

Video 9.1

CJ Taylor

The Motion Planning Problem

- A special case of the more general planning problem
- The goal is to develop techniques that would allow a robot or robots to automatically decide how to move from one position or configuration to another.
 - Specifically concerned with planning motions get robot from place A to B

Motion Planning for Robotics

An Example – the PacMan problem

• How does the computer guide the ghosts back to their lair when they are eaten?

- In this example the robot can move between adjacent cells on the grid
- The dark squares indicate obstacles that the robot cannot traverse.

Graph Structure

- We can think of the unoccupied cells as nodes and draw edges between adjacent cells as shown here.
- This set of nodes and edges constitutes a graph.

Graph Structure

- A graph, G, consists of a set of vertices, V, and a set of Edges, E, that link pairs of vertices.
- The edges are often annotated with numerical values to indicate relevant quantities like distances or costs.

Graph Structure

 In this grid graph we will implicitly associate a cost or distance of 1 with every edge in the graph since they link adjacent cells.

Video 9.2

CJ Taylor

 The goal is to construct a path through the grid/graph from the start to the goal

- Typically there are many possible paths between two nodes.
- We are usually interested in the shortest paths

- Goal:
 - Construct the shortest path between the start and the goal location.

 Begin by marking the destination node with a distance value of 0

• On every iteration find all the unmarked nodes adjacent to marked nodes and mark them with that distance value + 1.

 On every iteration the marking radiates outward from the destination like a fire spreading – hence the name

				6	
			6	5	4
6	5				3
5	4		2	1	2
	3	2	1	0	1
		3	2	1	2

			8		
8		8	7	6	
7			6	5	4
6	5				3
5	4		2	1	2
	3	2	1	0	1
		3	2	1	2

9		9	8			
8	9	8	7	6		
7			6	5	4	
6	5				3	
5	4		2	1	2	
	3	2	1	0	1	
		3	2	1	2	

9	10	9	8		
8	9	8	7	6	
7			6	5	4
6	5				3
5	4		2	1	2
	3	2	1	0	1
		3	2	1	2

 The distance values produced by the grassfire algorithm indicate the smallest number of steps needed to move from each node to the goal

9	10	9	8		
8	9	8	7	6	
7			6	5	4
6	5				3
5	4		2	1	2
	3	2	1	0	1
		3	2	1	2

Grassfire algorithm – pseudo code

- For each node n in the graph
 - n.distance = Infinity
- Create an empty list.
- goal.distance = 0, add goal to list.
- While list not empty
 - Let current = first node in list, remove current from list
 - For each node, n that is adjacent to current
 - If n.distance = Infinity
 - n.distance = current.distance + 1
 - add n to the back of the list

Tracing a path to the destination

 To move towards the destination from any node simply move towards the neighbor with the smallest distance value, breaking ties arbitrarily.

Another Example – Grassfire Algorithm

Another Example – Grassfire Algorithm

 In this case the procedure terminates before the start node is marked indicating that no path exists

Grassfire Algorithm

- It will find the shortest path between the start and the goal if one exists.
- If no path exists that fact will be discovered.

Computational Complexity - Grassfire

- The computational effort required to run the grassfire algorithm on a grid increases linearly with the number of edges.
- This can be expressed more formally as follows.

$$\mathcal{O}(|\mathbf{V}|) \tag{1}$$

Where $|\mathbf{V}|$ denotes the number of nodes in the graph

Computational Complexity - Grassfire

- Number of nodes in a 2D grid 100x100 = 10⁴
- Number of nodes in a 3D grid 100x100x100 = 10⁶
- Number of nodes in a 6D grid 100 cells on side = 10^{12}

Video 9.3

CJ Taylor

Planning shortest paths – Dijkstra's Algorithm

Planning shortest paths – Dijkstra's Algorithm

Dijkstra's algorithm – pseudo code

- For each node n in the graph
 - n.distance = Infinity
- Create an empty list.
- start.distance = 0, add start to list.
- While list not empty
 - Let current = node in the list with the smallest distance, remove current from list
 - For each node, n that is adjacent to current
 - If n.distance > current.distance + length of edge from n to current
 - n.distance = current.distance + length of edge from n to current
 - n.parent = current
 - add n to list if it isn't there already

Planning shortest paths – Dijkstra's Algorithm

Computational Complexity of Dijkstra's algorithm

• A naive version of Dijkstra's algorithm can be implemented with a computational complexity that grows quadratically with the number of nodes.

$$\mathcal{O}(|\mathbf{V}|^2) \tag{1}$$

• By keeping the list of nodes sorted using a clever data structure known as a priority queue the computational complexity can be reduced to something that grows more slowly

$$\mathcal{O}((|\mathbf{E}| + |\mathbf{V}|)\log(|\mathbf{V}|)) \tag{2}$$

• $|\mathbf{V}|$ denotes the number of nodes in the graph and $|\mathbf{E}|$ denotes the number of edges

Video 9.4

CJ Taylor

A* Procedure

- Improving on Dijkstra/Grassfire using heuristic search
- Example of Best First search strategy

Dijkstra/Grassfire Algorithm

- When applied on a grid graph where all of the edges have the same length, Dijkstra's algorithm and the grassfire procedure have similar behaviors.
- They both explore nodes in order based on their distance from the starting node until they encounter the goal.

A* Search

 A* Search attempts to improve upon the performance of grassfire and Dijkstra by incorporating a heuristic function that guides the path planner.

Heuristic Functions

- Heuristic functions are used to map every node in the graph to a nonnegative value
- Heuristic Function Criteria:
 - H(goal) = 0
 - For any 2 adjacent nodes x and y
 - $H(x) \le H(y) + d(x,y)$
 - d(x,y) = weight/length of edge from x to y
- These properties ensure that for all nodes, n
 - H(n) <= length of shortest path from n to goal.

Example Heuristic Functions

- For path planning on a grid the following 2 heuristic functions are often used
 - Euclidean Distance

$$H(x_n, y_n) = \sqrt{((x_n - x_g)^2 + (y_n - y_g)^2)}$$
(1)

– Manhattan Distance

$$H(x_n, y_n) = |(x_n - x_g)| + |(y_n - y_g)|$$
(2)

- where (x_n, y_n) denotes the coordinates of the node n and (x_g, y_g) denotes the coordinate of the goal

A* algorithm – pseudo code

- For each node n in the graph
 - n.f = Infinity, n.g = Infinity
- Create an empty list.
- start.g = 0, start.f = H(start) add start to list.
- While list not empty
 - Let current = node in the list with the smallest f value, remove current from list
 - If (current == goal node) report success
 - For each node, n that is adjacent to current
 - If (n.g > (current.g + cost of edge from n to current))
 - n.g = current.g + cost of edge from n to current
 - n.f = n.g + H(n)
 - n.parent = current
 - add n to list if it isn't there already