
 
 
 

Data Science and Machine Learning Essentials 
Lab 4A – Working with Regression Models  

By Stephen Elston and Graeme Malcolm 

Overview 
In this lab, you will continue to learn how to construct and evaluated regression machine learning 
models using Azure ML and R or Python. If you intend to work with R, complete the Evaluating Model 
Errors with R exercise. If you plan to work with Python, complete the Evaluating Model Errors with 
Python exercise. Unless you need to work in both languages, you do not need to try both exercises. 
 
Regression is one of the fundamental machine learning methods used in data science. Regression 
enables you to predict values of a label variable given data from the past. Regression, like classification, 
is a supervised machine learning technique, wherein models are trained from labeled cases.  In this case 
you will train and evaluate a nonlinear regression model which produces improved predictions of 
building energy efficiency.  

Note: This lab builds on the experiment you completed in Lab 3C. If you have not completed Lab 3C, you 
can copy the experiment from the Cortana Analytics Gallery.  

What You’ll Need 
To complete this lab, you will need the following: 

 An Azure ML account 
 A web browser and Internet connection  
 Python Anaconda or R and RStudio  

 The lab files for this lab 

  

Note: To set up the required environment for the lab, follow the instructions in the Setup document for 
this course.  Then download and extract the lab files for this lab. 

Regression Modeling with Azure ML  
 

You will create and evaluate an improved regression model using Azure ML. The steps in this process 
include: 

 Testing and evaluating a new model type.  

 Pruning the features for the new model 

 Using the Sweep Parameters module improved model performance. 

 Cross validating the model to ensure it generalizes well. 



 
 

 Evaluating the performance of the model in depth with R or Python.  

  

 

Build a New Model 
In this procedure, you will construct and evaluate a nonlinear regression model. 
 
In module 3 you performed the following tasks: 

 Performed visualization of the data set to gain an understanding of the relationships between 
the features and the label.  

 Build and evaluated a machine learning model using the linear regression method. 

 Performed feature engineering for the linear regression model 
 

In the module 3 labs, you should have noted that there was considerable structure in the residuals 
(errors). Further, feature pruning did not improve this situation. You should therefore conclude that 
there are fundamentally nonlinear relationships between the features and the labels in this data set.  
 
You will now construct and evaluated a nonlinear regression model. There are a number of nonlinear 
regression models supported in Azure ML. In this case, you will work with the Decision Forest 
Regression method. This approach uses majority voting among an ensemble (group) of regression tree 
models. The splits in tree models exhibit nonlinear behavior. Using an ensemble averages out errors.  
 
By following these steps, you will add and evaluate a nonlinear regression module in your experiment: 
 

1. If you have not already done so, open a browser and browse to https://studio.azureml.net. Then 

sign in using the Microsoft account associated with your Azure ML account. 

2. If you prefer to work with R, open the Evaluation (R) experiment, and save a copy 
as Regression (R). Otherwise, save a copy of the Evaluation (Python) experiment as Regression 
(Python). If you did not complete Lab 3C, you can copy the appropriate Evaluation experiment 
from the collection for this course in the Cortana Analytics Gallery at 
http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9. 

3. Search for the Project Columns module and drag it onto the canvas. Then, depending on the 
scripting language you are using, make the following connections: 

 If you are using R, connect the Transformed dataset output port of the Normalize Data 
module to the Dataset input port of the Project Columns module. Including the data 
preparation steps (upper part) of your experiment, it should resemble the diagram 
below: 

https://studio.azureml.net/
http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9


 
 

 
 

 If you are using Python, connect the Results dataset output port of the first Metadata 
Editor module to the Dataset input port of the Project Columns module. Including the 
data preparation steps (upper part) of your experiment, it should resemble the diagram 
below: 

 
 

4. After the connections are made, on the Properties pane for the Project Columns module, 
launch the column selector. Begin with all columns, and exclude Orientation, a feature known to 
have no predictive power, as shown see below.  



