

Data Science and Machine Learning Essentials
Lab 4B – Working with Classification Models

By Stephen Elston and Graeme Malcolm

Overview
In this lab, you will train and evaluate a classification model. Classification is one of the fundamental machine
learning methods used in data science. Classification models enable you to predict classes or categories
of a label value. Classification algorithms can be two-class methods, where there are two possible
categories, or multi-class methods. Like regression, classification is a supervised machine learning
technique, wherein models are trained from labeled cases.

In this lab you will use the data set provided to categorize diabetes patients. The steps in this process
include:

 Investigate relationships in the data set with visualization using custom R or Python code.

 Create a machine learning classification model.

 Improve the model by pruning features, and sweeping parameter settings.

 Cross validate the model.

 Investigate model errors in detail with custom R or Python code.

What You’ll Need
To complete this lab, you will need the following:

 An Azure ML account

 A web browser and Internet connection

 Python Anaconda or R and RStudio

 The lab files for this lab

Note: To set up the required environment for the lab, follow the instructions in the Setup document for
this course. Then download and extract the lab files for this lab.

Preparing and Exploring the Data
In this lab you will work with a dataset that contains records of diabetes patients admitted to US

hospitals. In this lab you will train and evaluate a classification model to predict which hospitalized

diabetes patients will be readmitted for their condition at a later date. Readmission of patients is both a

metric of potential poor care as well as a financial burden to patients, insurers, governments and health

care providers.

Upload the Data Set
The full diabetes data set requires considerable data cleaning and transformation. Additionally, the size
of the dataset leads to fairly long model training time. To save this effort, you will upload a cleaned and
reduced size version from the lab files following these steps:

1. If you have not already done so, open a browser and browse to https://studio.azureml.net. Then

sign in using the Microsoft account associated with your Azure ML account.

2. Create a new blank experiment, and give it the title Diabetes Classification.

3. With the Diabetes Classification experiment open, at the bottom left, click NEW. Then in

the NEW dialog box, click the DATASET tab as shown in the following image.

4. Click FROM LOCAL FILE. Then in the Upload a new dataset dialog box, browse to select

the Diabetes_Data.csv file from the folder where you extracted the lab files on your local

computer and enter the following details as shown in the image below, and then click the OK

icon.

 This is a new version of an existing dataset: Unselected
 Enter a name for the new dataset: Diabetes_Data (Clean)
 Select a type for the new dataset: Generic CSV file with a header (.csv)
 Provide an optional description: Diabetes patient appointments.

5. Wait for the upload of the dataset to be completed, and then on the experiment items pane,

expand Saved Datasets and My Datasets to verify that the Diabetes_Data (Clean) dataset is

listed.

Visualize the Data with R
In this exercise you will create custom R code to visualize the data set and examine the relationships.
This data set has 44 feature columns, with both numeric and categorical (string) features. . The label
column is named readmi_class. The label column can have two values “YES” and “NO”. Having two
values in the label makes this a two-class or binary classification problem.

Note: If you prefer to work with Python, complete the Visualize the Data with Python exercise.

1. Drag the Diabetes_Data (Clean) dataset onto the canvas.
2. Search for the Metadata Editor and drag it onto the canvas. Connect the output of the

Diabetes_Data (Clean) data set to the input of the Metadata Editor.
3. Click the Metadata Editor and on the properties pane launch the Column Selector. Select all

string columns as shown:

https://studio.azureml.net/

4. In the Categorical drop down list, select Make Categorical.
5. Search for the Execute R Script module and drag it onto the canvas. Then connect the Metadata

Editor module to the first input port of the Execute R Script module. At this point your
experiment should resemble the following image.

