
© University of Pennsylvania Robo1x-9 1

Video 9.1

CJ Taylor

© University of Pennsylvania Robo1x-9 2

The Motion Planning Problem

• A special case of the more general planning problem

• The goal is to develop techniques that would allow a robot or robots
to automatically decide how to move from one position or
configuration to another.

• Specifically concerned with planning motions – get robot from place A to B

© University of Pennsylvania Robo1x-9 3

Motion Planning for Robotics

© University of Pennsylvania Robo1x-9 4

An Example – the PacMan problem
• How does the computer guide the

ghosts back to their lair when they
are eaten?

© University of Pennsylvania Robo1x-9 5

Planning on a grid

• In this example the robot
can move between adjacent
cells on the grid

• The dark squares indicate
obstacles that the robot
cannot traverse.

START

END

© University of Pennsylvania Robo1x-9 6

Graph Structure

• We can think of the
unoccupied cells as nodes
and draw edges between
adjacent cells as shown
here.

• This set of nodes and edges
constitutes a graph.

START

END

© University of Pennsylvania Robo1x-9 7

• A graph, G, consists of a set
of vertices, V, and a set of
Edges, E, that link pairs of
vertices.

• The edges are often
annotated with numerical
values to indicate relevant
quantities like distances or
costs.

START

END

Graph Structure

© University of Pennsylvania Robo1x-9 8

Examples of Graphs in the Wild

© University of Pennsylvania Robo1x-9 9

Examples of Graphs in the Wild – Toll Chart
Chicago

Philadelphia

Washington

Richmond

Pittsburgh

New York
$20

$20 $8

$15

$11

$25

$13

$4

$8

© University of Pennsylvania Robo1x-9 10

Graph Structure

• In this grid graph we will
implicitly associate a cost or
distance of 1 with every
edge in the graph since they
link adjacent cells.

START

END

© University of Pennsylvania Robo1x-9 11

Video 9.2

CJ Taylor

© University of Pennsylvania Robo1x-9 12

Planning on a grid

• The goal is to construct a
path through the grid/graph
from the start to the goal

START

END

© University of Pennsylvania Robo1x-9 13

Planning on a grid

• Typically there are many
possible paths between two
nodes.

• We are usually interested in
the shortest paths

START

END

© University of Pennsylvania Robo1x-9 14

Planning on a grid

• Goal:
• Construct the shortest path

between the start and the goal
location.

START

END

© University of Pennsylvania Robo1x-9 15

Planning Procedure – Grassfire Algorithm

• Begin by marking the
destination node with a
distance value of 0

START

0

© University of Pennsylvania Robo1x-9 16

Planning Procedure – Grassfire Algorithm

• On every iteration find all the
unmarked nodes adjacent to
marked nodes and mark them
with that distance value + 1.

START

0

1

11

1

© University of Pennsylvania Robo1x-9 17

Planning Procedure – Grassfire Algorithm
START

0

1

11

1

2 2

2 2

2

© University of Pennsylvania Robo1x-9 18

Planning Procedure – Grassfire Algorithm
START

0

1

11

1

2 2

2 2

3

3

23

© University of Pennsylvania Robo1x-9 19

Planning Procedure – Grassfire Algorithm
START

0

1

11

1

2 2

2 2

3

3

23

4

4

© University of Pennsylvania Robo1x-9 20

Planning Procedure – Grassfire Algorithm
START

0

1

11

1

2 2

2 2

3

3

23

4

45

5

5

© University of Pennsylvania Robo1x-9 21

Planning Procedure – Grassfire Algorithm

• On every iteration the marking
radiates outward from the
destination like a fire spreading
– hence the name

START

0

1

11

1

2 2

2 2

3

3

23

4

45

5

5

6

6

6

© University of Pennsylvania Robo1x-9 22

Planning Procedure – Grassfire Algorithm
START

0

1

11

1

2 2

2 2

3

3

23

4

45

5

5

6

6

6

7

7

© University of Pennsylvania Robo1x-9 23

Planning Procedure – Grassfire Algorithm
START

0

1

11

1

2 2

2 2

3

3

23

4

45

5

5

6

6

6

7

7

8

88

© University of Pennsylvania Robo1x-9 24

Planning Procedure – Grassfire Algorithm
START

0

1

11

1

2 2

2 2

3

3

23

4

45

5

5

6

6

6

7

7

8

88 9

99

© University of Pennsylvania Robo1x-9 25

Planning Procedure – Grassfire Algorithm
START

0

1

11

1

2 2

2 2

3

3

23

4

45

5

5

6

6

6

7

7

8

88 9

99 10

© University of Pennsylvania Robo1x-9 26

Planning Procedure – Grassfire Algorithm

• The distance values
produced by the grassfire
algorithm indicate the
smallest number of steps
needed to move from each
node to the goal

START

0

1

11

1

2 2

2 2

3

3

23

4

45

5

5

6

6

6

7

7

8

88 9

99 10

© University of Pennsylvania Robo1x-9 27

Grassfire algorithm – pseudo code

• For each node n in the graph
• n.distance = Infinity

• Create an empty list.
• goal.distance = 0, add goal to list.
• While list not empty

• Let current = first node in list, remove current from list
• For each node, n that is adjacent to current

• If n.distance = Infinity
• n.distance = current.distance + 1
• add n to the back of the list

© University of Pennsylvania Robo1x-9 28

Tracing a path to the destination

• To move towards the
destination from any node
simply move towards the
neighbor with the smallest
distance value, breaking ties
arbitrarily.

