

Data Science and Machine Learning Essentials
Lab 4A – Working with Regression Models

By Stephen Elston and Graeme Malcolm

Overview
In this lab, you will continue to learn how to construct and evaluated regression machine learning
models using Azure ML and R or Python. If you intend to work with R, complete the Evaluating Model
Errors with R exercise. If you plan to work with Python, complete the Evaluating Model Errors with
Python exercise. Unless you need to work in both languages, you do not need to try both exercises.

Regression is one of the fundamental machine learning methods used in data science. Regression
enables you to predict values of a label variable given data from the past. Regression, like classification,
is a supervised machine learning technique, wherein models are trained from labeled cases. In this case
you will train and evaluate a nonlinear regression model which produces improved predictions of
building energy efficiency.

Note: This lab builds on the experiment you completed in Lab 3C. If you have not completed Lab 3C, you
can copy the experiment from the Cortana Analytics Gallery.

What You’ll Need
To complete this lab, you will need the following:

 An Azure ML account
 A web browser and Internet connection
 Python Anaconda or R and RStudio

 The lab files for this lab

Note: To set up the required environment for the lab, follow the instructions in the Setup document for
this course. Then download and extract the lab files for this lab.

Regression Modeling with Azure ML

You will create and evaluate an improved regression model using Azure ML. The steps in this process
include:

 Testing and evaluating a new model type.

 Pruning the features for the new model

 Using the Sweep Parameters module improved model performance.

 Cross validating the model to ensure it generalizes well.

 Evaluating the performance of the model in depth with R or Python.

Build a New Model
In this procedure, you will construct and evaluate a nonlinear regression model.

In module 3 you performed the following tasks:

 Performed visualization of the data set to gain an understanding of the relationships between
the features and the label.

 Build and evaluated a machine learning model using the linear regression method.

 Performed feature engineering for the linear regression model

In the module 3 labs, you should have noted that there was considerable structure in the residuals
(errors). Further, feature pruning did not improve this situation. You should therefore conclude that
there are fundamentally nonlinear relationships between the features and the labels in this data set.

You will now construct and evaluated a nonlinear regression model. There are a number of nonlinear
regression models supported in Azure ML. In this case, you will work with the Decision Forest
Regression method. This approach uses majority voting among an ensemble (group) of regression tree
models. The splits in tree models exhibit nonlinear behavior. Using an ensemble averages out errors.

By following these steps, you will add and evaluate a nonlinear regression module in your experiment:

1. If you have not already done so, open a browser and browse to https://studio.azureml.net. Then

sign in using the Microsoft account associated with your Azure ML account.

2. If you prefer to work with R, open the Evaluation (R) experiment, and save a copy
as Regression (R). Otherwise, save a copy of the Evaluation (Python) experiment as Regression
(Python). If you did not complete Lab 3C, you can copy the appropriate Evaluation experiment
from the collection for this course in the Cortana Analytics Gallery at
http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9.

3. Search for the Project Columns module and drag it onto the canvas. Then, depending on the
scripting language you are using, make the following connections:

 If you are using R, connect the Transformed dataset output port of the Normalize Data
module to the Dataset input port of the Project Columns module. Including the data
preparation steps (upper part) of your experiment, it should resemble the diagram
below:

https://studio.azureml.net/
http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9

 If you are using Python, connect the Results dataset output port of the first Metadata
Editor module to the Dataset input port of the Project Columns module. Including the
data preparation steps (upper part) of your experiment, it should resemble the diagram
below:

4. After the connections are made, on the Properties pane for the Project Columns module,
launch the column selector. Begin with all columns, and exclude Orientation, a feature known to
have no predictive power, as shown see below.