6. Click the Execute R Script module, and in the Properties pane, replace the existing code with the
following code, which you can copy from the DiabetesVis.R file:

frame1 <- maml.mapInputPort(1)

library(ggplot2)

library(dplyr)

Compare outcomes for various levels of

factor (categorical) features.

bar.plot <- function(x){

 if(is.factor(frame1[, x])){

 sums <- summary(frame1[, x], counts = n())

 msk <- names(sums[which(sums > 100)])

 tmp <- frame1[frame1[, x] %in% msk, c('readmi_class', x)]

 if(strsplit(x, '[-]')[[1]][1] == x){

 g <- ggplot(tmp, aes_string(x)) +

 geom_bar() +

 facet_grid(. ~ readmi_class) +

 ggtitle(paste('Readmissions by level of', x))

 print(g)

 }

 }

}

cols <- names(frame1)

cols <- cols[1:(length(cols) - 1)]

lapply(cols, bar.plot)

Make box plots of the numeric columns

box.plot <- function(x){

 if(is.numeric(frame1[, x])){

 ggplot(frame1, aes_string('readmi_class', x)) +

 geom_boxplot() +

 ggtitle(paste('Readmissions by', x))

 }

}

lapply(names(frame1), box.plot)

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML
Properties pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the
code from the clipboard, replacing the existing code.

This code creates bar plots for the categorical variables and box plots for numeric variables in
the data set with the following steps:

 Define a function to create bar plots. This function filters categorical (factor) variables
with greater than 100 members (out of 30,000). The plots are conditioned on the label,
readmi_class.

 The bar.plot function is applied to the columns of the data frame, less the label column.

 Define a function to create box plots of the numeric columns, conditioned by the label
column, readmi_class.

 The box.plot function is applied to the columns of the data frame.
7. Save and run the experiment. When the experiment has finished running, visualize the output

from the R Device port. You will see a conditioned bar plot for each of the categorical features.
Examine these bar plots to develop and understanding of the relationship between these
features and the label values.

8. Examine the bar plot of the insulin feature, as shown below:

Note, the vertical (frequency) scale is identical for each value of the label (‘YES’, ‘NO’). There are
more total cases not readmitted (‘NO’) than readmitted (‘YES’). The frequency of Down and Up
are proportionately more likely for patients who are latter readmitted (‘YES’). This feature
exhibits some difference between the two label values, indicating there is likely to have some
predictive value. However, there is considerable overlap between the two values of the label, so
separation will be prone to error based on this one feature.

9. Locate the bar plot of the glyburide feature, as shown below:

Examine this plot and note the several reasons why this feature is unlikely to spate the label
cases. First, the relative frequencies of the four categories of the feature are nearly identical for
the two label values. Second, some of the categories of the glyburide feature are fairly
infrequent, meaning that even if there were significant difference these values would only
separate a minority of cases.

Further examination of the bar plots shows several features where only one category is plotted,
indicating there are less than 100 cases with any other value. These features are unlikely to
separate the label cases.

10. Locate the box plots of each numeric variable conditioned on the levels of the label. Examine
these box plots to develop and understanding of the relationship between these features and
the label values.

11. Locate the box plot of number_inpatient as shown below:

Examine this plot and note the differences between the values for patients who have been
readmitted (‘YES’) and patients who have not been readmitted (‘NO’). These values have been
normalized or scaled. In both cases the median (black horizontal bar) is at zero, indicating
significant overlap between the cases. For readmitted patients (‘YES’), the two upper quartiles
(indicated by the box and the vertical line or whisker) shows little overlap with the other case

(‘NO’). Based on these observations of overlap and difference you can expect number_inpatient
to separate some but not all cases.

12. Next, examine the box plots for the time_in_hospital feature as shown below:

Examine this plot and note the differences between the values for patients who have been
readmitted (‘YES’) and patients who have not been not been readmitted (‘NO’). These values
have been normalized or scaled. The median (black horizontal bar) is different for the two cases.
However, the first upper and lower quartile (boxes) and the second upper and lower quartile
(vertical line or whisker) show significant overlap. Based on these observations of overlap and
difference you can expect time_in_hospital to be a poor separator of the label cases.

13. Close the R Device output

Visualize the Data with Python
In this exercise you will create custom R code to visualize the data set and examine the relationships.
This data set has 44 feature columns, with both numeric and categorical (string) features. . The label
column is titled readmi_class. The label column can have two values “YES” and “NO”. Having two values
in the label makes this a two-class or binary classification problem.

