Engninering

Video 9.1

CJ Taylor

The Motion Planning Problem

- A special case of the more general planning problem
- The goal is to develop techniques that would allow a robot or robots to automatically decide how to move from one position or configuration to another.
- Specifically concerned with planning motions - get robot from place A to B

Motion Planning for Robotics

An Example - the PacMan problem

- How does the computer guide the ghosts back to their lair when they are eaten?

Planning on a grid

- In this example the robot can move between adjacent cells on the grid
- The dark squares indicate obstacles that the robot cannot traverse.

START

Graph Structure

- We can think of the unoccupied cells as nodes and draw edges between adjacent cells as shown here.
- This set of nodes and edges constitutes a graph.

START

Graph Structure

- A graph, G, consists of a set of vertices, V , and a set of Edges, E, that link pairs of vertices.
- The edges are often annotated with numerical values to indicate relevant quantities like distances or costs.

START

Richmond

Graph Structure

- In this grid graph we will implicitly associate a cost or distance of 1 with every edge in the graph since they link adjacent cells.

START

Engninering

Video 9.2

CJ Taylor

Planning on a grid

- The goal is to construct a path through the grid/graph from the start to the goal

START

Planning on a grid

- Typically there are many possible paths between two nodes.
- We are usually interested in the shortest paths

START

Planning on a grid

- Goal:
- Construct the shortest path between the start and the goal location.

START

Planning Procedure - Grassfire Algorithm START

- Begin by marking the destination node with a distance value of 0

Planning Procedure - Grassfire Algorithm

START

- On every iteration find all the unmarked nodes adjacent to marked nodes and mark them with that distance value +1 .

Planning Procedure - Grassfire Algorithm

START

Planning Procedure - Grassfire Algorithm

START

					3
			2	1	2
	3	2	1	0	1
		3	2	1	2

Planning Procedure - Grassfire Algorithm

START

					4
					3
	4		2	1	2
	3	2	1	0	1
		3	2	1	2

Planning Procedure - Grassfire Algorithm

START

				5	4
	5				3
5	4		2	1	2
	3	2	1	0	1
		3	2	1	2

Planning Procedure - Grassfire Algorithm

- On every iteration the marking radiates outward from the destination like a fire spreading - hence the name

START

				6	
			6	5	4
6	5				3
5	4		2	1	2
	3	2	1	0	1
		3	2	1	2

Planning Procedure - Grassfire Algorithm

START

7			7	6	
7			6	5	4
6	5				3
5	4		2	1	2
	3	2	1	0	1
		3	2	1	2

Planning Procedure - Grassfire Algorithm

START

			8		
8		8	7	6	
7			6	5	4
6	5				3
5	4		2	1	2
	3	2	1	0	1
		3	2	1	2

Planning Procedure - Grassfire Algorithm

START

9		9	8		
8	9	8	7	6	
7			6	5	4
6	5				3
5	4		2	1	2
	3	2	1	0	1
		3	2	1	2

Planning Procedure - Grassfire Algorithm

START

9	10	9	8		
8	9	8	7	6	
7			6	5	4
6	5				3
5	4		2	1	2
	3	2	1	0	1
		3	2	1	2

Planning Procedure - Grassfire Algorithm

- The distance values produced by the grassfire algorithm indicate the smallest number of steps needed to move from each node to the goal

START

9	10	9	8		
8	9	8	7	6	
7			6	5	4
6	5				3
5	4		2	1	2
	3	2	1	0	1
		3	2	1	2

Grassfire algorithm - pseudo code

- For each node n in the graph
- n.distance = Infinity
- Create an empty list.
- goal. distance $=0$, add goal to list.
- While list not empty
- Let current = first node in list, remove current from list
- For each node, n that is adjacent to current
- If n.distance = Infinity
- \quad n.distance $=$ current.distance +1
- add n to the back of the list

Tracing a path to the destination

- To move towards the destination from any node simply move towards the neighbor with the smallest distance value, breaking ties arbitrarily.

START

9	10	9	8		
8	9	8	7	6	
7			6	\downarrow 5	$\rightarrow 4$
6	5				3
5	4		2	1	2
	3	2	1	0	$\leftarrow 1$
		3	2	1	2

Another Example - Grassfire Algorithm

START

Another Example - Grassfire Algorithm

START

Planning Procedure - Grassfire Algorithm

START

Planning Procedure - Grassfire Algorithm

START

Planning Procedure - Grassfire Algorithm

START

- In this case the procedure terminates before the start node is marked indicating that no path exists

Grassfire Algorithm

- It will find the shortest path between the start and the goal if one exists.
- If no path exists that fact will be discovered.