5. Search for the Split module. Drag this module onto your experiment canvas. Connect the
Results dataset output port of the Project Columns module to the Dataset input port of the
Split module. Set the Properties of the Split module as follows:

 Splitting mode: Split Rows

 Fraction of rows in the first output: 0.6

 Randomized split: Checked

 Random seed: 5416

 Stratified split: False

6. Search for the Decision Forest Regression module. Make sure you have selected the regression
model version of this algorithm. Drag this module onto the canvas. Set the properties of this
module as follows:

 Resampling method: Bagging

 Create trainer mode: Single Parameter

 Number of decision trees: 40

 Maximum depth of the decision trees: 32

 Number of random splits per node: 128

 Minimum number of samples per leaf node: 4

 Allow unknown values for categorized features: Checked

7. Search for the Train Model module. Drag this module onto the canvas.
8. Connect the Untrained Model output port of the Decision Forest Regression module to the

Untrained Model input port of the Train Model module.
9. Connect the Results dataset1 (left) output port of the Split module to the Dataset input port of

the Train model module.
10. Select the Train Model module. Then, on the Properties pane, launch the column selector and

select the Heating Load column.
11. Search for the Score Model module and drag it onto the canvas.
12. Connect the Trained Model output port of the of the Train Model module to the Trained Model

input port of the Score Model module. Then connect the Results dataset2 (right) output port of
the Split module to the Dataset port of the Score Model module.

13. Search for the Permutation Feature Importance module and drag it onto the canvas.
14. Connect the Trained Model output port of the Train Model module to the Trained model input

port of the Permutation Feature Importance module. Then connect the Results dataset2 (right)

output port of the Split module to the Dataset port of the Test data input port of the
Permutation Feature Importance module.

15. Select the Permutation Feature Importance module and in the Properties pane set the
following parameters:

 Random Seed: 4567

 Metric for measuring performance: Regression – Root Mean Squared Error

16. Search for the Evaluate Model module and drag it onto the canvas. Connect the Scored Dataset
output port of the Score Model module to the left hand Scored dataset input port of the
Evaluate Model module. The new portion of your experiment should now look like the
following:

17. Save and run the experiment. When the experiment is finished, visualize the Evaluation Result
port of the Evaluate Model module and review the performance statistics for the model.

Overall, these statistics are promising. The Coefficient of Determination is a measure of the
reduction in the variance, between the raw label and the model error; squared error. This static
is often referred to as R2. A perfect model would have a Coefficient of Determination of 1.0, all
the variance in the label is explained in the model. Relative Squared Error is the ratio of the
variance or squared error of the model divided by the variance of the data. A perfect model
would have a Relative Squared Error of 0.0, all model errors are zero. You should observe that
these results from the nonlinear model are an improvement over those achieved with the linear
model.

Prune features
1. Visualize the Feature importance output port of the Permutation Feature Importance module,

and note that there are some columns with low scores (less than 1), indicating that these
columns have little importance in predicting the label. You can optimize your model and make it
more generalizable by removing (or pruning) some of these features.

2. Make a note of the feature with the lowest importance score, and close the feature importance
dataset.

3. Select the Project Columns module you added at the beginning of this exercise, and on the
Properties pane click Launch column selector. Add the feature you identified as the least
important to the list of columns to be excluded.

4. Save and run the experiment. When the experiment has finished running click on the Evaluation
results output port of the Evaluate Model module and select Visualize. Note that these
performance measures have been changed very little by pruning the least important feature.
This result indicates that removing this feature was a good idea. In general, if removing a feature
makes little difference in model performance, you are better off removing it. This approach
simplifies the model and reduces the chances you model will not generalize well to new input
values when the model is placed in production.

5. Select the Project Columns module again, and launch the column selector. In a real experiment,
you would remove features one by one and re-evaluate the model at each stage until its
accuracy starts to decrease. However, in this lab, go ahead and configure the Project Columns
module to exclude the following features which do not change the model accuracy metrics
significantly:

 Orientation

 Glazing Area Distribution

 Surface Area 3

 Relative Compactness Sqred

 Wall Area 3

 Wall Area Sqred

 Surface Area Sqred

 Surface Area

 Relative Compactness

 Relative Compactness 3

At this point the Column Selector of the Project Columns module should be set to exclude the
columns shown below:

At the end of the pruning process, you are left with the following four features:

 Overall Height

 Wall Area

 Glazing Area

 Roof Area

Removing any of these features will cause the accuracy metrics to be degraded. Evidently, these
are all you need for good model performance.