 
 

 
 

5. Search for the Split module. Drag this module onto your experiment canvas. Connect the 
Results dataset output port of the Project Columns module to the Dataset input port of the 
Split module. Set the Properties of the Split module as follows: 

 Splitting mode: Split Rows 

 Fraction of rows in the first output: 0.6 

 Randomized split: Checked 

 Random seed: 5416 

 Stratified split: False 
 

6. Search for the Decision Forest Regression module. Make sure you have selected the regression 
model version of this algorithm. Drag this module onto the canvas.  Set the properties of this 
module as follows: 

 Resampling method: Bagging 

 Create trainer mode: Single Parameter 

 Number of decision trees: 40 

 Maximum depth of the decision trees: 32 

 Number of random splits per node: 128 

 Minimum number of samples per leaf node: 4 

 Allow unknown values for categorized features: Checked 
 

7. Search for the Train Model module. Drag this module onto the canvas.  
8. Connect the Untrained Model output port of the Decision Forest Regression module to the 

Untrained Model input port of the Train Model module.  
9. Connect the Results dataset1 (left) output port of the Split module to the Dataset input port of 

the Train model module. 
10. Select the Train Model module. Then, on the Properties pane, launch the column selector and 

select the Heating Load column.  
11. Search for the Score Model module and drag it onto the canvas.  
12. Connect the Trained Model output port of the of the Train Model module to the Trained Model 

input port of the Score Model module. Then connect the Results dataset2 (right) output port of 
the Split module to the Dataset port of the Score Model module.  

13. Search for the Permutation Feature Importance module and drag it onto the canvas.  
14. Connect the Trained Model output port of the Train Model module to the Trained model input 

port of the Permutation Feature Importance module. Then connect the Results dataset2 (right) 



 
 

output port of the Split module to the Dataset port of the Test data input port of the 
Permutation Feature Importance module.  

15. Select the Permutation Feature Importance module and in the Properties pane set the 
following parameters: 

 Random Seed: 4567 

 Metric for measuring performance: Regression – Root Mean Squared Error 
 

16. Search for the Evaluate Model module and drag it onto the canvas. Connect the Scored Dataset 
output port of the Score Model module to the left hand Scored dataset input port of the 
Evaluate Model module. The new portion of your experiment should now look like the 
following: 

  

17. Save and run the experiment. When the experiment is finished, visualize the Evaluation Result 
port of the Evaluate Model module and review the performance statistics for the model. 
 
Overall, these statistics are promising. The Coefficient of Determination is a measure of the 
reduction in the variance, between the raw label and the model error; squared error. This static 
is often referred to as R2. A perfect model would have a Coefficient of Determination of 1.0, all 
the variance in the label is explained in the model. Relative Squared Error is the ratio of the 
variance or squared error of the model divided by the variance of the data. A perfect model 
would have a Relative Squared Error of 0.0, all model errors are zero. You should observe that 
these results from the nonlinear model are an improvement over those achieved with the linear 
model.   

Prune features 
1. Visualize the Feature importance output port of the Permutation Feature Importance module, 

and note that there are some columns with low scores (less than 1), indicating that these 
columns have little importance in predicting the label. You can optimize your model and make it 
more generalizable by removing (or pruning) some of these features.  

2. Make a note of the feature with the lowest importance score, and close the feature importance 
dataset. 

3. Select the Project Columns module you added at the beginning of this exercise, and on the 
Properties pane click Launch column selector. Add the feature you identified as the least 
important to the list of columns to be excluded. 



 
 

4. Save and run the experiment. When the experiment has finished running click on the Evaluation 
results output port of the Evaluate Model module and select Visualize.  Note that these 
performance measures have been changed very little by pruning the least important feature. 
This result indicates that removing this feature was a good idea. In general, if removing a feature 
makes little difference in model performance, you are better off removing it. This approach 
simplifies the model and reduces the chances you model will not generalize well to new input 
values when the model is placed in production.  

5. Select the Project Columns module again, and launch the column selector. In a real experiment, 
you would remove features one by one and re-evaluate the model at each stage until its 
accuracy starts to decrease. However, in this lab, go ahead and configure the Project Columns 
module to exclude the following features which do not change the model accuracy metrics 
significantly: 

 Orientation 

 Glazing Area Distribution 

 Surface Area 3 

 Relative Compactness Sqred 

 Wall Area 3 

 Wall Area Sqred 

 Surface Area Sqred 

 Surface Area 

 Relative Compactness 

 Relative Compactness 3   
 
At this point the Column Selector of the Project Columns module should be set to exclude the 
columns shown below:  
 

 
 
At the end of the pruning process, you are left with the following four features: 

 Overall Height 

 Wall Area 

 Glazing Area 

 Roof Area 

Removing any of these features will cause the accuracy metrics to be degraded. Evidently, these 
are all you need for good model performance. 



