

Data Science and Machine Learning

Essentials
Lab 3B – Building Models in Azure ML

By Stephen Elston and Graeme Malcolm

Overview
In this lab, you will learn how to use R or Python to engineer or construct new features and build a

machine learning model. If you intend to work with R, complete the Feature Engineering with R exercise.
If you plan to work with Python, complete the Feature Engineering with Python exercise. Unless you
need to work in both languages, you do not need to try both of these exercises.

Note: This lab assumes you have completed lab 3A. If you have not completed lab 3A, you can copy the

experiment from the Cortana Analytics Gallery.

In the previous lab, you noted the nonlinear relationship between the features in the building energy
efficient dataset and the label. One possible approach to modeling these data is to compute and use
polynomial features. In this lab you will compute just such features.

What You’ll Need
To complete this lab, you will need the following:

 An Azure ML account
 A web browser and Internet connection

 The lab files for this lab

Note: To set up the required environment for the lab, follow the instructions in the Setup document for

this course. Then download and extract the lab files for this lab.

Feature Engineering with R
Having visualized data to determine any apparent relationships between columns in a dataset, you can

prepare for modeling by selecting only the data columns that you believe will be pertinent features for

the label you need to predict. Additionally, you may decide to generate new feature columns based on

calculations that combine or extrapolate existing columns.

In this exercise, you will create an experiment that projects columns from the building energy efficiency

dataset, and generate new columns that will help you build a model to predict the heating load of a

building, which is a measure of its energy efficiency.

Note: If you prefer to work with Python, skip this exercise and complete the next exercise, Feature
Engineering with Python.

Add R to Generate New Columns
You will start by rearranging your experiment.

1. If you have not already done so, open a browser and browse to https://studio.azureml.net. Then

sign in using the Microsoft account associated with your Azure ML account.

2. Open the Visualize Data (R) experiment you created in Lab 3A, and save a copy as Modeling (R).

If you did not complete Lab 3A, you can copy the Visualize Data (R) experiment from the

collection for this course in the Cortana Analytics Gallery at

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9.

3. Delete the connections between the Metadata Editor and Normalize Data modules.

4. Add another Execute R Script module to your experiment. Connect the output of the second

Metadata Editor module to the Dataset1 input of the new Execute R Script module. Then

connect the Results dataset output of the Execute R Script module to the input of the

Normalize Data module. Your experiment should now look like the one shown here:

5. Select the new Execute R Script module, and in the Properties pane, replace the existing

Execute R Script module code with the following code. You can copy this code from the

NewFeatures.R file in the folder where you extracted the lab files for this lab.

eeframe <- maml.mapInputPort(1)

library(dplyr)

eeframe = mutate(eeframe,

 RelativeCompactnessSqred = RelativeCompactness^2,

https://studio.azureml.net/
http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9

 SurfaceAreaSqred = SurfaceArea^2,

 WallAreaSqred = WallArea^2 ,
 RelativeCompactness3 = RelativeCompactness^3,

 SurfaceArea3 = SurfaceArea^3,

 WallArea3 = WallArea^3)

maml.mapOutputPort('eeframe')

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML
Properties pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the
code from the clipboard, replacing the existing code.

Review the code, and note that it creates polynomial columns named

RelativeCompactnessSqred, SurfaceAreaSqred, and WallAreaSqred by squaring the values of

the existing RelativeCompactness, SurfaceArea, and WallArea columns, and polynomial

columns named RelativeCompactness3, SurfaceArea3, and WallArea3 by cubing the values of

the existing RelativeCompactness, SurfaceArea, and WallArea columns.

Note: In a later lab, you’ll learn how to evaluate the effectiveness of these features in a predictive

model. Remember that model creation is an iterative process, so you may go through several

iterations of creating new features, adding them to models, and evaluating their effectiveness.

6. Save and run the experiment. When the experiment has finished, visualize the Transformed

Dataset output port of the Normalize Data module, and verify that the dataset now includes

columns named RelativeCompactnessSqred, SurfaceAreaSqred, WallAreaSqred,

RelativeCompactness3, SurfaceArea3, and WallArea3, as shown here:

Visualize the New Columns
1. Select the last Execute R Script module in the experiment (after the Normalize Data module),

and in the Properties pane, replace the existing code in the Execute R Script with the following

code. You can copy this code from the VisFeatures.R file in the folder where you extracted the

lab files for this lab.

