

Data Science and Machine Learning

Essentials
Lab 3C – Evaluating Models in Azure ML

By Stephen Elston and Graeme Malcolm

Overview
In this lab, you will learn how to evaluate and improve the performance of machine learning models.

Note: This lab assumes that you have completed the previous labs in this module. If you have not

completed Lab 3B, you can copy the experiment from the Cortana Analytics Gallery.

What You’ll Need
To complete this lab, you will need the following:

 An Azure ML account
 A web browser and Internet connection

 The lab files for this lab

Note: To set up the required environment for the lab, follow the instructions in the Setup document for

this course. Then download and extract the lab files for this lab.

Having created and scored machine learning models you are ready to evaluate the performance of these
models. You will evaluate your model using summary statistics produced by the Azure ML Evaluate
Model module. Next, you will perform an in-depth evaluation of model errors using custom R or Python
code.

Evaluating Model Performance
Having created a machine learning model you are ready to evaluate the performance of the model. You

will evaluate your model using summary statistics produced by the Azure ML Evaluate Model module. In

subsequent exercises, you will perform an in-depth evaluation of model errors using custom R or Python

code.

Having trained a model, you can examine the results to evaluate its effectiveness at predicting label

values. Predictive modeling is an iterative process that often involves creating and comparing different

sets of features, multiple models, and refining these choices until you find one that suits your

requirements.

Evaluate a Machine Learning Model
1. If you have not already done so, open a browser and browse to https://studio.azureml.net. Then sign

in using the Microsoft account associated with your Azure ML account.

2. If you prefer to work with R, save a copy of the Modeling (R) experiment you created in Lab 3B as

Evaluation (R). Otherwise, save a copy of the Modeling (Python) experiment as Evaluation

(Python). If you did not complete Lab 3B, you can copy the appropriate Modeling experiment from

the collection for this course in the Cortana Analytics Gallery at

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9.

3. Start with the model with the reduced feature set (filtered with a second Project Columns module).

Search for the Evaluate Model module and drag it onto your canvas. Connect the Scored Data Set

output port of the Score Model module to the left hand input of the Evaluate Model module. Your

experiment should now look like this:

Tip. When evaluating a single model, always use the left input to the Evaluate Model module. The
right input allows you to compare performance of another model to the performance of the first
model.

4. Save and run the experiment. When the experiment is finished, visualize the Evaluation Result port

of the Evaluate Model module and review the performance statistics for the model.

Overall, these statistics should be promising, if not ideal. The Coefficient of Determination, is a

measure of the reduction in the variance, between the raw label and the model error; squared

error. This static is often referred to as R2. A perfect model would have a Coefficient of

Determination of 1.0, all the variance in the label is explained in the model. Relative Squared Error

is the ratio of the variance or squared error of the model divided by the variance of the data. A

perfect model would have a Relative Squared Error of 0.0, all model errors are zero. You should

observe that the statistics for your model are some distance from ideal.

5. Close the evaluation results.

https://studio.azureml.net/
http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9

Compare Model Performance
Now that you have computed performance statistics for one model you can compare these figures to

those from another model.

1. Search for the Score Model module, and drag it to the canvas below the Train Model module for the

model that you have not so far evaluated. Then connect the output from unevaluated Train Model

module to the left input of the Score Model module, and connect the right output from the Split

module that defines the test data set for that model to the right input of the Score Model module.

Then finally, connect the output from the new Score Model module to the right input port of the

Evaluate Model module that is already connected to the Score Model module for the other model.

Your experiment should now look similar to this:

2. Save and run the experiment. When the experiment is finished, visualize the Evaluation Result port

of the Evaluate Model module and review the performance statistics for both models.

3. Compare the performance statistics for the models. For example, look at the Relative Squared Error

and the Coefficient of Determination. You see that the model on the right performs better than the

model on the left.

Our feature pruning was not successful, and the Glazing Area feature contained useful information.

This is likely an indication of some nonlinear behavior which our model has not properly captured.