START

0

1

11

1

2 2

2 2

3

3

23

4

45

5

5

6

6

6

7

7

8

88 9

99 10

© University of Pennsylvania Robo1x-9 29

Another Example – Grassfire Algorithm
START

0

© University of Pennsylvania Robo1x-9 30

Another Example – Grassfire Algorithm
START

0

1

11

1

© University of Pennsylvania Robo1x-9 31

Planning Procedure – Grassfire Algorithm
START

0

1

11

1

2 2

2 2

2

© University of Pennsylvania Robo1x-9 32

Planning Procedure – Grassfire Algorithm
START

0

1

11

1

2 2

2 2

3

3

23

4

© University of Pennsylvania Robo1x-9 33

Planning Procedure – Grassfire Algorithm

• In this case the procedure
terminates before the start
node is marked indicating
that no path exists

START

0

1

11

1

2 2

2 2

3

3

23

4

4

© University of Pennsylvania Robo1x-9 34

Grassfire Algorithm
• It will find the shortest path between the start and the goal if one

exists.
• If no path exists that fact will be discovered.

© University of Pennsylvania Robo1x-9 35

Computational Complexity - Grassfire

© University of Pennsylvania Robo1x-9 36

Computational Complexity - Grassfire

• Number of nodes in a 2D grid 100x100 = 104

• Number of nodes in a 3D grid 100x100x100 = 106

• Number of nodes in a 6D grid 100 cells on side = 1012

© University of Pennsylvania Robo1x-9 37

Video 9.3

CJ Taylor

© University of Pennsylvania Robo1x-9 38

Planning shortest paths – Dijkstra’s Algorithm
1

3

7

5

4

8

1

9

2

A B

D

C

F

G
E

3

© University of Pennsylvania Robo1x-9 39

1

3

7

5

4

8

1

9

2

A, 0 B

D

C

F

G
E

3

Planning shortest paths – Dijkstra’s Algorithm

© University of Pennsylvania Robo1x-9 40

Planning shortest paths – Dijkstra’s Algorithm
1

3

7

5

4

8

1

9

2

A, 0 B, 1

D, 2

C

F, 5

G
E

3

© University of Pennsylvania Robo1x-9 41

Planning shortest paths – Dijkstra’s Algorithm
1

3

7

5

4

8

1

9

2

A, 0 B, 1

D, 2

C

F, 5

G
E

3

© University of Pennsylvania Robo1x-9 42

Planning shortest paths – Dijkstra’s Algorithm
1

3

7

5

4

8

1

9

2

A, 0 B, 1

D, 2

C, 8

F, 5

G
E

3

© University of Pennsylvania Robo1x-9 43

Planning shortest paths – Dijkstra’s Algorithm
1

3

7

5

4

8

1

9

2

A, 0 B, 1

D, 2

C, 8

F, 5

G
E

3

© University of Pennsylvania Robo1x-9 44

Planning shortest paths – Dijkstra’s Algorithm
1

3

7

5

4

8

1

9

2

A, 0 B, 1

D, 2

C, 5

F, 5

G, 10
E

3

© University of Pennsylvania Robo1x-9 45

Planning shortest paths – Dijkstra’s Algorithm
1

3

7

5

4

8

1

9

2

A, 0 B, 1

D, 2

C, 5

F, 5

G, 10
E

3

© University of Pennsylvania Robo1x-9 46

Planning shortest paths – Dijkstra’s Algorithm
1

3

7

5

4

8

1

9

2

A, 0 B, 1

D, 2

C, 5

F, 5

G, 9
E

3

© University of Pennsylvania Robo1x-9 47

Planning shortest paths – Dijkstra’s Algorithm
1

3

7

5

4

8

1

9

2

A, 0 B, 1

D, 2

C, 5

F, 5

G, 9
E

3

© University of Pennsylvania Robo1x-9 48

Planning shortest paths – Dijkstra’s Algorithm
1

3

7

5

4

8

1

9

2

A, 0 B, 1

D, 2

C, 5

F, 5

G, 9
E, 6

3

© University of Pennsylvania Robo1x-9 49

Planning shortest paths – Dijkstra’s Algorithm
1

3

7

5

4

8

1

9

2

A, 0 B, 1

D, 2

C, 5

F, 5

G, 9
E, 6

3

© University of Pennsylvania Robo1x-9 50

Dijkstra’s algorithm – pseudo code
• For each node n in the graph

• n.distance = Infinity

• Create an empty list.
• start.distance = 0, add start to list.
• While list not empty