Use basic R graphics to create a pair-wise scatter plot

eeframe <- maml.mapInputPort(1)

Scatterplot matrix

pairs(~ ., data = eeframe)

Use ggplot2 to create conditioned scatter plots

library(ggplot2)

plotCols <- c("RelativeCompactness",

 "SurfaceArea",

 "WallArea",

 "RelativeCompactnessSqred",

 "SurfaceAreaSqred",

 "WallAreaSqred",

 "RelativeCompactness3",

 "SurfaceArea3",

 "WallArea3",

 "RoofArea",

 "GlazingArea",

 "GlazingAreaDistribution")

plotEE <- function(x){

 title <- paste("Heating Load vs", x, "\n conditioned on OverallHeight

and Orientation")

 ggplot(eeframe, aes_string(x, "HeatingLoad")) +

 geom_point() +

 facet_grid(OverallHeight ~ Orientation) +

 ggtitle(title) +

 stat_smooth(method = "lm")

}

lapply(plotCols, plotEE)

Create histograms

plotCols4 <- c("RelativeCompactness",

 "SurfaceArea",

 "WallArea",

 "RelativeCompactnessSqred",

 "SurfaceAreaSqred",

 "WallAreaSqred",

 "RelativeCompactness3",

 "SurfaceArea3",

 "WallArea3",

 "RoofArea",

 "GlazingArea",

 "GlazingAreaDistribution",

 "HeatingLoad")

library(gridExtra)

eeHist <- function(x) {

 title <- paste("Histogram of", x, "conditioned on OverallHeight")

 ggplot(eeframe, aes_string(x)) +

 geom_histogram(aes(y = ..density..)) +

 facet_grid(. ~ OverallHeight) +

 ggtitle(title) +

 geom_density()

}

lapply(plotCols4, eeHist)

Create box plots

eebox <- function(x) {

 title <- paste("Box plot of", x, "by OverallHeight")

 ggplot(eeframe, aes_string('OverallHeight', x)) +

 geom_boxplot() +

 ggtitle(title)

}

lapply(plotCols4, eebox)

Review the code, and note that it creates visualizations of the columns in the datasets, including

the new feature columns you added in the previous Execute R Script module.

2. Save and run the experiment.

3. When the experiment has finished, visualize the R Device Dataset output port of the second

Execute R Script module, and view the charts it has created.

In particular, note that the conditioned scatter plots for Heating Load vs Surface Area, Heating

Load vs Surface Area Sqred, Heating Load vs Surface Area 3, Heating Load vs Wall Area,

Heating Load vs Wall Area Sqred, and Heating Load vs Wall Area 3. The shape of the curves

on these plots is fairly similar for these similar features. There is some flattening of the curves with

the higher order polynomials, the effect we are looking for. However, he effect is not dramatic in

any event. Only by testing these features when you build machine learning models will you know

which of these features are effective.

4. Close the R Device output.

Select Initial Features
1. Search for the Project Columns module and drag it to the canvas below the Normalize Data

module. Then connect the Transformed dataset output port from the Normalize Data module

(which is already connected to the second Execute R Script module) to the input port of the

Project Columns module. You will use the Project Columns module to select the initial features

for the model based on the data exploration and feature engineering you have performed so

far.

2. Select the Project Columns module you just added, and in the Properties pane launch the

column selector. Then configure the module to begin with all columns, and then exclude the

following columns:

 Orientation

 GlazingAreaDistribution

3. Verify that your experiment looks like this, and then save the experiment and proceed to the

Creating a Model exercise later in this lab.

Feature Engineering with Python
Having visualized data to determine any apparent relationships between columns in a dataset, you can

prepare for modeling by selecting only the data columns that you believe will be pertinent features for

the label you hope to predict. Additionally, you may decide to generate new feature columns based on

calculations that combine or extrapolate existing columns.

In this exercise, you will create an experiment that projects columns from the building energy efficiency

dataset, and generate new columns that will help you build a model to predict the heating load of a

building, which is a measure of its energy efficiency.

Note: If you prefer to work with R, skip this exercise and complete the previous exercise, Feature

Engineering with R.

Add Python to Generate New Column
You will start by rearranging your experiment:

1. If you have not already done so, open a browser and browse to https://studio.azureml.net. Then

sign in using the Microsoft account associated with your Azure ML account.