 
 

 

Sweep Parameters to Improve the Model 
You will now use the Sweep Parameters module to optimize the performance of the Decision Forest 
model. The Sweep Parameters module searches a number of parameter combinations to find the 
combination producing the best model performance.  

1. Select all of the modules below the Project Columns module you added at the beginning of this 
lab.  Then copy and paste these modules onto the canvas and drag the copies to one side.  

2. Connect the Results dataset output of the Project Columns module to the Dataset input of the 
new Split module. 

3. Remove the copied Permutation Feature Importance, Train Model, and Evaluate Model 
modules.  

4. Search for the Sweep Parameters module. Drag this module onto the canvas in place of the 
Train Model module you removed.  

5. Connect the Untrained model output port of the new Decision Forest Model module to the 
Untrained model (left) input port of the Sweep Parameters module.  

6. Connect the Results dataset1 (left) output port of the new Split module to the Training dataset 
(middle) input port of the Sweep Parameters module.  

7. Connect the Results dataset2 (right) output port of the Split module to the Optional test 
dataset (right) input port of the Sweep Parameters module. 

8. Connect the Trained model (right) output of the Sweep Parameters module to the Trained 
model (left) input of the new Score Model module.  

9. Click the Sweep Parameters module to expose the Properties pane. Set the properties as 
follows so that 20 combinations of parameters are randomly tested: 

 Specify parameter sweeping mode: Random sweep 

 Maximum number of runs on random sweep: 20 

 Random seed: 4567 

 Column Selector: Heating Load 

 Metric for measuring performance for classification: Accuracy 

 Metric for measuring performance for regression: Coefficient of determination 
 

10. Connect the Scored dataset output port of the copied Score Model module to the Scored 
dataset to compare (right) input port of the original Evaluate Model module for the first 
Decision Forest Regression model.  The lower part of your experiment should now look like the 
following: 



 
 

 
 

11. Save and run the experiment. When the experiment is finished, visualize the Evaluation results 
output port of the Evaluate Model module and compare the Coefficient of Determination and 
Relative Squared Error values for the two models. 

Cross Validate the Model 
Cross validation or a machine learning model uses resampling of the dataset to test the performance on 
a number of training and testing data subsets. Each training and testing data subset sampled from the 
complete data set is called a fold. Ideally, a good machine learning model should work well regardless of 
the test data used. When cross validated, a good model will have similar performance across the folds. 
This property of good machine learning models is known as generalization. A model which generalizes 
produces good results for any possible set of valid input values. Models that generalize can be expected 
to work well in production.  

1. Search for the Cross Validate Model module. Drag this module onto the canvas.  
2. Connect the Untrained model output from the most recently added Decision Forest Model 

module (the one connected to the Sweep Parameters module) to the Untrained model input 
port of the Cross Validate Model module.  

3. Connect the Results dataset output port of the Project Columns module to the Dataset input 
port of the Cross Validate Model module. 

4. Select the Cross Validate Model module, and set its properties as follows: 

 Column Selector: Heating Load 

 Random seed: 3467 
Your experiment should resemble the following: 



 
 

 

5. Save and run the experiment. When the experiment has finished, visualize the Evaluation 
Results by Fold (right) output port of the Cross Validate Model module. Scroll to the right and 
note the Relative Squared Error and Coefficient of Determination columns. Scroll to the bottom 
of the page, passed the results of the 10 folds of the cross validation in the first 10 rows and 
examine the Mean row toward the bottom. These results look like the following: 



 
 

 
 

Notice that the Relative Squared Error and Coefficient of Determination values in the folds 
(along the two right most columns) are not that different from each other. The values in the 
folds are close to the values shown in the Mean row. Finally, the values in the Standard 
Deviation row are much smaller than the corresponding values in the Mean row. These 
consistent results across the folds indicate that the model is insensitive to the training and test 
data chosen, and is likely to generalize well. 
 

Evaluating Model Errors with R 

In this exercise you will evaluate the model errors using custom R code. 