• Let current = node in the list with the smallest distance, remove current from list
• For each node, n that is adjacent to current

• If n.distance > current.distance + length of edge from n to current
• n.distance = current.distance + length of edge from n to current
• n.parent = current
• add n to list if it isn’t there already

© University of Pennsylvania Robo1x-9 51

Planning shortest paths – Dijkstra’s Algorithm
1

3

7

5

4

8

1

9

2

A, 0 B, 1

D, 2

C, 5

F, 5

G, 9
E, 6

3

© University of Pennsylvania Robo1x-9 52

Computational Complexity of Dijkstra’s algorithm

© University of Pennsylvania Robo1x-9 53

Video 9.4

CJ Taylor

© University of Pennsylvania Robo1x-9 54

A* Procedure

• Improving on Dijkstra/Grassfire using heuristic search
• Example of Best First search strategy

© University of Pennsylvania Robo1x-9 55

Dijkstra/Grassfire Algorithm

• When applied on a grid graph where all of the edges have the same
length, Dijkstra’s algorithm and the grassfire procedure have similar
behaviors.

• They both explore nodes in order based on their distance from the
starting node until they encounter the goal.

© University of Pennsylvania Robo1x-9 56

A* Search

• A* Search attempts to improve upon the performance of grassfire
and Dijkstra by incorporating a heuristic function that guides the path
planner.

© University of Pennsylvania Robo1x-9 57

Heuristic Functions

• Heuristic functions are used to map every node in the graph to a non-
negative value

• Heuristic Function Criteria:
• H(goal) = 0
• For any 2 adjacent nodes x and y

• H(x) <= H(y) + d(x,y)
• d(x,y) = weight/length of edge from x to y

• These properties ensure that for all nodes, n
• H(n) <= length of shortest path from n to goal.

© University of Pennsylvania Robo1x-9 58

Example Heuristic Functions

© University of Pennsylvania Robo1x-9 59

A* algorithm – pseudo code
• For each node n in the graph

• n.f = Infinity, n.g = Infinity

• Create an empty list.
• start.g = 0, start.f = H(start) add start to list.
• While list not empty

• Let current = node in the list with the smallest f value, remove current from list
• If (current == goal node) report success
• For each node, n that is adjacent to current

• If (n.g > (current.g + cost of edge from n to current))
• n.g = current.g + cost of edge from n to current
• n.f = n.g + H(n)
• n.parent = current
• add n to list if it isn’t there already

	Slide Number 1
	The Motion Planning Problem
	Motion Planning for Robotics
	An Example – the PacMan problem
	Planning on a grid
	Graph Structure
	Graph Structure
	Examples of Graphs in the Wild
	Examples of Graphs in the Wild – Toll Chart
	Graph Structure
	Slide Number 11
	Planning on a grid
	Planning on a grid
	Planning on a grid
	Planning Procedure – Grassfire Algorithm
	Planning Procedure – Grassfire Algorithm
	Planning Procedure – Grassfire Algorithm
	Planning Procedure – Grassfire Algorithm
	Planning Procedure – Grassfire Algorithm
	Planning Procedure – Grassfire Algorithm
	Planning Procedure – Grassfire Algorithm
	Planning Procedure – Grassfire Algorithm
	Planning Procedure – Grassfire Algorithm
	Planning Procedure – Grassfire Algorithm
	Planning Procedure – Grassfire Algorithm
	Planning Procedure – Grassfire Algorithm
	Grassfire algorithm – pseudo code
	Tracing a path to the destination
	Another Example – Grassfire Algorithm
	Another Example – Grassfire Algorithm
	Planning Procedure – Grassfire Algorithm
	Planning Procedure – Grassfire Algorithm
	Planning Procedure – Grassfire Algorithm
	Grassfire Algorithm
	Computational Complexity - Grassfire
	Computational Complexity - Grassfire
	Slide Number 37
	Planning shortest paths – Dijkstra’s Algorithm
	Planning shortest paths – Dijkstra’s Algorithm
	Planning shortest paths – Dijkstra’s Algorithm
	Planning shortest paths – Dijkstra’s Algorithm
	Planning shortest paths – Dijkstra’s Algorithm
	Planning shortest paths – Dijkstra’s Algorithm
	Planning shortest paths – Dijkstra’s Algorithm
	Planning shortest paths – Dijkstra’s Algorithm
	Planning shortest paths – Dijkstra’s Algorithm
	Planning shortest paths – Dijkstra’s Algorithm
	Planning shortest paths – Dijkstra’s Algorithm
	Planning shortest paths – Dijkstra’s Algorithm
	Dijkstra’s algorithm – pseudo code
	Planning shortest paths – Dijkstra’s Algorithm
	Computational Complexity of Dijkstra’s algorithm
	Slide Number 53
	A* Procedure
	Dijkstra/Grassfire Algorithm
	A* Search
	Heuristic Functions
	Example Heuristic Functions
	A* algorithm – pseudo code