Sweep Parameters to Improve the Model
You will now use the Sweep Parameters module to optimize the performance of the Decision Forest
model. The Sweep Parameters module searches a number of parameter combinations to find the
combination producing the best model performance.

1. Select all of the modules below the Project Columns module you added at the beginning of this
lab. Then copy and paste these modules onto the canvas and drag the copies to one side.

2. Connect the Results dataset output of the Project Columns module to the Dataset input of the
new Split module.

3. Remove the copied Permutation Feature Importance, Train Model, and Evaluate Model
modules.

4. Search for the Sweep Parameters module. Drag this module onto the canvas in place of the
Train Model module you removed.

5. Connect the Untrained model output port of the new Decision Forest Model module to the
Untrained model (left) input port of the Sweep Parameters module.

6. Connect the Results dataset1 (left) output port of the new Split module to the Training dataset
(middle) input port of the Sweep Parameters module.

7. Connect the Results dataset2 (right) output port of the Split module to the Optional test
dataset (right) input port of the Sweep Parameters module.

8. Connect the Trained model (right) output of the Sweep Parameters module to the Trained
model (left) input of the new Score Model module.

9. Click the Sweep Parameters module to expose the Properties pane. Set the properties as
follows so that 20 combinations of parameters are randomly tested:

 Specify parameter sweeping mode: Random sweep

 Maximum number of runs on random sweep: 20

 Random seed: 4567

 Column Selector: Heating Load

 Metric for measuring performance for classification: Accuracy

 Metric for measuring performance for regression: Coefficient of determination

10. Connect the Scored dataset output port of the copied Score Model module to the Scored
dataset to compare (right) input port of the original Evaluate Model module for the first
Decision Forest Regression model. The lower part of your experiment should now look like the
following:

11. Save and run the experiment. When the experiment is finished, visualize the Evaluation results
output port of the Evaluate Model module and compare the Coefficient of Determination and
Relative Squared Error values for the two models.

Cross Validate the Model
Cross validation or a machine learning model uses resampling of the dataset to test the performance on
a number of training and testing data subsets. Each training and testing data subset sampled from the
complete data set is called a fold. Ideally, a good machine learning model should work well regardless of
the test data used. When cross validated, a good model will have similar performance across the folds.
This property of good machine learning models is known as generalization. A model which generalizes
produces good results for any possible set of valid input values. Models that generalize can be expected
to work well in production.

1. Search for the Cross Validate Model module. Drag this module onto the canvas.
2. Connect the Untrained model output from the most recently added Decision Forest Model

module (the one connected to the Sweep Parameters module) to the Untrained model input
port of the Cross Validate Model module.

3. Connect the Results dataset output port of the Project Columns module to the Dataset input
port of the Cross Validate Model module.

4. Select the Cross Validate Model module, and set its properties as follows:

 Column Selector: Heating Load

 Random seed: 3467
Your experiment should resemble the following:

5. Save and run the experiment. When the experiment has finished, visualize the Evaluation
Results by Fold (right) output port of the Cross Validate Model module. Scroll to the right and
note the Relative Squared Error and Coefficient of Determination columns. Scroll to the bottom
of the page, passed the results of the 10 folds of the cross validation in the first 10 rows and
examine the Mean row toward the bottom. These results look like the following:

Notice that the Relative Squared Error and Coefficient of Determination values in the folds
(along the two right most columns) are not that different from each other. The values in the
folds are close to the values shown in the Mean row. Finally, the values in the Standard
Deviation row are much smaller than the corresponding values in the Mean row. These
consistent results across the folds indicate that the model is insensitive to the training and test
data chosen, and is likely to generalize well.