Computational Complexity - Grassfire

- The computational effort required to run the grassfire algorithm on a grid increases linearly with the number of edges.
- This can be expressed more formally as follows.

$$
\begin{equation*}
\mathcal{O}(|\mathbf{V}|) \tag{1}
\end{equation*}
$$

Where $|\mathbf{V}|$ denotes the number of nodes in the graph

Computational Complexity - Grassfire

- Number of nodes in a 2 D grid $100 \times 100=10^{4}$
- Number of nodes in a 3D grid $100 \times 100 \times 100=10^{6}$
- Number of nodes in a 6D grid 100 cells on side $=10^{12}$

Engninering

Video 9.3

CJ Taylor

Planning shortest paths - Dijkstra's Algorithm

Dijkstra's algorithm - pseudo code

- For each node n in the graph
- n. distance = Infinity
- Create an empty list.
- start.distance $=0$, add start to list.
- While list not empty
- Let current = node in the list with the smallest distance, remove current from list
- For each node, n that is adjacent to current
- If n.distance > current.distance + length of edge from n to current
- $\quad n$.distance $=$ current. distance + length of edge from n to current
- n.parent = current
- add n to list if it isn't there already

Planning shortest paths - Dijkstra's Algorithm

Computational Complexity of Dijkstra's algorithm

- A naive version of Dijkstra's algorithm can be implemented with a computational complexity that grows quadratically with the number of nodes.

$$
\begin{equation*}
\mathcal{O}\left(|\mathbf{V}|^{2}\right) \tag{1}
\end{equation*}
$$

- By keeping the list of nodes sorted using a clever data structure known as a priority queue the computational complexity can be reduced to something that grows more slowly

$$
\begin{equation*}
\mathcal{O}((|\mathbf{E}|+|\mathbf{V}|) \log (|\mathbf{V}|)) \tag{2}
\end{equation*}
$$

- $|\mathbf{V}|$ denotes the number of nodes in the graph and $|\mathbf{E}|$ denotes the number of edges

Engninering

Video 9.4

CJ Taylor

A* Procedure

- Improving on Dijkstra/Grassfire using heuristic search
- Example of Best First search strategy

Dijkstra/Grassfire Algorithm

- When applied on a grid graph where all of the edges have the same length, Dijkstra's algorithm and the grassfire procedure have similar behaviors.
- They both explore nodes in order based on their distance from the starting node until they encounter the goal.

A* Search

- A* Search attempts to improve upon the performance of grassfire and Dijkstra by incorporating a heuristic function that guides the path planner.

Heuristic Functions

- Heuristic functions are used to map every node in the graph to a nonnegative value
- Heuristic Function Criteria:
- $\mathrm{H}($ goal $)=0$
- For any 2 adjacent nodes x and y
- $H(x)<=H(y)+d(x, y)$
- $d(x, y)=$ weight/length of edge from x to y
- These properties ensure that for all nodes, n
- $\mathrm{H}(\mathrm{n})$ <= length of shortest path from n to goal.

Example Heuristic Functions

- For path planning on a grid the following 2 heuristic functions are often used
- Euclidean Distance

$$
\begin{equation*}
H\left(x_{n}, y_{n}\right)=\sqrt{\left(\left(x_{n}-x_{g}\right)^{2}+\left(y_{n}-y_{g}\right)^{2}\right)} \tag{1}
\end{equation*}
$$

- Manhattan Distance

$$
\begin{equation*}
H\left(x_{n}, y_{n}\right)=\left|\left(x_{n}-x_{g}\right)\right|+\left|\left(y_{n}-y_{g}\right)\right| \tag{2}
\end{equation*}
$$

- where $\left(x_{n}, y_{n}\right)$ denotes the coordinates of the node n and $\left(x_{g}, y_{g}\right)$ denotes the coordinate of the goal

A* algorithm - pseudo code

- For each node n in the graph
- n.f = Infinity, n.g = Infinity
- Create an empty list.
- start. $\mathrm{g}=0$, start. $\mathrm{f}=\mathrm{H}$ (start) add start to list.
- While list not empty
- Let current = node in the list with the smallest f value, remove current from list
- If (current == goal node) report success
- For each node, n that is adjacent to current
- If ($\mathrm{n} . \mathrm{g}>$ (current. $\mathrm{g}+$ cost of edge from n to current))
- $\quad \mathrm{n} . \mathrm{g}=$ current. $\mathrm{g}+$ cost of edge from n to current
- $n . f=n . g+H(n)$
- n. parent = current
- add n to list if it inn't there already

