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Video 9.1

CJ Taylor
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The Motion Planning Problem

• A special case of the more general planning problem

• The goal is to develop techniques that would allow a robot or robots 
to automatically decide how to move from one position or 
configuration to another.

• Specifically concerned with planning motions – get robot from place A to B
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Motion Planning for Robotics
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An Example – the PacMan problem
• How does the computer guide the 

ghosts back to their lair when they 
are eaten?
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Planning on a grid

• In this example the robot 
can move between adjacent 
cells on the grid

• The dark squares indicate 
obstacles that the robot 
cannot traverse.

START

END
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Graph Structure

• We can think of the 
unoccupied cells as nodes
and draw edges between 
adjacent cells as shown 
here.

• This set of nodes and edges
constitutes a graph.

START

END
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• A graph, G, consists of a set 
of vertices, V, and a set of 
Edges, E, that link pairs of 
vertices.

• The edges are often 
annotated with numerical 
values to indicate relevant 
quantities like distances or 
costs.

START

END

Graph Structure
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Examples of Graphs in the Wild
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Examples of Graphs in the Wild – Toll Chart
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Graph Structure

• In this grid graph we will 
implicitly associate a cost or 
distance of 1 with every 
edge in the graph since they 
link adjacent cells.

START

END
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Video 9.2

CJ Taylor
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Planning on a grid

• The goal is to construct a 
path through the grid/graph 
from the start to the goal

START

END
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Planning on a grid

• Typically there are many 
possible paths between two 
nodes. 

• We are usually interested in 
the shortest paths

START

END
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Planning on a grid

• Goal:
• Construct the shortest path 

between the start and the goal 
location.

START

END
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Planning Procedure – Grassfire Algorithm

• Begin by marking the 
destination node with a 
distance value of 0

START

0



© University of Pennsylvania Robo1x-9   16

Planning Procedure – Grassfire Algorithm

• On every iteration find all the 
unmarked nodes adjacent to 
marked nodes and mark them 
with that distance value + 1.

START

0

1

11

1
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Planning Procedure – Grassfire Algorithm
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Planning Procedure – Grassfire Algorithm
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Planning Procedure – Grassfire Algorithm
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Planning Procedure – Grassfire Algorithm
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Planning Procedure – Grassfire Algorithm

• On every iteration the marking 
radiates outward from the 
destination like a fire spreading 
– hence the name
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Planning Procedure – Grassfire Algorithm
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Planning Procedure – Grassfire Algorithm
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Planning Procedure – Grassfire Algorithm
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Planning Procedure – Grassfire Algorithm
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Planning Procedure – Grassfire Algorithm

• The distance values 
produced by the grassfire 
algorithm indicate the 
smallest number of steps 
needed to move from each 
node to the goal
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Grassfire algorithm – pseudo code

• For each node n in the graph
• n.distance = Infinity

• Create an empty list.
• goal.distance = 0, add goal to list.
• While list not empty

• Let current = first node in list, remove current from list
• For each node, n that is adjacent to current

• If n.distance = Infinity
• n.distance = current.distance + 1
• add n to the back of the list
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Tracing a path to the destination

• To move towards the 
destination from any node 
simply move towards the 
neighbor with the smallest 
distance value, breaking ties 
arbitrarily.
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Another Example – Grassfire Algorithm
START

0
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Another Example – Grassfire Algorithm
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Planning Procedure – Grassfire Algorithm
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Planning Procedure – Grassfire Algorithm
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Planning Procedure – Grassfire Algorithm

• In this case the procedure 
terminates before the start 
node is marked indicating 
that no path exists
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Grassfire Algorithm
• It will find the shortest path between the start and the goal if one 

exists.
• If no path exists that fact will be discovered.
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Computational Complexity - Grassfire
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Computational Complexity - Grassfire

• Number of nodes in a 2D grid 100x100 = 104

• Number of nodes in a 3D grid 100x100x100 = 106

• Number of nodes in a 6D grid 100  cells on side  = 1012



© University of Pennsylvania Robo1x-9   37

Video 9.3

CJ Taylor
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Planning shortest paths – Dijkstra’s Algorithm
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Planning shortest paths – Dijkstra’s Algorithm
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Planning shortest paths – Dijkstra’s Algorithm
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Planning shortest paths – Dijkstra’s Algorithm
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Planning shortest paths – Dijkstra’s Algorithm
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Planning shortest paths – Dijkstra’s Algorithm
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Planning shortest paths – Dijkstra’s Algorithm
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Planning shortest paths – Dijkstra’s Algorithm
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Planning shortest paths – Dijkstra’s Algorithm
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Planning shortest paths – Dijkstra’s Algorithm
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Planning shortest paths – Dijkstra’s Algorithm
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Planning shortest paths – Dijkstra’s Algorithm
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Dijkstra’s algorithm – pseudo code
• For each node n in the graph

• n.distance = Infinity

• Create an empty list.
• start.distance = 0, add start to list.
• While list not empty

• Let current = node in the list with the smallest distance, remove current from list
• For each node, n that is adjacent to current

• If n.distance > current.distance + length of edge from n to current
• n.distance = current.distance + length of edge from n to current
• n.parent = current
• add n to list if it isn’t there already
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Planning shortest paths – Dijkstra’s Algorithm
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Computational Complexity of Dijkstra’s algorithm
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Video 9.4

CJ Taylor
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A* Procedure

• Improving on Dijkstra/Grassfire using heuristic search
• Example of Best First search strategy



© University of Pennsylvania Robo1x-9   55

Dijkstra/Grassfire Algorithm

• When applied on a grid graph where all of the edges have the same 
length, Dijkstra’s algorithm and the grassfire procedure have similar 
behaviors.

• They both explore nodes in order based on their distance from the 
starting node until they encounter the goal.
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A* Search

• A* Search attempts to improve upon the performance of grassfire 
and Dijkstra by incorporating a heuristic function that guides the path 
planner.
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Heuristic Functions

• Heuristic functions are used to map every node in the graph to a non-
negative value

• Heuristic Function Criteria:
• H(goal) = 0
• For any 2 adjacent nodes x and y

• H(x) <= H(y) + d(x,y)
• d(x,y) = weight/length of edge from x to y

• These properties ensure that for all nodes, n
• H(n) <= length of shortest path from n to goal.
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Example Heuristic Functions
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A* algorithm – pseudo code
• For each node n in the graph

• n.f = Infinity, n.g = Infinity

• Create an empty list.
• start.g = 0, start.f = H(start) add start to list.
• While list not empty

• Let current = node in the list with the smallest f value, remove current from list
• If (current == goal node) report success
• For each node, n that is adjacent to current

• If (n.g > (current.g + cost of edge from n to current))
• n.g = current.g + cost of edge from n to current
• n.f = n.g + H(n)
• n.parent = current
• add n to list if it isn’t there already
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