2. Open the Visualize Data (Python) experiment you created in Lab 3A, and save a copy as

Modeling (Python). If you did not complete Lab 3A, you can copy the Visualize Data (Python)

experiment from the collection for this course in the Cortana Analytics Gallery at

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9.

3. Add another Execute Python Script module to your experiment.

4. Delete connections between the Project Columns and Normalize Data modules. Connect the

output of the Project Columns module to the Dataset1 input port of the new Execute Python

https://studio.azureml.net/
http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9

Script module. Then connect the Results dataset output of the new Execute Python Script

module to the input of the Normalize Data module. Your experiment should now resemble the

figure below.

5. Select the new Execute Python Script module, and in the Properties pane, replace the existing

code in the Execute Python Script module with the following code. You can copy this code from

the NewFeatures.py file in the folder where you extracted the lab files for this lab.

def azureml_main(frame1):

 sqrList = ["Relative Compactness", "Surface Area", "Wall Area"]

 sqredList = ["Relative Compactness Sqred", "Surface Area Sqred",

"Wall Area Sqred"]

 frame1[sqredList] = frame1[sqrList]**2

 cubeList = ["Relative Compactness 3", "Surface Area 3", "Wall Area

3"]

 frame1[cubeList] = frame1[sqrList]**3

 return frame1

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML
Properties pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the
code from the clipboard, replacing the existing code.

Review the code, and note that it creates polynomial columns named Relative Compactness

Sqred, Surface Area Sqred, and Wall Area Sqred by squaring the values of the existing Relative

Compactness, Surface Area, and Wall Area columns, and polynomial columns named Relative

Compactness 3, Surface Area 3, and Wall Area 3 by cubing the values of the existing Relative

Compactness, Surface Area, and Wall Area columns.

Note: In a later lab, you’ll learn how to evaluate the effectiveness of these features in a predictive

model. Remember that model creation is an iterative process, so you may go through several

iterations of creating new features, adding them to models, and evaluating their effectiveness.

6. Save and run the experiment. When the experiment has finished, visualize the Transformed

Dataset output port of the Normalize Data module, and verify that the dataset now includes

columns named Relative Compactness Sqred, Surface Area Sqred, Wall Area Sqred, Relative

Compactness 3, Surface Area 3, and Wall Area 3, as shown here:

Visualize the New Columns
1. Select the last Execute Python Script module in the experiment (after the Normalize Data

module), and in the Properties pane replace the existing code in the Execute Python Script

module with the following code. You can copy this code from the VisFeatures.py file in the folder

where you extracted the lab files for this lab.

def azureml_main(frame1):

import libraries

 import matplotlib

 matplotlib.use('agg') # Set backend

 from pandas.tools.plotting import scatter_matrix

 import pandas.tools.rplot as rplot

 import matplotlib.pyplot as plt

 import numpy as np

Create a pair-wise scatter plot

 fig1 = plt.figure(1, figsize=(10, 10))

 ax = fig1.gca()

 scatter_matrix(frame1, alpha=0.3,

 diagonal='kde', ax = ax)

 plt.show()

 fig1.savefig('scatter1.png')

Create conditioned scatter plots.

 col_list = ["Relative Compactness",

 "Surface Area",

 "Wall Area",

 "Relative Compactness Sqred",

 "Surface Area Sqred",

 "Wall Area Sqred",

 "Relative Compactness 3",

 "Surface Area 3",

 "Wall Area 3",

 "Roof Area",

 'Glazing Area',

 "Glazing Area Distribution"]

 indx = 0

 for col in col_list:

 if(frame1[col].dtype in [np.int64, np.int32,

np.float64]):

 indx += 1

 fig = plt.figure(figsize = (12,6))

 fig.clf()

 ax = fig.gca()

 plot = rplot.RPlot(frame1, x = col, y = 'Heating

Load')

 plot.add(rplot.TrellisGrid(['Overall

Height','Orientation']))

 plot.add(rplot.GeomScatter())

 plot.add(rplot.GeomPolyFit(degree=2))

 ax.set_xlabel(col)

 ax.set_ylabel('Heating Load')

 plot.render(plt.gcf())

 fig.savefig('scatter' + col + '.png')