We will investigate this problem further with custom R or Python code.

Understanding Model Errors with R
Note: If you prefer to work with Python, skip this exercise and complete the exercise Evaluating Model
Errors with Python.

In the previous exercise you evaluated the performance of two models using the summary statistics

provided by the Evaluate Model module. In this exercise you will evaluate the performance of a

machine learning model in greater depth using custom R code.

1. In the Evaluation (R) experiment, search for and locate the Metadata Editor module. Drag this

module onto your canvas. Connect the Scored Dataset output of the Score Model module for the

first model you created (and which you evaluated to be performing best) to the input of the

Metadata Editor module.

2. Select the Metadata Editor model and in the properties pane, launch the column selector and select

the Scored Labels column as shown below.

3. With the Metadata Editor module selected, in the properties pane, in the New column names box

type ScoredLabels. The output from this Metadata Editor model will now have a column name with

no spaces, compatible with R data frame column names.

4. Search for and locate the Execute R Script module. Drag this module onto your canvas. Connect the

Results Dataset output of the Metadata Editor module to the Dataset1 (left hand) input of the

Execute R Script module. Your experiment should resemble the following the figure below:

5. With the Execute R Script module selected, in the properties pane, replace the existing R script with

the following code. You can copy this code from VisResiduals.R in the folder where you extracted

the lab files:

frame1 <- maml.mapInputPort(1)

Compute the residuals

frame1$Resids <- frame1$HeatingLoad - frame1$ScoredLabels

Plot of residuals vs HeatingLoad.

library(ggplot2)

ggplot(frame1, aes(x = HeatingLoad, y = Resids , by =

OverallHeight)) +

 geom_point(aes(color = OverallHeight)) +

 xlab("Heating Load") + ylab("Residuals") +

 ggtitle("Residuals vs Heating Load") +

 theme(text = element_text(size=20))

create some conditioned plots of the residuals

plotCols <- c("SurfaceAreaSqred",

 "SurfaceArea",

 "RoofArea",

 "RelativeCompactnessSqred",

 "WallArea",

 "SurfaceArea3")

plotEERes <- function(x){

 title <- paste("Residuals vs Heating Load conditioned by", x)

 facFormula <- paste("OverallHeight ~", x)

 ggplot(frame1, aes(Resids, HeatingLoad)) +

 geom_point() +

 facet_grid(facFormula) +

 ggtitle(title)

}

lapply(plotCols, plotEERes)

Conditioned histograms of the residuals

ggplot(frame1, aes(Resids)) +

 geom_histogram(binwidth = 0.5) +

 facet_grid(. ~ OverallHeight) +

 ggtitle('Histogram of residuals conditioned by Overall Height') +

 xlab('Residuals')

Quantile-quantile normal plot of the residuals.

Resids35 <- frame1[frame1$OverallHeight == 3.5,]$Resid

Resids7 <- frame1[frame1$OverallHeigh == 7,]$Resid

par(mfrow = c(1,2))

qqnorm(Resids35)

qqnorm(Resids7)

par(mfrow = c(1,1))

Compute the RMSE values of the residuals

for both the overall and evaluation

parts of the dataset.

rmse <- function(x){

 sqrt(sum(x^2)/length(x))

}

outFrame <- data.frame(

 rms_Overall = rmse(frame1$Resids),

 rms_35 = rmse(Resids35),

 rms_7 = rmse(Resids7))

If in Azure output the data frame.

maml.mapOutputPort('outFrame')

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML Properties
pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the code from the
clipboard, replacing the existing code.

This code performs the following tasks:

a. Creates a column named Resids containing the residuals (the differences between the

original Heating Load label and the predicted Scored Label value)

b. Creates a scatter plot of the heating load (x axis) and the residuals (y axis). These data are

grouped by overall height. The points are given different colors depending on the overall

height.

c. Creates scatter plots that show heating load against residuals, conditioned by overall height

and other feature columns.

d. Creates a histogram that shows residuals conditioned by overall height.

e. Creates a Q-Q normal plot of the residuals.

f. Creates a function called rmse that returns root squared mean error. This function is called

three times; once for all of the residuals, once for the residuals with an OverallHeight of 3.5

and once for the residuals with an OverallHeight of 7.