Note: If you prefer to work with R, complete the Visualize the Data with R exercise.

1. Drag the Diabetes_Data (Clean) and onto the canvas.
2. Search for the Execute Python Script module and drag it onto the canvas. Connect the output of

the data set to the left input (Dataset1) port of the Execute Python Script module. At this point
your experiment should resemble the following:

3. Click the Execute Python Script module, and in the Properties pane, replace the existing code
with the following code, which you can copy from the DiabetesVis.py file in the folder where
you extracted the lab files:

def azureml_main(frame1):

 import matplotlib

 matplotlib.use('agg')

 import pandas as pd

 import numpy as np

 import matplotlib.pyplot as plt

 import statsmodels.graphics.boxplots as sm

 Azure = True

Create a series of bar plots for the various levels of the

string columns in the data frame by readmi_class.

 names = list(frame1)

 num_cols = frame1.shape[1]

 for indx in range(num_cols - 1):

 if(frame1.ix[:, indx].dtype not in [np.int64, np.int32,

np.float64]):

 temp1 = frame1.ix[frame1.readmi_class == 'YES',

indx].value_counts()

 temp0 = frame1.ix[frame1.readmi_class == 'NO',

indx].value_counts()

 fig = plt.figure(figsize = (12,6))

 fig.clf()

 ax1 = fig.add_subplot(1, 2, 1)

 ax0 = fig.add_subplot(1, 2, 2)

 temp1.plot(kind = 'bar', ax = ax1)

 ax1.set_title('Values of ' + names[indx] + '\n for

readmitted patients')

 temp0.plot(kind = 'bar', ax = ax0)

 ax0.set_title('Values of ' + names[indx] + '\n for

patients not readmitted')

 if(Azure == True): fig.savefig('bar_' + names[indx] +

'.png')

Now make some box plots of the columbns with numerical values.

 for indx in range(num_cols):

 if(frame1.ix[:, indx].dtype in [np.int64, np.int32,

np.float64]):

 temp1 = frame1.ix[frame1.readmi_class == 'YES', indx]

 temp0 = frame1.ix[frame1.readmi_class == 'NO', indx]

 fig = plt.figure(figsize = (12,6))

 fig.clf()

 ax1 = fig.add_subplot(1, 2, 1)

 ax0 = fig.add_subplot(1, 2, 2)

 ax1.boxplot(temp1.as_matrix())

 ax1.set_title('Box plot of ' + names[indx] + '\n for

readmitted patients')

 ax0.boxplot(temp0.as_matrix())

 ax0.set_title('Box plot of ' + names[indx] + '\n for

patients not readmitted')

 if(Azure == True): fig.savefig('box_' + names[indx] +

'.png')

 return frame1

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML
Properties pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the
code from the clipboard, replacing the existing code.

WARNING!: Ensure you have a Python return statement at the end of your azureml_main
function; for example, return frame1. Failure to include a return statement will prevent
your code from running and may produce an inconsistent error message.

This code creates bar plots for the categorical variables and box plots for numeric variables in
the data set with the following steps:

 Create bar plots for each categorical column in the data frame. A subplot is created for
each level of the label, readmi_class.

 Create box plots for each categorical column in the data frame. A subplot is created for
each level of the label, readmi_class.

4. Save and run the experiment. When the experiment has finished running, visualize the output

from the Python Device port.
5. You will see a conditioned bar plot for each of the categorical features. Examine these bar plots

to develop and understanding of the relationship between these features and the label values.
6. Examine the bar plots of the insulin feature, as shown below:

7. Note, the vertical (frequency) scale is different for each value of the label readmitted or not

readmitted. There are more total cases not readmitted than readmitted. The frequency of
Down and Up are proportionately more likely for patients who are latter readmitted. This
feature exhibits some difference between the two label values, indicating there is likely to have
some predictive value. However, there is considerable overlap between the two values of the
label, so separation will be prone to error based on this one feature.