Evaluating Model Errors with R

In this exercise you will evaluate the model errors using custom R code.

Note: If you prefer to work with Python, skip this exercise and complete the following
exercise, Evaluating Model Errors with Python.

The summary performance statistics for the nonlinear Decision Forest Regression model look quite

promising. However, summary statistics can hide some significant problems one needs to be aware of.

To investigate the residuals, or model errors, you will use some custom R code. Much of this code is the

same or similar to code you used for the labs in Module 3.

1. Search for the Metadata Editor module and drag it onto your canvas.

2. Connect the Scored Dataset output of the newest Score Model module (connected to the

Sweep Parameters module) to the input of the Metadata Editor module.

3. Click the Metadata Editor module, and in the properties pane click Launch Column Selector.

Choose the Scored Label Mean column as shown in the figure below.

4. In the New column names box type ScoredLabels, with no quotes. The output from this

Metadata Editor model will now have a column name with no spaces, compatible with R data

frame column names.

5. Search for the Execute R Script module, and drag it onto your canvas. Connect the Results

Dataset output of the Metadata Editor module to the Dataset1 (left) input of the Execute R

Script module. Your experiment should resemble the figure below.

6. With the Execute R Script module selected, in the properties pane, replace the existing R script

with the following code. You can copy this code from VisResiduals.R in the folder where you

extracted the lab files:

frame1 <- maml.mapInputPort(1)

frame1$Resids <- frame1$HeatingLoad - frame1$ScoredLabels

Plot of residuals vs HeatingLoad.

library(ggplot2)

ggplot(frame1, aes(x = HeatingLoad, y = Resids , by =

OverallHeight)) +

 geom_point(aes(color = OverallHeight)) +

 xlab("Heating Load") + ylab("Residuals") +

 ggtitle("Residuals vs Heating Load") +

 theme(text = element_text(size=20))

 ## create some conditioned plots of the residuals

plotCols <- c("RelativeCompactnessSqred",

 "SurfaceArea",

 "GlazingArea")

plotEERes <- function(x){

 title <- paste("Residuals vs Heating Load conditioned by", x)

 facFormula <- paste("OverallHeight ~", x)

 ggplot(frame1, aes(Resids, HeatingLoad)) +

 geom_point() +

 facet_grid(facFormula) +

 ggtitle(title)

}

lapply(plotCols, plotEERes)

Conditioned histograms of the residuals

ggplot(frame1, aes(Resids)) +

 geom_histogram(binwidth = 0.5) +

 facet_grid(. ~ OverallHeight) +

 ggtitle('Histogram of residuals conditioned by Overall Height')

+

 xlab('Residuals')

Quantile-quantile normal plot of the residuals.

Resids35 <- frame1[frame1$OverallHeight == 3.5,]$Resid

Resids7 <- frame1[frame1$OverallHeigh == 7,]$Resid

par(mfrow = c(1,2))

qqnorm(Resids35)

qqnorm(Resids7)

par(mfrow = c(1,1))

rmse <- function(x){

 sqrt(sum(x^2)/length(x))

}

outFrame <- data.frame(

 rms_Overall = rmse(frame1$Resids),

 rms_35 = rmse(Resids35),

 rms_7 = rmse(Resids7))

maml.mapOutputPort('outFrame')

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML
Properties pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the
code from the clipboard, replacing the existing code.

Note that this code is nearly identical to the model evaluation code already discussed in lab 3C.

7. Save and run and run the experiment. Then, when the experiment is finished, visualize the R

Device port of the Execute R Script module.

8. Examine the scatter plot that shows heating load against residuals conditioned by

OverallHeight, which should look similar to this:

Examine the structure of these residuals with respect to the label, Heating Load. In an ideal

case, the residuals should appear random with respect to the label (Heating Load). In fact, there

is little structure in these residuals, and the distribution of these residuals does not change

much with the value of the label.