Note: If you prefer to work with Python, skip this exercise and complete the following 
exercise, Evaluating Model Errors with Python.  

The summary performance statistics for the nonlinear Decision Forest Regression model look quite 

promising. However, summary statistics can hide some significant problems one needs to be aware of. 

To investigate the residuals, or model errors, you will use some custom R code. Much of this code is the 

same or similar to code you used for the labs in Module 3.  

1. Search for the Metadata Editor module and drag it onto your canvas.  

2. Connect the Scored Dataset output of the newest Score Model module (connected to the 

Sweep Parameters module) to the input of the Metadata Editor module. 

3. Click the Metadata Editor module, and in the properties pane click Launch Column Selector. 

Choose the Scored Label Mean column as shown in the figure below.  



 
 

 

4. In the New column names box type ScoredLabels, with no quotes. The output from this 

Metadata Editor model will now have a column name with no spaces, compatible with R data 

frame column names.  

5. Search for the Execute R Script module, and drag it onto your canvas. Connect the Results 

Dataset output of the Metadata Editor module to the Dataset1 (left) input of the Execute R 

Script module. Your experiment should resemble the figure below. 

 

6. With the Execute R Script module selected, in the properties pane, replace the existing R script 

with the following code. You can copy this code from VisResiduals.R in the folder where you 

extracted the lab files:  



 
 

 
frame1 <- maml.mapInputPort(1) 

 

frame1$Resids <- frame1$HeatingLoad - frame1$ScoredLabels 

 

## Plot of residuals vs HeatingLoad. 

library(ggplot2) 

ggplot(frame1, aes(x = HeatingLoad, y = Resids , by = 

OverallHeight)) + 

  geom_point(aes(color = OverallHeight)) + 

  xlab("Heating Load") + ylab("Residuals") + 

  ggtitle("Residuals vs Heating Load") + 

  theme(text = element_text(size=20)) 

 

  ## create some conditioned plots of the residuals 

plotCols <- c("RelativeCompactnessSqred", 

              "SurfaceArea", 

              "GlazingArea") 

 

plotEERes <- function(x){ 

  title <- paste("Residuals vs Heating Load conditioned by", x) 

  facFormula <- paste("OverallHeight ~", x) 

  ggplot(frame1, aes(Resids, HeatingLoad)) + 

    geom_point() + 

    facet_grid(facFormula) + 

    ggtitle(title)  

} 

 

lapply(plotCols, plotEERes) 

 

## Conditioned histograms of the residuals 

ggplot(frame1, aes(Resids)) +  

  geom_histogram(binwidth = 0.5) + 

  facet_grid(. ~ OverallHeight) +  

  ggtitle('Histogram of residuals conditioned by Overall Height') 

+ 

  xlab('Residuals') 

 

## Quantile-quantile normal plot of the residuals. 

Resids35 <- frame1[frame1$OverallHeight == 3.5, ]$Resid 

Resids7 <- frame1[frame1$OverallHeigh == 7, ]$Resid 

par(mfrow = c(1,2)) 

qqnorm(Resids35) 

qqnorm(Resids7) 

par(mfrow = c(1,1)) 

 

 

rmse <- function(x){ 

  sqrt(sum(x^2)/length(x)) 

}  



 
 

 

outFrame <- data.frame(  

  rms_Overall = rmse(frame1$Resids), 

  rms_35 = rmse(Resids35), 

  rms_7 = rmse(Resids7)) 

 

maml.mapOutputPort('outFrame') 

 

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and 
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML 
Properties pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the 
code from the clipboard, replacing the existing code. 

Note that this code is nearly identical to the model evaluation code already discussed in lab 3C.  

7. Save and run and run the experiment. Then, when the experiment is finished, visualize the R 

Device port of the Execute R Script module.  

8. Examine the scatter plot that shows heating load against residuals conditioned by 

OverallHeight, which should look similar to this: 

 

 
 

Examine the structure of these residuals with respect to the label, Heating Load. In an ideal 

case, the residuals should appear random with respect to the label (Heating Load). In fact, there 

is little structure in these residuals, and the distribution of these residuals does not change 

much with the value of the label.  