6. Save and run the experiment. Then, when the experiment is finished, visualize the R Device port of

the Execute R Script module.

7. Examine the scatter plot that shows heating load against residuals conditioned by overall height,

which should look similar to this:

Note the structure of these residuals with respect to the label, HeatingLoad. In an ideal case, the

residuals should appear random with respect to the label (HeatingLoad). These results are not ideal.

First, notice that the residuals are in two groups of clusters, based on OverallHeight. Second, notice

that the residuals in each group have a linear structure.

8. Review the conditioned scatter plots have been created. For example, look in detail at the scatter

plot conditioned on RoofArea and OverallHeight, as shown below.

Note the shaded conditioning level tiles across the top and right side of this chart. The four tiles

across the top (horizontal) show the four levels (unique values) of RoofArea. The two tiles on

the right (vertical axis) show the two levels (unique values) of OverallHeight. Each scatter plot

shows the data falling into the group by RoofArea and OverallHeight, with the label (Heating

Load) on the vertical axis and the Residuals on the horizontal axis.

Examine this plot and notice that the residuals are not random across these plots. First, as

previously noted, a linear structure is visible in several of these subplots. Second, the placement

of the residuals is notably different from plot to plot across the bottom row (OverallHeight = 7).

These observations confirm that there is nonlinear behavior not captured by this model.

Examine the other conditioned scatter plots. You will see similar structure, further evidence that

a linear model does not fit this data particularly well.

9. Examine the histogram, as shown below:

Examine these results, and note the differences in the histograms by OverallHeight. Further, there

are apparent outliers for the OverallHeight of 7.

10. Review the pair of Q-Q normal plots, as shown below:

Note: A Q-Q normal plot uses the quantiles of a theoretical normal distribution on the
horizontal axis vs. the quantiles of the residuals on the vertical axis. For an ideal linear model,

the residuals will be normally distributed and fall close to a straight line.

You can see that pattern in neither of these plots resembles a straight line. This fact further

confirms that our model fit in some distance from being idea.

11. Close the R Device output.

12. Visualize the Result Dataset output of the Execute R Script module, and review the root squared

mean error results returned by the rsme function, as shown below.

These results show significant variation between the root squared mean error calculations for

the overall residuals and the residuals for OverallHeight of 3.5 and OverallHeight of 7. These

results indicate that the residuals are not independent the OverallHeight feature.

Understanding Model Errors with Python

Note: If you prefer to work with R, complete the previous exercise, Evaluating Model Errors with R.

In the previous exercise you evaluated the performance of two models using the summary statistics

provided by the Evaluate Model module. In this exercise you will evaluate the performance of a

machine learning model in greater depth using custom Python code.

1. In the Evaluation (Python) experiment, search for and locate the Metadata Editor module. Drag this

module onto your canvas. Connect the Scored Dataset output of the Score Model module for the

first model you created (and which you evaluated to be performing best) to the input of the

Metadata Editor module.

2. Select the Metadata Editor model and in the properties pane, launch the column selector and select

the Overall Height column as shown below.

3. With the Metadata Editor module selected, in the properties pane, in the Categorical box select

Make non-categorical. The output from this Metadata Editor model will show the Overall Height

column as a string type which we can work with in Python.