If you compare this plot to the similar plot you created for the Module 3 labs, you can see that

the linear structure in the residuals has disappeared. Further, the dispersion of the residuals is

significantly reduced.

In summary, using a nonlinear regression model fits these data well. The residuals are

reasonably well behaved.

9. Review the conditioned scatter plots have been created. For example, look in detail at the

scatter plot conditioned on GlazingArea and OverallHeight, as shown below.

Note the shaded conditioning level tiles across the top and right side of this chart. The four tiles

across the top (horizontal) show the four levels (unique values) of GlazingArea. The two tiles on

the right (vertical axis) show the two levels (unique values) of OverallHeight. Each scatter plot

shows the data falling into the group by GlazingArea and OverallHeight, with the label (Heating

Load) on the vertical axis and the residuals on the horizontal axis.

Examine this plot and notice that the residuals are not random across these plots. There is a

slight linear structure visible in these subplots. However, there is not a notable change in the

distribution of the residuals across the subplots. Further, the range of residual values is much

less than for the linear regression model used in Module 3. These observations confirm that the

nonlinear regression model is working reasonably well.

10. Examine the histogram, as shown below:

Examine these results, and note the differences in the histograms by OverallHeight. Further,

there are some small outliers for the OverallHeight of 7. However, the range of these residuals

is not great. These residuals are much reduced when compared to the equivalent pair of

histograms discussed in Module 3. Again, we can conclude that the nonlinear model is working

well.

11. Review the pair of Q-Q normal plots, as shown below:

Note: A Q-Q normal plot uses the quantiles of a theoretical Normal distribution on the
horizontal axis vs. the quantiles of the residuals on the vertical axis. For an ideal linear model,
the residuals will be normally distributed and fall close to a straight line.

The data shown on both of this plots deviates from straight lines. Further, some outliers are

noticeable. When compared to the plots for the linear model created for the Module 3 labs,

these plots show improvement. Primarily, the range of the outliers is much reduced. Again, we

can conclude that the nonlinear model is working well.

12. Close the R Device output.

13. Visualize the Result Dataset output of the Execute R Script module, and review the root squared

mean error results returned by the rsme function, as shown below:

Compare these results to those obtained in Module 3. All three measures of RMS error have

been reduced. Further the relative difference between OverallHeight of 3.5 and OverallHeight

of 7 are reduced.

Using a nonlinear regression model has worked well for this problem. The residual measures are

all satisfactory.

Evaluating Model Errors with Python
In this exercise you will evaluate the model errors using custom Python code

Note: If you prefer to work with R, complete the exercise Evaluating Model Errors with R.

The summary statistics for the nonlinear Decision Forest Regression model look quite promising.

However, summary statistics can hide some significant problems one should understand. To investigate

the residuals, or model errors, you will use some custom Python code. Much of this code is the same or

similar to code you used for the labs in Module 3.

1. Search for and locate the Metadata Editor module. Drag this module onto your canvas.

2. Connect the Scored Dataset output of the newest Score Model module (the one connected to

the Sweep Parameters module) to the input of the Metadata Editor module.

3. Select the Metadata Editor model, and in the Properties pane, click Launch Column Selector.

Choose the Overall Height column as shown in the figure below.

4. In the Categorical box select Make non-categorical. The output from this Metadata Editor

model will show the Overall Height column as a string type which we can work with in Python.