 

If you compare this plot to the similar plot you created for the Module 3 labs, you can see that 

the linear structure in the residuals has disappeared. Further, the dispersion of the residuals is 

significantly reduced.  

 



 
 

In summary, using a nonlinear regression model fits these data well. The residuals are 

reasonably well behaved.  

  

9. Review the conditioned scatter plots have been created. For example, look in detail at the 

scatter plot conditioned on GlazingArea and OverallHeight, as shown below. 

 

 
 

Note the shaded conditioning level tiles across the top and right side of this chart. The four tiles 

across the top (horizontal) show the four levels (unique values) of GlazingArea. The two tiles on 

the right (vertical axis) show the two levels (unique values) of OverallHeight. Each scatter plot 

shows the data falling into the group by GlazingArea and OverallHeight, with the label (Heating 

Load) on the vertical axis and the residuals on the horizontal axis.  

 

Examine this plot and notice that the residuals are not random across these plots. There is a 

slight linear structure visible in these subplots. However, there is not a notable change in the 

distribution of the residuals across the subplots. Further, the range of residual values is much 

less than for the linear regression model used in Module 3. These observations confirm that the 

nonlinear regression model is working reasonably well.  

 



 
 

10. Examine the histogram, as shown below: 

 

 
 

Examine these results, and note the differences in the histograms by OverallHeight. Further, 

there are some small outliers for the OverallHeight of 7. However, the range of these residuals 

is not great. These residuals are much reduced when compared to the equivalent pair of 

histograms discussed in Module 3. Again, we can conclude that the nonlinear model is working 

well.  

 

11. Review the pair of Q-Q normal plots, as shown below: 

 

 

 



 
 

Note: A Q-Q normal plot uses the quantiles of a theoretical Normal distribution on the 
horizontal axis vs. the quantiles of the residuals on the vertical axis. For an ideal linear model, 
the residuals will be normally distributed and fall close to a straight line.  

The data shown on both of this plots deviates from straight lines. Further, some outliers are 

noticeable. When compared to the plots for the linear model created for the Module 3 labs, 

these plots show improvement. Primarily, the range of the outliers is much reduced. Again, we 

can conclude that the nonlinear model is working well.  

12. Close the R Device output. 

13. Visualize the Result Dataset output of the Execute R Script module, and review the root squared 

mean error results returned by the rsme function, as shown below: 

 

 
 

Compare these results to those obtained in Module 3. All three measures of RMS error have 

been reduced. Further the relative difference between OverallHeight of 3.5 and OverallHeight 

of 7 are reduced.  

 

Using a nonlinear regression model has worked well for this problem. The residual measures are 

all satisfactory.  

 
 

Evaluating Model Errors with Python  
In this exercise you will evaluate the model errors using custom Python code 
 
Note: If you prefer to work with R, complete the exercise Evaluating Model Errors with R.  

The summary statistics for the nonlinear Decision Forest Regression model look quite promising. 

However, summary statistics can hide some significant problems one should understand. To investigate 

the residuals, or model errors, you will use some custom Python code. Much of this code is the same or 

similar to code you used for the labs in Module 3. 

1. Search for and locate the Metadata Editor module. Drag this module onto your canvas.  

2. Connect the Scored Dataset output of the newest Score Model module (the one connected to 

the Sweep Parameters module) to the input of the Metadata Editor module. 

3. Select the Metadata Editor model, and in the Properties pane, click Launch Column Selector. 

Choose the Overall Height column as shown in the figure below.  



 
 

 

4. In the Categorical box select Make non-categorical. The output from this Metadata Editor 

model will show the Overall Height column as a string type which we can work with in Python.  

5. Search for and locate the Execute Python Script module. Drag this module onto your canvas.  

6. Connect the Results Dataset output of the Metadata Editor module to the Dataset1 (left) input 

of the Execute Python Script module. Your experiment should resemble the following the figure 

below: 

 

7. With the Execute Python Script module selected, in the properties pane, replace the existing 

Python script with the following code. You can copy this code from VisResiduals.py in the folder 

where you extracted the lab files:  



 
 

 
def rmse(Resid): 

    import numpy as np 

    resid = Resid.as_matrix() 

    length = Resid.shape[0] 

    return np.sqrt(np.sum(np.square(resid)) / length) 

 

def azureml_main(frame1):  