4. Search for and locate the Execute Python Script module. Drag this module onto your canvas.

Connect the Results Dataset output of the Metadata Editor module to the Dataset1 (left hand)

input of the Execute Python Script module. Your experiment should resemble the following the

figure below:

5. With the Execute Python Script module selected, in the properties pane, replace the existing Python

script with the following code. You can copy this code from VisResiduals.py in the folder where you

extracted the lab files:

def rmse(Resid):

 import numpy as np

 resid = Resid.as_matrix()

 length = Resid.shape[0]

 return np.sqrt(np.sum(np.square(resid)) / length)

def azureml_main(frame1):

 # Set graphics backend

 import matplotlib

 matplotlib.use('agg')

 import pandas as pd

 import pandas.tools.rplot as rplot

 import matplotlib.pyplot as plt

 import statsmodels.api as sm

Compute the residuals

 frame1['Resids'] = frame1['Heating Load'] - frame1['Scored

Labels']

Create data frames by Overall Height

 temp1 = frame1.ix[frame1['Overall Height'] == 7]

 temp2 = frame1.ix[frame1['Overall Height'] == 3.5]

Create a scatter plot of residuals vs Heating Load.

 fig1 = plt.figure(1, figsize=(9, 9))

 ax = fig1.gca()

 temp1.plot(kind = 'scatter', x = 'Heating Load', \

 y = 'Resids', c = 'DarkBlue', alpha = 0.3, ax = ax)

 temp2.plot(kind = 'scatter', x = 'Heating Load', \

 y = 'Resids', c = 'Red', alpha = 0.3, ax = ax)

 ax.set_title('Heating load vs. model residuals')

 plt.show()

 fig1.savefig('plot1.png')

Scatter plots of the residuals conditioned by

several features

 col_list = ["Relative Compactness",

 "Surface Area",

 "Wall Area",

 "Roof Area",

 "Glazing Area"]

 for col in col_list:

 ## First plot one value of Overall Height.

 fig = plt.figure(figsize=(10, 4.5))

 fig.clf()

 ax = fig.gca()

 plot = rplot.RPlot(temp1, x = 'Heating Load', y = 'Resids')

 plot.add(rplot.GeomScatter(alpha = 0.3, colour =

'DarkBlue'))

 plot.add(rplot.TrellisGrid(['.', col]))

 ax.set_title('Residuals by Heating Load and height = 7

conditioned on ' + col + '\n')

 plot.render(plt.gcf())

 fig.savefig('scater_' + col + '7' + '.png')

 ## Now plot the other value of Overall Height.

 fig = plt.figure(figsize=(10, 4.5))

 fig.clf()

 ax = fig.gca()

 plot = rplot.RPlot(temp2, x = 'Heating Load', y = 'Resids')

 plot.add(rplot.GeomScatter(alpha = 0.3, colour = 'Red'))

 plot.add(rplot.TrellisGrid(['.', col]))

 ax.set_title('Residuals by Heating Load and height = 3.5

conditioned on ' + col + '\n')

 plot.render(plt.gcf())

 fig.savefig('scater_' + col + '3.5' + '.png')

QQ Normal plot of residuals

 fig3 = plt.figure(figsize = (12,6))

 fig3.clf()

 ax1 = fig3.add_subplot(1, 2, 1)

 ax2 = fig3.add_subplot(1, 2, 2)

 sm.qqplot(temp1['Resids'], ax = ax1)

 ax1.set_title('QQ Normal residual plot \n with Overall Height =

3.5')

 sm.qqplot(temp2['Resids'], ax = ax2)

 ax2.set_title('QQ Normal residual plot \n with Overall Height =

7')

 fig3.savefig('plot3.png')

Histograms of the residuals

 fig4 = plt.figure(figsize = (12,6))

 fig4.clf()

 ax1 = fig4.add_subplot(1, 2, 1)

 ax2 = fig4.add_subplot(1, 2, 2)

 ax1.hist(temp1['Resids'].as_matrix(), bins = 40)

 ax1.set_xlabel("Residuals for Overall Height = 3.5")

 ax1.set_ylabel("Density")

 ax1.set_title("Histogram of residuals")

 ax2.hist(temp2['Resids'].as_matrix(), bins = 40)

 ax2.set_xlabel("Residuals of model")

 ax2.set_ylabel("Density")

 ax2.set_title("Residuals for Overall Height = 7")

 fig4.savefig('plot4.png')

 out_frame = pd.DataFrame({ \

 'rmse_Overall' : [rmse(frame1['Resids'])], \

 'rmse_35Height' : [rmse(temp1['Resids'])], \

 'rmse_70Height' : [rmse(temp2['Resids'])] })

 return out_frame

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML Properties
pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the code from the
clipboard, replacing the existing code.