8. Locate the bar plot of the glyburide feature, as shown below:

Examine this plot and note the several reasons why this feature is unlikely to spate the label
cases. Note, the vertical (frequency) scale is different for each value of the label readmitted or
not readmitted. First, the relative frequencies of the four categories of the feature are nearly
identical for the two label values. Second, some of the categories of the glyburide feature are
fairly infrequent, meaning that even if there were significant difference these values would only
separate a minority of cases.

Further examination of the bar plots shows several features where only one category is plotted,
indicating there are no other values in the data sample. These features cannot separate the
label cases.

9. Locate the box plots of each numeric variable conditioned on the levels of the label. Examine
these box plots to develop and understanding of the relationship between these features and
the label values.

10. Locate the box plot of number_inpatient which should resemble the figure below.

Examine this plot and note the differences between the values for patients who have been

readmitted and patients who have not been readmitted. These values have been normalized or

scaled. In both cases the median (black horizontal bar) is at zero, indicating significant overlap

between the cases. For readmitted patients, the two upper quartiles (indicated by the box and

the vertical line or whisker) shows little overlap with the other case. Based on these

observations of overlap and difference you can expect number_inpatient to separate some but

not all cases.

11. Next, examine the box plots for the time_in_hospital feature as shown below.

Examine this plot and note the differences between the values for patients who have been

readmitted and patients who have not been not been readmitted. These values have been

normalized or scaled. The median (black horizontal bar) is different for the two cases. However,

the first upper and lower quartile (boxes) and the second upper and lower quartile (vertical line

or whisker) show significant overlap. Based on these observations of overlap and difference you

can expect time_in_hospital to be a poor separator of the label cases.

Building a Classification Model

Now that you have investigated the relationships in the data you will build, improve and validate a

machine learning model.

Create a New Model
1. If you are working with Python, you need to add a Metadata Editor module to your experiment

by following steps a, b and c below. If you are working with R, you have already added this
Metadata Editor module to your experiment, and you should proceed to step 2.

a. Search for the Metadata Editor and drag it onto the canvas. Connect the output of the
Diabetes_Data (Clean) data set to the input of the Metadata Editor.

b. Click the Metadata Editor and in the properties pane, launch the Column Selector.
Select all string columns as shown:

c. In the Categorical drop down list, select Make Categorical.

2. Search for the Project Columns module and drag it onto your canvas. Connect the Results
Dataset output of the Metadata Editor module to the input port of the Project Columns
module.

Note: With the Project Columns module, you will remove features from the data set found to be
poor separators of the label cases during visualization of the dataset. For example, categorical
features with only one category for both label cases are unable to separate these cases.
Similarly, categorical features with one dominant category for both label cases are likewise
unlikely to separate these cases. Such degenerate features can add noise or create
generalization problems when the model is put into production.

3. With the Project Columns module selected, in the properties pane, launch the column selector,
and exclude the following columns:

 acetohexamide

 glimepiride-pioglitazone

 glipizide-metformin

 metformin-pioglitazone

 metformin-rosiglitazone

 miglitol

 tolazamide

 troglitazone

4. Search for the Split module. Drag this module onto your experiment canvas. Connect the
Results dataset output port of the Project Columns module to the Dataset input port of the
Split module. Set the Properties of the Split module as follows:

 Splitting mode: Split Rows

 Fraction of rows in the first output: 0.6

 Randomized split: Checked

 Random seed: 6789

 Stratified split: False

5. Search for the Two Class Decision Forest module. Make sure you have selected the regression
model version of this algorithm. Drag this module onto the canvas. Set the Properties if this
module as follows:

 Resampling method: Bagging

 Create trainer mode: Single Parameter

 Number of decision trees: 40

 Maximum depth of the decision trees: 32

 Number of random splits per node: 128

 Minimum number of samples per leaf node: 4

6. Search for the Train Model module. Drag this module onto the canvas.
7. Connect the Untrained Model output port of the Two Class Decision Forest module to the

Untrained Model input port of the Train Model module. Connect the Results dataset1 output
port of the Split module to the Dataset input port of the Train model module. On the Properties
pane, launch the column selector and select the readmi_class column.

