vector of the tangent plane, i.e. belongs
to the null space of the tangent plane which is the null space of the matrix
Dg(x∗).

Hence from Lemma 2.11, ∇f(x∗) belongs to the row space of Dg(x∗) and
therefore a linear combination of ∇gi(x∗)’s.

∃λ ∈ Rm : ∇f(x∗) = λ1∇g1(x∗) + · · ·+ λm∇gm(x∗).
c© 2022 Sung-Pil Hong. All rights reserved.

Optimality conditions KKT necessary conditions for equality constraints 36 / 40



Example 2.12

Consider the problem max{xy : x2 + y2 = 1} and the KKT condition[
y
x

]
− λ

[
2x
2y

]
= 0 which implies y = 2λx and x = 2λy. From the

constraint, we get λ = ±1
2 , and the KKT points (1, 1), (−1,−1), (1,−1),

and (−1, 1). As in the figure below the first two are maxima.
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Exercise 2.13

Solve the following problem.

1.
min 2x2

1 + 2x1x2 + x2
2

sub. to 2x1 + x2 = 4.

2.
min 3x2

1 + 2x1x2 + x2
2 − 2x1 − 2x2 + 3

sub. to −2x1 + 5x2 = 12
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Remark 2.14

The KKT conditions do not guarantee local optimality: consider
the feasible solution (0, 0) of min{x2 : −x3

1 + x2 ≥ 0}.
The following example shows that the ‘regularity condition’ is
necessary. (Without it, there may be no y : ∇gi(x̄)T y < 0.)

max −x1 + 2x2

s.t. −x3
1 + x2 ≤ 0

−x2 ≤ 0.

We can extend the KKT conditions for the optimization problems
with both inequality and equality constraints.
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We need an additional condition for a local optimum to be (global)
optimal.

max 4x1 +2x2

sub. to x1 +2x2 − 10 ≤ 0
x2

1 −x2 ≤ 0
−3(x1 − 1)2 +x2 − 2 ≤ 0

x ≥ 0

The feasible solution (0, 5) is a local optimum but not a (global) optimum.
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