    # Set graphics backend 

    import matplotlib 

    matplotlib.use('agg')   

      

    import pandas as pd 

    import pandas.tools.rplot as rplot 

    import matplotlib.pyplot as plt 

    import statsmodels.api as sm 

          

## Compute the residuals 

    frame1['Resids'] = frame1['Heating Load'] - frame1['Scored 

Label Mean'] 

     

    ## Create data frames by Overall Height    

    temp1 = frame1.ix[frame1['Overall Height'] == 7]     

    temp2 = frame1.ix[frame1['Overall Height'] == 3.5]  

     

## Create a scatter plot of residuals vs Heating Load. 

    fig1 = plt.figure(1, figsize=(9, 9)) 

    ax = fig1.gca() 

    temp1.plot(kind = 'scatter', x = 'Heating Load', \ 

                y = 'Resids', c = 'DarkBlue',  

                alpha = 0.3, ax = ax) 

    temp2.plot(kind = 'scatter', x = 'Heating Load', \ 

                y = 'Resids', c = 'Red', alpha = 0.3, ax = ax) 

    ax.set_title('Heating load vs. model residuals') 

    plt.show() 

    fig1.savefig('plot1.png') 

     

    ## Scatter plots of the residuals conditoned by  

## several features. 

    col_list = ["Relative Compactness Sqred", 

              "Surface Area", 

              "Glazing Area"]   

             

    for col in col_list:  

        ## First plot one value of Overall Height. 

        fig = plt.figure(figsize=(10, 5)) 

        fig.clf() 

        ax = fig.gca() 

        plot = rplot.RPlot(temp1, x = 'Heating Load',  

                                  y = 'Resids')  



 
 

        plot.add(rplot.GeomScatter(alpha = 0.3,  

                                   colour = 'DarkBlue')) 

        plot.add(rplot.TrellisGrid(['.', col])) 

        ax.set_title('Residuals by Heating Load and height = 7 

conditioned on ' + col + '\n') 

        plot.render(plt.gcf()) 

        fig.savefig('scater_' + col + '7' + '.png') 

         

        ## Now plot the other value of Overall Height. 

        fig = plt.figure(figsize=(10, 5)) 

        fig.clf() 

        ax = fig.gca() 

        plot = rplot.RPlot(temp2, x = 'Heating Load',  

                                  y = 'Resids')  

        plot.add(rplot.GeomScatter(alpha = 0.3, colour = 'Red')) 

        plot.add(rplot.TrellisGrid(['.', col])) 

        ax.set_title('Residuals by Heating Load and height = 3.5 

conditioned on ' + col + '\n') 

        plot.render(plt.gcf()) 

        fig.savefig('scater_' + col + '3.5' + '.png') 

 

## Histograms of the residuals 

    fig4 = plt.figure(figsize = (12,6)) 

    fig4.clf() 

    ax1 = fig4.add_subplot(1, 2, 1) 

    ax2 = fig4.add_subplot(1, 2, 2)    

    ax1.hist(temp1['Resids'].as_matrix(), bins = 40) 

    ax1.set_xlabel("Residuals for Overall Height = 3.5") 

    ax1.set_ylabel("Density") 

    ax1.set_title("Histogram of residuals") 

    ax2.hist(temp2['Resids'].as_matrix(), bins = 40) 

    ax2.set_xlabel("Residuals of model") 

    ax2.set_ylabel("Density") 

    ax2.set_title("Residuals for Overall Height = 7") 

    fig4.savefig('plot4.png') 

 

## QQ Normal plot of residuals     

    fig3 = plt.figure(figsize = (12,6)) 

    fig3.clf() 

    ax1 = fig3.add_subplot(1, 2, 1) 

    ax2 = fig3.add_subplot(1, 2, 2)  

    sm.qqplot(temp1['Resids'], ax = ax1) 

    ax1.set_title('QQ Normal residual plot \n with Overall Height 

= 3.5') 

    sm.qqplot(temp2['Resids'], ax = ax2) 

    ax2.set_title('QQ Normal residual plot \n with Overall Height 

= 7') 

    fig3.savefig('plot3.png') 

 

     



 
 

    out_frame = pd.DataFrame({ \ 

      'rmse_Overall' : [rmse(frame1['Resids'])], \ 

      'rmse_35Height' : [rmse(temp1['Resids'])], \ 

      'rmse_70Height' : [rmse(temp2['Resids'])] })  

     

    return out_frame 

 

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and 
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML 
Properties pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the 
code from the clipboard, replacing the existing code. 