Histograms of Heating Load by Overall Height

 col_list = ["Relative Compactness",

 "Surface Area",

 "Wall Area",

 "Relative Compactness Sqred",

 "Surface Area Sqred",

 "Wall Area Sqred",

 "Relative Compactness 3",

 "Surface Area 3",

 "Wall Area 3",

 "Roof Area",

 'Glazing Area',

 "Glazing Area Distribution",

 "Heating Load"]

 for col in col_list:

 temp7 = frame1.ix[frame1['Overall Height'] == 7,

col].as_matrix()

 temp35 = frame1.ix[frame1['Overall Height'] == 3.5,

col].as_matrix()

 fig = plt.figure(figsize = (12,6))

 fig.clf()

 ax7 = fig.add_subplot(1, 2, 1)

 ax35 = fig.add_subplot(1, 2, 2)

 ax7.hist(temp7, bins = 20)

 ax7.set_title('Histogram of ' + col + '\n for for Overall

Height of 7')

 ax35.hist(temp35, bins = 20)

 ax35.set_title('Histogram of ' + col + '\n for for

Overall Height of 3.5')

 fig.savefig('hists_' + col + '.png')

Creat boxplots.

 for col in col_list:

 if(frame1[col].dtype in [np.int64, np.int32,

np.float64]):

 fig = plt.figure(figsize = (6,6))

 fig.clf()

 ax = fig.gca()

 frame1[[col, 'Overall Height']].boxplot(column =

[col], ax = ax, by = ['Overall Height'])

 ax.set_xlabel('')

 fig.savefig('box_' + col + '.png')

Return the data frame

 return frame1

Review the code, and note that it creates visualizations of the columns in the datasets, including

the new feature columns you added in the previous Execute Python Script module.

2. Save and run the experiment.

3. When the experiment has finished, visualize the Python Device Dataset output port of the

second Execute Python Script module, and view the charts it has created.

In particular, note that the conditioned scatter plots for Heating Load vs Surface Area, Heating

Load vs Surface Area Sqred, Heating Load vs Surface Area 3, Heating Load vs Wall Area,

Heating Load vs Wall Area Sqred, and Heating Load vs Wall Area 3. The shape of the curves

on these plots is fairly similar for these similar features. There is some flattening of the curves with

the higher order polynomials, the effect we are looking for. However, he effect is not dramatic in

any event. Only by testing these features when you build machine learning models will you know

which of these features are effective.

Select Initial Features
1. Search for the Metadata Editor module, and drag it to the canvas. Then connect the Results

dataset output port from the Normalize Data module (which is already connected to the second

Execute Python Script module) to the input port of the Metadata Editor module so that your

experiment looks like this:

2. Select the Metadata Editor module, and in the Properties pane, launch the column selector.

Then configure the column selector to begin with no columns and include the Overall Height

and Orientation column names as shown in the following image.

3. With the Metadata Editor module selected, in the Properties pane, in the Categorical list, select

Make Categorical.

4. Search for the Project Columns module and drag it to the canvas below the Metadata Editor

module. Then connect the Results dataset output port from the Metadata Editor module to the

input port of the Project Columns module. You will use the Project Columns module to select

the initial features for the model based on the data exploration and feature engineering you

have performed so far.

5. Select the Project Columns module you just added, and in the Properties pane launch the

column selector. Then configure the module to begin with all columns, and then exclude the

following columns:

 Orientation

 Glazing Area Distribution

2. Verify that your experiment looks like this, and then save the experiment and proceed to the

Creating a Model exercise.

Creating a Model
Having prepared for modeling by selecting or creating columns that you believe will be pertinent

features for the label you hope to predict, you can start creating, training, and testing machine learning

models for your particular predictive requirements.

Create and Train a Model
1. Search for the Split module, and drag it to the canvas below the Project Columns module you

added at the end of the previous exercise. Then connect the Results dataset output port from
the Project Columns module to the input port of the Split module. You will use the Split module
to split the data into two sets; one to train the model, and another to test it.

2. Select the Split module, and in the Properties pane, set the following properties:
 Splitting mode: Split Rows

 Fraction of rows in the first output dataset: 0.6

 Randomized: Selected

 Random seed: 5416

 Stratified split: False

3. Search for the Linear Regression module, and drag it to the canvas beside the Split module.

Then select the Linear Regression module and in the Properties pane, set the following

properties:

 Solution method: Ordinary Least Squares

 L2 regularization weight: 0.0001

 Include intercept term: Unselected

 Random number seed: 345689

 Allow unknown category levels: Selected

4. Search for the Train Model module, and drag it to the canvas beneath the Split and Linear

Regression modules. Then connect the output from the Linear Regression model to the left

input of the Train Model module, and connect the left output of the Split module (which

represents the training data set) to the right input of the Train Model module.