5. Search for and locate the Execute Python Script module. Drag this module onto your canvas.

6. Connect the Results Dataset output of the Metadata Editor module to the Dataset1 (left) input

of the Execute Python Script module. Your experiment should resemble the following the figure

below:

7. With the Execute Python Script module selected, in the properties pane, replace the existing

Python script with the following code. You can copy this code from VisResiduals.py in the folder

where you extracted the lab files:

def rmse(Resid):

 import numpy as np

 resid = Resid.as_matrix()

 length = Resid.shape[0]

 return np.sqrt(np.sum(np.square(resid)) / length)

def azureml_main(frame1):

 # Set graphics backend

 import matplotlib

 matplotlib.use('agg')

 import pandas as pd

 import pandas.tools.rplot as rplot

 import matplotlib.pyplot as plt

 import statsmodels.api as sm

Compute the residuals

 frame1['Resids'] = frame1['Heating Load'] - frame1['Scored

Label Mean']

 ## Create data frames by Overall Height

 temp1 = frame1.ix[frame1['Overall Height'] == 7]

 temp2 = frame1.ix[frame1['Overall Height'] == 3.5]

Create a scatter plot of residuals vs Heating Load.

 fig1 = plt.figure(1, figsize=(9, 9))

 ax = fig1.gca()

 temp1.plot(kind = 'scatter', x = 'Heating Load', \

 y = 'Resids', c = 'DarkBlue',

 alpha = 0.3, ax = ax)

 temp2.plot(kind = 'scatter', x = 'Heating Load', \

 y = 'Resids', c = 'Red', alpha = 0.3, ax = ax)

 ax.set_title('Heating load vs. model residuals')

 plt.show()

 fig1.savefig('plot1.png')

 ## Scatter plots of the residuals conditoned by

several features.

 col_list = ["Relative Compactness Sqred",

 "Surface Area",

 "Glazing Area"]

 for col in col_list:

 ## First plot one value of Overall Height.

 fig = plt.figure(figsize=(10, 5))

 fig.clf()

 ax = fig.gca()

 plot = rplot.RPlot(temp1, x = 'Heating Load',

 y = 'Resids')

 plot.add(rplot.GeomScatter(alpha = 0.3,

 colour = 'DarkBlue'))

 plot.add(rplot.TrellisGrid(['.', col]))

 ax.set_title('Residuals by Heating Load and height = 7

conditioned on ' + col + '\n')

 plot.render(plt.gcf())

 fig.savefig('scater_' + col + '7' + '.png')

 ## Now plot the other value of Overall Height.

 fig = plt.figure(figsize=(10, 5))

 fig.clf()

 ax = fig.gca()

 plot = rplot.RPlot(temp2, x = 'Heating Load',

 y = 'Resids')

 plot.add(rplot.GeomScatter(alpha = 0.3, colour = 'Red'))

 plot.add(rplot.TrellisGrid(['.', col]))

 ax.set_title('Residuals by Heating Load and height = 3.5

conditioned on ' + col + '\n')

 plot.render(plt.gcf())

 fig.savefig('scater_' + col + '3.5' + '.png')

Histograms of the residuals

 fig4 = plt.figure(figsize = (12,6))

 fig4.clf()

 ax1 = fig4.add_subplot(1, 2, 1)

 ax2 = fig4.add_subplot(1, 2, 2)

 ax1.hist(temp1['Resids'].as_matrix(), bins = 40)

 ax1.set_xlabel("Residuals for Overall Height = 3.5")

 ax1.set_ylabel("Density")

 ax1.set_title("Histogram of residuals")

 ax2.hist(temp2['Resids'].as_matrix(), bins = 40)

 ax2.set_xlabel("Residuals of model")

 ax2.set_ylabel("Density")

 ax2.set_title("Residuals for Overall Height = 7")

 fig4.savefig('plot4.png')

QQ Normal plot of residuals

 fig3 = plt.figure(figsize = (12,6))

 fig3.clf()

 ax1 = fig3.add_subplot(1, 2, 1)

 ax2 = fig3.add_subplot(1, 2, 2)

 sm.qqplot(temp1['Resids'], ax = ax1)

 ax1.set_title('QQ Normal residual plot \n with Overall Height

= 3.5')

 sm.qqplot(temp2['Resids'], ax = ax2)

 ax2.set_title('QQ Normal residual plot \n with Overall Height

= 7')

 fig3.savefig('plot3.png')

 out_frame = pd.DataFrame({ \

 'rmse_Overall' : [rmse(frame1['Resids'])], \

 'rmse_35Height' : [rmse(temp1['Resids'])], \

 'rmse_70Height' : [rmse(temp2['Resids'])] })

 return out_frame

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML
Properties pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the
code from the clipboard, replacing the existing code.