8. Search for the Score Model module and drag it onto the canvas.
9. Connect the Trained Model output port of the of the Train Model module to the Trained Model

input port of the Score Model module. Connect the Results dataset2 output port of the Split
module to the Dataset port of the Score Model module.

10. Search for the Permutation Feature Importance module and drag it onto the canvas. Connect
the Trained Model output port of the Train Model module to the Trained model input port of
the Permutation Feature Importance module. Connect the Results dataset2 output port of the
Split module to the Dataset port of the Test data input port of the Permutation Feature
Importance module.

4. Search for the Evaluate Model module and drag it onto the canvas. Connect the Scored Dataset
output port of the Score Model module to the left hand Scored dataset input port of the
Evaluate Model module. New portion of your experiment, below the Metadata Editor, should
now look like the following:

5. Save and run the experiment. When the experiment is finished, visualize the Evaluation Result
port of the Evaluate Model module and review the ROC curve and performance statistics for the
model as shown below.

Reminder: The goal of this classification problem is to prevent patients from requiring
readmission to a hospital for their diabetic condition. Correctly identifying patients who are
likely to require further treatment allows medical care providers to take actions which can
prevent this situation. Patients with a false negative score will not be properly classified, and
subsequently will require readmission to a hospital. Therefore, the recall statistic is important in
this problem since maximizing recall minimizes the number of false negative scores.

6. Examine this ROC curve. Notice that the bold blue line is well above the diagonal grey line,
indicating the model is performing significantly better than random guessing. The AUC is 0.667
(see below), which is significantly more than 0.5 obtained by random guessing.

7. Next, examine the performance statistics provided, as shown here:

Notice the following:

 In the confusion matrix, there are nearly equal numbers of True Positive and False
Negative scores.

 The equal numbers of True Positive and False Negative scores gives rise to a recall value
of 0.5.

 Overall Accuracy is 0.626, indicating the scores are correct more often than not.

8. Close the evaluation results.

Prune Features
You will now improve model performance by pruning less important features by following these steps:

1. Visualize the output of the Permutation Feature Importance module. The upper portion of the
list produced should resemble the following:

Notice that several of these features have a 0 or very nearly zero importance.

2. Copy all of the modules in the experiment from the Project Columns module onwards. Paste
these modules onto the experiment canvas.

3. Connect the output of the Metadata Editor module to the input port of the new Project
Columns module.

4. Select the new Project Columns module, and in the properties pane, launch the column
selector. Modify the module to exclude the following columns, in addition to the ones already
excluded:

 chlorpropamide

 tolbutamide

 repaglinide

 num_meds_class

 nateglinide

 rosiglitazone

 acarbose

 glimepiride

 glyburide-metformine.

5. Verify that your experiment from the Metadata Editor down resembles the following figure:

6. Save and run the experiment. When the experiment is finished, visualize the output of the new
Evaluate Model module.

7. Examine the summary statistics as shown below:

Note that the Accuracy and Recall have improved slightly, while AUC is unchanged. Pruning

these features was a good decision.

8. Visualize the output of the Permutation Feature Importance module. The lower part of the list
should resemble the list below:

Note the several features with near zero importance. You could continue an iterative pruning
process, testing the results until model performance begins to worsen.

Sweep Model Parameters
You will now improve the machine learning model by sweeping the parameter space.

1. Remove the second (newest) Train Model and Permutation Feature Importance modules from
the experiment.

2. Search for the Sweep Parameters module. Drag this module onto the canvas in place of the
Train Model module you removed, and reconnect the experiment modules as follows:

a. Connect the Untrained model output port of the Two-Class Decision Forest module to
the Untrained model input port of the Sweep Parameters module.

b. Connect the Results dataset1 output port of the Split module to the Training dataset
input port of the Sweep Parameters module.

c. Connect the Results dataset2 output port of the Split module to the Optional test
dataset input port of the Sweep Parameters module.

d. Connect the Trained best model (right-hand) output of the Sweep Parameters module
to the Trained Model input of the Score Model module.