Ensure you have a Python return statement at the end of your azureml_main function; for
example, return frame1. Failure to include a return statement will prevent your code from
running and may produce an inconsistent error message.

This code performs the following tasks:

a. Creates a function called rmse that returns root squared mean error.

b. Creates a column named Resids containing the residuals (the differences between the

original Heating Load label and the predicted Scored Label value)

c. Creates a data frame containing the data with an Overall Height value of 7, and a data

frame containing the data with an Overall Height value of 3.5.

d. Creates a scatter plot of the heating load (x axis) and the residuals (y axis). These data are

grouped by overall height. The points are given different colors depending on the overall

height.

e. Creates scatter plots that show heating load against residuals, conditioned by overall height

and other feature columns.

f. Creates a histogram that shows residuals conditioned by overall height.

g. Creates a Q-Q normal plot of the residuals.

h. Calls the rmse function three times; once for all of the residuals, once for the residuals with

an Overall Height of 3.5 and once for the residuals with an Overall Height of 7. The results

from these calls are returned as the output data frame for the function.

6. Save and run the experiment. Then, when the experiment is finished, visualize the Python device

port of the Execute Python Script module.

7. Examine the scatter plot that shows heating load against residuals conditioned by overall height,

which should look similar to this:

Examine the structure of these residuals with respect to the label, Heating Load. In an ideal case,

the residuals should appear random with respect to the label (Heating Load). These results are not

ideal. First, notice that the residuals are in two groups of clusters, based on Overall Height. Second,

notice that the residuals in each group have a linear structure.

8. Review the conditioned scatter plots have been created. For example, look in detail at the scatter

plots conditioned on Roof Area and Overall Height, as shown below.

Note the shaded conditioning level tiles across the top of this charts. The first plot only has one

value of Roof Area. The second chart has three tiles across the top (horizontal) showing the

three levels (unique values) of Roof Area. Each scatter plot shows the data falling into the group

by Roof Area and Overall Height.

Examine this plot and notice that the residuals are not random across these plots. First, as

previously noted, a linear structure is visible in several of these subplots. Second, the placement

of the residuals is notably different from plot to plot across the bottom row (Overall Height = 7).

These observations confirm that there is nonlinear behavior not captured by this model.

Examine the other conditioned scatter plots. You will see similar structure, further evidence that

a linear model does not fit this data particularly well.

9. Examine the histogram, as shown below:

Examine these results, and note the differences in the histograms by OverallHeight. Further,

there are apparent outliers for the OverallHeight of 7.

10. Review the pair of Q-Q normal plots, as shown below:

Note: A Q-Q normal plot uses the quantiles of a theoretical Normal distribution on the
horizontal axis vs. the quantiles of the residuals on the vertical axis. For an ideal linear model,

the residuals will be normally distributed and fall close to a straight line.

You can see that pattern in neither of these plots resembles a straight line. This fact further

confirms that our model fit in some distance from being idea.

11. Close the Python device output.

12. Visualize the Result Dataset output of the Execute Python Script module, and review the root

squared mean error results returned by the rsme function, as shown below.

These results show significant variation between the root squared mean error calculations for

the overall residuals and the residuals for Overall Height of 3.5 and Overall Height of 7. These

results indicate that the residuals are not independent the Overall Height feature.

Summary
In this lab, you evaluated a model in Azure ML and examined the errors in the scored or predicted
values. Your understanding of model performance and errors can be used to improve model
performance.

Note: The experiment created in this lab is available in the Cortana Analytics library at

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9.

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9