WARNING!: Ensure you have a Python return statement at the end of your azureml_main 
function; for example, return frame1. Failure to include a return statement will prevent your 
code from running and may produce an inconsistent error message.  

 

Note that most details of this code are described in the labs for Module 3. The predicted value 
column is now called Scored Label Mean. 

8. Save and run the experiment. Then, when the experiment is finished, visualize the Python 

device port of the Execute Python Script module. 

9. Experiment the scatter plot that shows Heating Load against residuals conditioned by Overall 

Height, which should look similar to this figure: 

 



 
 

 
 

Examine the structure of these residuals with respect to the label, Heating Load. In an ideal case, 

the residuals should appear random with respect to the label (Heating Load). In fact, there is 

little structure in these residuals, and the distribution of these residuals does not change much 

with the value of the label.  

 

If you compare this plot to the similar plot you created for the Module 3 labs, you can see that 

the linear structure in the residuals has disappeared. Further, the dispersion in the residuals is 

significantly reduced.  

 

In summary, using a nonlinear regression model fits these data well. The residuals are 

reasonably well behaved. 

 

10. Review the conditioned scatter plots have been created. For example, look in detail at the 

scatter plots by Overall Height and conditioned on Glazing Area, as shown below. 



 
 

 

 

 
 

There is a pair of conditioned scatter plots; one for Overall Height of 7 and one for Overall 

Height of 3.5. Note the shaded conditioning level tiles across the top of these charts showing 

the four levels (unique values) of Glazing Area. Each scatter plot shows the data falling into the 

group by Glazing Area and Overall Height, with the label (Heating Load) on the vertical axis and 

the Residuals on the horizontal axis.  

 

Examine this plot and notice that the residuals are not completely random across these plots. 

There is a slight linear structure visible in these subplots. However, there is not a notable change 

in the distribution of the residuals across the subplots. Further, the range of residual values is 



 
 

much less than for the linear regression model used in Module 3. These observations confirm 

that the nonlinear regression model is working reasonably well.  

11. Examine the histogram, as shown below: 

 

 
 

Examine these results, and note the differences in the histograms by Overall Height. Further, 

there are some small outliers for the Overall Height of 7. However, the range of these residuals 

is not great. These residuals are much reduced when compared to the equivalent pair of 

histograms discussed in Module 3. Again, we can conclude that the nonlinear model is working 

well. 
 

12. Review the pair of Q-Q normal plots, as shown below: 

 

 



 
 

 
 

Note: A Q-Q normal plot uses the quantiles of a theoretical Normal distribution on the 
horizontal axis vs. the quantiles of the residuals on the vertical axis. For an ideal linear model, 
the residuals will be normally distributed and fall close to a straight line.  

 

 

The data shown on both of this plots deviates from straight lines. Further, some outliers are 

noticeable. When compared to the plots for the linear model created for the Module 3 labs, 

these plots show improvement. Primarily, the range of the outliers is much reduced. Again, we 

can conclude that the nonlinear model is working well.  
 

13. Close the Python device output.  

 

14. Visualize the Result Dataset output of the Execute Python Script module, and review the root 

squared mean error results returned by the rsme function, as shown below: 

 

 
 

Compare these results to those obtained in Module 3. All three measures of RMS error have 

been reduced. Further the relative difference between Overall Height of 3.5 and Overall Height 

of 7 are reduced.  

 

Using a nonlinear regression model has worked well for this problem. The residual measures are 

all satisfactory.  

Summary 
In this lab you have constructed and evaluated a nonlinear regression model. Highlight from the results 

of this lab are: 

 The nonlinear regression model fits the building energy efficiency data rather well. The residual 

structure is improved when compared to the linear regression model used in the Module 3 labs.  

 The nonlinear model only requires a small feature set to achieve these results.  

 Using the Sweep Parameters module improved model performance. 

 Cross validation indicates the model generalizes well. 

Note: The experiment created in this lab is available in the Cortana Analytics library at 

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9. 

 

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9