3. Click the Sweep Parameters module to expose the Properties pane. Set the properties as
follows so that 30 combinations of parameters are randomly tested to predict the readmi_class
variable:

 Specify parameter sweeping mode: Random sweep

 Maximum number of runs on random sweep: 30

 Random seed: 4567

 Column Selector: readmi_class

 Metric for measuring performance for classification: Recall

 Metric for measuring performance for regression: Mean absolute error (this doesn’t
matter for a classification model)

9. Verify that the new portion of you experiment resembles the following figure:

10. Save and run the experiment. With 30 iterations the experiment may take a while to run.
11. Visualize the output of the Evaluate Model module. The performance statistics should appear as

shown here:

You should note that Recall and AUC have been improved at the expense of accuracy.

Cross Validate the Model
You will cross validate your model by following these steps:

1. Search for the Cross Validate Model module. Drag this module onto the canvas. Connect the
Untrained model output from the Two-Class Decision Forest module to the Untrained model

input port of the Cross Validate Model module. Connect the Results dataset output port of the
Project Columns module to the Dataset input port of the Cross Validate Model module.

2. Click the Cross Validate Model module to expose the Properties pane. Set the properties as
follows:

 Column Selector: readmi_class

 Random seed: 3467
This portion of your experiment should resemble the following:

12. Save and run the experiment.
13. When the experiment has run click on the Evaluation Results by Fold output port of the Cross

Validation Model and select Visualize. Scroll to the right and note the Accuracy, Recall and AUC
columns (the first, third and fifth numeric columns from the left). Scroll to the bottom of the
page, passed the results of the 10 folds of the cross validation and examine the Mean value row.
These results look like the following:

Notice that the Accuracy, Recall and AUC values in the folds are not that different from each
other. The values in the folds are close to the Mean. Further, the Standard Deviation is much
smaller than the Mean. These consistent results across the folds indicate that the model is
insensitive to the training and test data chosen and should generalize well.

Visualizing Errors
In this exercise you will evaluate the model errors using custom code.

Visualize Errors with R
Note: If you prefer to work with Python, skip this procedure and complete the following
procedure, Visualize Errors with Python.

The summary performance statistics for the Two-Class Decision Forest model look fairly good. However,

summary statistics can hide some significant problems one should be aware of. To investigate the model

errors, you will use some custom R code.

1. Search for the Metadata Editor module and drag it onto your canvas. Connect the Scored

Dataset output of the most recently added Score Model module to the input of the Metadata

Editor module.

2. Click the Metadata Editor model. From the properties pane click on Launch Column Selector.

Choose the Scored Labels column as shown in the figure below.

3. In the New column names box type ScoredLabels, with no space. The output from this

Metadata Editor model will now have a column name with no spaces, compatible with R data

frame column names.

4. Search for the Execute R Script module. Drag this module onto your canvas. Connect the Results

Dataset output of the Metadata Editor module you just added to the Dataset1 (left hand) input

of the Execute R Script module. Your experiment should resemble the figure below:

5. With the Execute R Script module selected, in the properties pane, replace the existing R script

with the following code. You can copy this code from DiabetesEval.R in the folder where you

extracted the lab files:

frame1 <- maml.mapInputPort(1)

Assign scores to the cases.

frame1$Score = ifelse(frame1$readmi_class == 'YES' &

frame1$ScoredLabels == 'YES', 'TP',

 ifelse(frame1$readmi_class == 'NO' &

frame1$ScoredLabels == "YES", 'FP',

 ifelse(frame1$readmi_class == 'NO' &

frame1$ScoredLabels == 'NO', 'TN', 'FN')))

Compair outcomes for various levels of

factor (categorical) features.

library(ggplot2)

library(dplyr)

bar.plot <- function(x){

 if(is.factor(frame1[, x])){

 sums <- summary(frame1[, x], counts = n())

 msk <- names(sums[which(sums > 100)])

 tmp <- frame1[frame1[, x] %in% msk, c('Score', x)]

 if(strsplit(x, '[-]')[[1]][1] == x){

 g <- ggplot(tmp, aes_string(x)) +

 geom_bar() +

 facet_grid(. ~ Score) +

 ggtitle(paste('Readmissions by level of', x))

 print(g)