5. Select the Train Model module, and in the Properties pane launch the column selector. Then

configure the module to include only the Heating Load column. This trains the model to predict

a value for the Heating Load label based on the other feature columns in the dataset.

6. Verify that your experiment from the second Project Columns module onwards resembles the

following image, and then save and run the experiment.

7. When the experiment has finished, visualize the output for the Train Model module, and note

that it describes the relative weight of each feature column. The feature weights represent the

relative importance that the trained model applies to each feature column when used to predict

the Heating Load label, based on the training data set. In the next exercise, you will use the set of

test data to evaluate these features.

8. Close the output.

Testing and Scoring Models
Having trained a model, you can examine it to evaluate its effectiveness at predicting label values.

Predictive modeling is an iterative process that often involves creating and comparing multiple models,

and refining these models until you find one that suits your requirements.

In this exercise, you will evaluate the effectiveness of the features used by your trained model against the

test data set. Then you will create a second model, and score the models to compare them.

Evaluate Feature Importance
1. Search for the Permutation Feature Importance module, and drag it to the canvas beneath the

Train Model module.

2. Connect the output of the Train Model module to the left input of the Permutation Feature

Importance module. Then connect the right output of the Split module (which represents the

training data set) to the right input of the Permutation Feature Importance module.

3. Select the Permutation Feature Importance module, and in the Properties pane, set the

following properties:

 Random seed: 1234

 Metric for measuring performance: Regression – Root Mean Squared Error

4. Verify that your experiment from the Project Columns module onwards resembles the following

image, and then save and run the experiment.

5. When the experiment has finished, visualize the output for the Permutation Feature Importance

module, and note that it displays the feature columns in descending order of importance for

predicting the label. Notice that the order of the features is different for the regression model

weights and the feature importance. This is not too surprising since the first figures are

regression weights and the second set of figures is computed using a permutation method on

the features. The lowest valued column in both cases in Glazing Area.

Create a Second Model
In the previous exercise, you computed some new features and then determined which features were

less important to the model. In this exercise you will compute a new model with a pruned feature set.

Feature pruning is an important process in data science. Models with unnecessary features are said to

be ‘over parameterized’. Over parameterized models will generally not generalize well to the range of

input values expected in production. However, one must proceed with caution. Removing too many

features can lead to the loss of important information and therefore reduced model performance.

1. Search for the Project Columns module, and drag it to the canvas below the second existing

Project Columns module. Then connect the output port from the existing Project Columns

module to the input port of the Project Columns module you just added (in addition to the Split

module to which it is already connected).

2. Select the Project Columns module you just added, and in the Properties pane launch the

column selector. Then configure the module to begin with all columns and exclude the Glazing

Area column; as shown here:

3. Verify that your experiment after the Project Columns module resembles this:

4. Click and drag around the Linear Regression, Split, and Train Model modules to select them,

and then copy and paste them. Move the new copies of the modules so that they are under the

Project Columns module that you added at the beginning of this procedure.

5. Connect the output of the Project Columns module to the input of the pasted Split module so

that your experiment after the Normalize Data module resembles the following image. Then

save and run the experiment.

6. When the experiment has finished, visualize the output for the second Train Model module

(which uses the reduced set of columns from the Project Columns module), and note that the

relative weighted feature columns do not include Glazing Area, which you removed from the

model.

Score a Model
1. Search for the Score Model module, and drag it to the canvas below the second Train Model

module. Then connect the output from second Train Model module to the left input of the

Score Model module, and connect the right output from the copied Split module (which

represents the test data set) to the right input of the Score Model module; as shown in the

following image:

2. Save and run the experiment.

3. When the experiment has finished, visualize the output of the Score Model module.

4. Note that the output includes a Scored Labels column, which contains the predicted value for

the Heating Load label (which is also included in the output).

5. Select the Scored Label column and in the Visualizations area, in the compare to list, select

Heating Load. Note that the scatter plot shows an approximately linear correlation between the

label predicted by the model and the actual label value in the test data, as shown here:

Summary
In this lab, you used custom Python or R code to generate new feature columns. Then you created a

model in Azure ML and examined the effectiveness of the features used to predict a label. You then

created a new model with a pruned feature set, and scored it to evaluate its accuracy.

Note: The experiment created in this lab is available in the Cortana Analytics library at

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9.

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9