WARNING!: Ensure you have a Python return statement at the end of your azureml_main
function; for example, return frame1. Failure to include a return statement will prevent your
code from running and may produce an inconsistent error message.

Note that most details of this code are described in the labs for Module 3. The predicted value
column is now called Scored Label Mean.

8. Save and run the experiment. Then, when the experiment is finished, visualize the Python

device port of the Execute Python Script module.

9. Experiment the scatter plot that shows Heating Load against residuals conditioned by Overall

Height, which should look similar to this figure:

Examine the structure of these residuals with respect to the label, Heating Load. In an ideal case,

the residuals should appear random with respect to the label (Heating Load). In fact, there is

little structure in these residuals, and the distribution of these residuals does not change much

with the value of the label.

If you compare this plot to the similar plot you created for the Module 3 labs, you can see that

the linear structure in the residuals has disappeared. Further, the dispersion in the residuals is

significantly reduced.

In summary, using a nonlinear regression model fits these data well. The residuals are

reasonably well behaved.

10. Review the conditioned scatter plots have been created. For example, look in detail at the

scatter plots by Overall Height and conditioned on Glazing Area, as shown below.

There is a pair of conditioned scatter plots; one for Overall Height of 7 and one for Overall

Height of 3.5. Note the shaded conditioning level tiles across the top of these charts showing

the four levels (unique values) of Glazing Area. Each scatter plot shows the data falling into the

group by Glazing Area and Overall Height, with the label (Heating Load) on the vertical axis and

the Residuals on the horizontal axis.

Examine this plot and notice that the residuals are not completely random across these plots.

There is a slight linear structure visible in these subplots. However, there is not a notable change

in the distribution of the residuals across the subplots. Further, the range of residual values is

much less than for the linear regression model used in Module 3. These observations confirm

that the nonlinear regression model is working reasonably well.

11. Examine the histogram, as shown below:

Examine these results, and note the differences in the histograms by Overall Height. Further,

there are some small outliers for the Overall Height of 7. However, the range of these residuals

is not great. These residuals are much reduced when compared to the equivalent pair of

histograms discussed in Module 3. Again, we can conclude that the nonlinear model is working

well.

12. Review the pair of Q-Q normal plots, as shown below:

Note: A Q-Q normal plot uses the quantiles of a theoretical Normal distribution on the
horizontal axis vs. the quantiles of the residuals on the vertical axis. For an ideal linear model,
the residuals will be normally distributed and fall close to a straight line.

The data shown on both of this plots deviates from straight lines. Further, some outliers are

noticeable. When compared to the plots for the linear model created for the Module 3 labs,

these plots show improvement. Primarily, the range of the outliers is much reduced. Again, we

can conclude that the nonlinear model is working well.

13. Close the Python device output.

14. Visualize the Result Dataset output of the Execute Python Script module, and review the root

squared mean error results returned by the rsme function, as shown below:

Compare these results to those obtained in Module 3. All three measures of RMS error have

been reduced. Further the relative difference between Overall Height of 3.5 and Overall Height

of 7 are reduced.

Using a nonlinear regression model has worked well for this problem. The residual measures are

all satisfactory.

Summary
In this lab you have constructed and evaluated a nonlinear regression model. Highlight from the results

of this lab are:

 The nonlinear regression model fits the building energy efficiency data rather well. The residual

structure is improved when compared to the linear regression model used in the Module 3 labs.

 The nonlinear model only requires a small feature set to achieve these results.

 Using the Sweep Parameters module improved model performance.

 Cross validation indicates the model generalizes well.

Note: The experiment created in this lab is available in the Cortana Analytics library at

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9.

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9