 }

 }

}

cols <- names(frame1)

cols <- cols[1:(length(cols) - 1)]

lapply(cols, bar.plot)

Box plot the numeric features

box.plot <- function(x){

 if(is.numeric(frame1[, x])){

 ggplot(frame1, aes_string('Score', x)) +

 geom_boxplot(alpha = 0.1) +

 ggtitle(paste('Readmissions by', x))

 }

}

dropCols <- ncol(frame1)

dropCols <- c((dropCols - 2):dropCols)

lapply(names(frame1[, -c(dropCols)]), box.plot)

This code does the following:

 Compute scores for each case; TP, FP, TN, FN.

 Make bar plots of the categorical features conditioned on the score.

 Make box plots of the numeric features conditioned on the score.

Note: By visualizing scored cases you can determine which features may have unexploited
information which could be used to improve the model. In this case, minimizing false negative
(FN) scores is a priority. FN scores result in a patient being readmitted to a hospital for their
diabetic condition. Looking for features where there is a difference between the cases scored as
FN vs. cases scored as true positives (TP) can guide further machine learning improvements.

6. Save and run the experiment. Then, when the experiment is finished, visualize the R Device port

of the Execute R Script module.

7. Examine the bar plots, noting the differences between the TP and FN scores. Note the plot of

Readmission by level of insulin.

Examine this plot and notice the difference between the TP and FN scores. The Down and Up

categories are proportionately less likely in the FN case. This information might be more fully

exploited to improve model performance.

8. Also, note the differences in the plot of Readmission by level of A1Cresult.

The proportion of the categories for the TP and FN scores are nearly identical. It is unlikely there

is any additional information in this feature which can be exploited.

9. Next examine the box plots, noting the differences between the TP and FN scores. Note the plot

of Readmission by number_inpatient as shown here.

There is little overlap between the distribution of values for the TP and FN scores. It is likely that

this feature contains additional information which can be used to improve the model.

10. Next, examine the box plot of Readmission by num_procedures as shown here.

While there are differences between the TP and FN case, there is considerable overlap in the

distribution of these data. It is unlikely that this feature will yield any additional information

which can be exploited to improve the model.

11. Close the R device output.

Visualize Errors with Python
Note: If you prefer to work with R, skip this procedure and complete the preceding procedure, Visualize
Errors with R.

The summary performance statistics for the Two-Class Decision Forest model look fairly good. However,

summary statistics can hide some significant problems one should be aware of. To investigate the model

errors, you will use some custom Python code. Now, preform the following steps:

1. Search for the Metadata Editor module and drag it onto your canvas. Connect the Scored

Dataset output of the most recently added Score Model module to the input of the Metadata

Editor module.

2. Click the Metadata Editor model. In the Properties pane click Launch Column Selector. Choose

the all columns of Categorical type as shown in the figure below.

3. In the Categorical list, select Make non-categorical. The output from this Metadata Editor

model will now have features of string type rather than categorical type.

4. Search for the Execute Python Script module. Drag this module onto your canvas. Connect the

Results Dataset output of the Metadata Editor module to the Dataset1 (left hand) input of the

Execute Python Script module. Your experiment should resemble the figure below:

5. With the Execute Python Script module selected, in the properties pane, replace the existing

Python script with the following code. You can copy this code from DiabetesEval.py in the folder

where you extracted the lab files:

def azureml_main(frame1):

 import matplotlib

 matplotlib.use('agg') # Set backend

 import pandas as pd

 import numpy as np

 import matplotlib.pyplot as plt

 import statsmodels.graphics.boxplots as sm

 Azure = True

Compute a column with the score accruacy for each row.

 num_rows = frame1.shape[0]

 frame1['Score'] = pd.DataFrame({'Score': ['II'] *

num_rows}).astype(str)

 for indx in range(num_rows):

 if((frame1.ix[indx, 'readmi_class'] == 'YES') &

(frame1.ix[indx, 'Scored Labels'] == 'YES')): \

 frame1.ix[indx, 'Score'] = 'TP'

 elif((frame1.ix[indx, 'readmi_class'] == 'NO') &

(frame1.ix[indx, 'Scored Labels'] == 'NO')): \

 frame1.ix[indx, 'Score'] = 'TN'

 elif((frame1.ix[indx, 'readmi_class'] == 'YES') &

(frame1.ix[indx, 'Scored Labels'] == 'NO')): \

 frame1.ix[indx, 'Score'] = 'FN'

 else: frame1.ix[indx, 'Score'] = 'FP'

Create a series of bar plots for the various levels of the

string columns in the data frame by readmi_class.

 names = list(frame1)

 num_cols = frame1.shape[1]

 err_list = ['TP', 'FP', 'TN', 'FN']

 for indx in range(num_cols):

 if(frame1.ix[:, indx].dtype not in [np.int64, np.int32,

np.float64]):

 fig = plt.figure(figsize = (12,6))

 fig.clf()

 i = 1

 for err in err_list:

 temp = frame1.ix[frame1.Score == err,

indx].value_counts()

 ax = fig.add_subplot(1, 4, i)

 temp.plot(kind = 'bar', ax = ax)

 ax.set_title('Values of \n' + names[indx] + '\n

for ' + err)

 i += 1

 if(Azure == True): fig.savefig('bar_' + names[indx] +

'.png')

Now make some box plots of the columns with numerical values.

 for indx in range(num_cols):

 if(frame1.ix[:, indx].dtype in [np.int64, np.int32,

np.float64]):

 fig = plt.figure(figsize = (12,6))

 fig.clf()

 i = 1

 for err in err_list:

 temp = frame1.ix[frame1.Score == err, indx]

 ax = fig.add_subplot(1, 4, i)

 ax.boxplot(temp.as_matrix())

 ax.set_title('Values of \n' + names[indx] + '\n

for ' + err)

 i += 1

 if(Azure == True): fig.savefig('box_' + names[indx] +

'.png')

 return frame1

This code does the following:

 Compute scores for each case; TP, FP, TN, FN.

 Make bar plots of the categorical features conditioned on the score.

 Make box plots of the numeric features conditioned on the score.

Note: By visualizing scored cases you can determine which features may have unexploited
information which could be used to improve the model. In this case, minimizing false negative
(FN) scores is a priority. FN scores result in a patient being readmitted to a hospital for their
diabetic condition. Looking for features where there is a difference between the cases scored as
FN vs. cases scored as true positives (TP) can guide further machine learning improvements.

6. Save and run the experiment. Then, when the experiment is finished, visualize the Python

Device port of the Execute Python Script module.

7. Examine the bar plots, noting the differences between the TP and FN scores. Note the plot for

insulin.

Examine this plot and notice the difference between the TP and FN scores. The Down and Up

categories are proportionately less likely in the FN case. This information might be more fully

exploited to improve model performance.

8. Also, note the differences in the plot for A1Cresult..

The proportion of the categories for the TP and FN scores are nearly identical. It is unlikely there

is any additional information in this feature which can be exploited.

9. Next examine the box plots, noting the differences between the TP and FN scores. Note the plot

for number_inpatient as shown here.

There is little overlap between the distribution of values for the TP and FN scores. It is likely that

this feature contains additional information which can be used to improve the model.

10. Next, examine the box plot for num_procedures as shown here.

While there are differences between the TP and FN case, there is considerable overlap in the

distribution of these data. It is unlikely that this feature will yield any additional information

which can be exploited to improve the model.

11. Close the Python device output.

Summary
In this lab you have constructed and evaluated a two class or binary classification model. Highlight from

the results of this lab are:

 Visualization of the data set can help differentiate features which separate the cases from those

that are unlikely to do so.

 Feature pruning and parameter sweeping can improve model performance

 Cross validation can indicate how well a model will generalize

 Examining the classification behavior of features can highlight potential performance problems

or provide guidance on improving a model.

Note: The experiment created in this lab is available in the Cortana Analytics library at

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9.

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9

