

Data Science and Machine Learning

Essentials
Lab 3A – Visualizing Data

By Stephen Elston and Graeme Malcolm

Overview
In this lab, you will learn how to use R or Python to visualize data. If you intend to work with R, complete
the Visualizing Data with R exercise. If you plan to work with Python, complete the Visualizing Data with
Python exercise. Unless you need to work in both languages, you do not need to try both exercises.

Note: This lab builds on knowledge and skills developed in the preceding labs in this course. If you have

little experience with Azure ML, and you did not complete the previous labs, you are advised to do so

before attempting this lab.

What You’ll Need
To complete this lab, you will need the following:

 An Azure ML account
 A web browser and Internet connection

 The lab files for this lab

 Python Anaconda and Spyder or R and RStudio

Note: To set up the required environment for the lab, follow the instructions in the Setup document for

this course. Then download and extract the lab files for this lab.

Visualizing Data with R
R includes some basic native data visualization functionality, and also supports the ggplot2 library;

which provides extensive graphical capabilities. This makes R a useful language with which to create

visualizations of your data in order to explore relationships between the data fields and identify features

that may be useful for predicting labels in machine learning projects.

In this exercise, you will use R to visualize data from a dataset of metrics for buildings. Specifically, you will

try to identify data fields that influence the heating load of a building, which is a measure of its energy

efficiency.

Note: If you prefer to work with Python, skip this exercise and complete the next exercise, Visualizing

Data with Python.

Install the ggplot2 Library
1. Start RStudio, and close any open script files from previous sessions.

2. In the Console pane, enter the following command to install the ggplot2 library. If you are

prompted to use a personal library, click Yes.

install.packages('ggplot2', dep = TRUE)

Load the Dataset
1. In RStudio, open the PrepEE.R file in the folder where you extracted the lab files for this course.

2. In the PrepEE.R pane, in the following code, change C:\\DAT203xLabfiles to the path to the

folder where you extracted the lab files for this course.

Load the data

dirName <- 'C:\\DAT203xLabfiles'

fileName <- "EnergyEfficiencyRegressiondata.csv"

infile <- file.path(dirName, fileName)

eeframe <- read.csv(infile, header = TRUE, stringsAsFactors =

FALSE)

Remove dots from column names.

names(eeframe) <- gsub("\\.", "", names(eeframe))

Remove columns we are not going to use.

eeframe$CoolingLoad <- NULL

Convert some columns to factors/categorical.

catList <- c("OverallHeight", "Orientation")

eeframe[, catList] <- lapply(eeframe[, catList],

 function(x)

as.factor(as.character(x)))

Scale the numeric features.

scaleList <- c("RelativeCompactness", "SurfaceArea",

 "WallArea", "RoofArea", "GlazingArea",

 "GlazingAreaDistribution")

eeframe[, scaleList] <- lapply(eeframe[, scaleList], function(x)

as.numeric(scale(x)))

3. Select the code listed above (with the modified path), and on the PrepEE.R toolbar, click Run. The

code performs the following actions:

a. Loads a data frame named eeframe with data from a text file named

EnergyEfficiencyRegressiondata.txt.

b. Cleans the data. Specifically:

 In the column names, periods (“.”) are removed (spaces in column names are

replaced with periods when a data frame is loaded in R).

 The Cooling Load (now renamed to CoolingLoad) column is removed, because

it contains similar data to the Heating Load column, and is not required for the

visualizations you will create in this exercise.

 The Overall Height and Orientation columns are converted to categorical

features (their numerical values indicate categories rather than scalar

measurements).

 The Relative Compactness, Surface Area, Wall Area, Roof Area, Glazing Area,

and Glazing Distribution columns are scaled so they can be easily compared.

4. In the Console pane, enter the following command:

head (eeframe)

5. View the results, which show the first few rows of the data frame. Note that the data includes the

following columns, which describe the physical attributes of a building and its Heating Load

measurement:

 RelativeCompactness

 SurfaceArea

 WallArea

 RoofArea

 OverallHeight

 Orientation

 GlazingArea

 GlazingAreaDistribution

 HeatingLoad

Create a Pair-Wise Scatter Plot
1. In RStudio, open the VisualizeEE.R file in the folder where you extracted the lab files for this

course.

2. In the VisualizeEE.R pane, under the comment ## Use basic R graphics to create a pair-wise

scatter plot, select the following code.

Azure = FALSE

if(Azure){

 eeframe <- maml.mapInputPort(1)

 maml.mapOutputPort('eeframe')

}

pairs(~ ., data = eeframe)

3. With the code above selected, on the VisualizeEE.R toolbar, click Run. When running in Azure,

the code loads data from the first input port of the Execute R Script module; but when running

locally, it uses the data frame you loaded in the PrepEE.r script. The pairs(~ ., data =

eeframe) statement creates a scatter plot matrix visualization that compares all columns in the

dataset.

4. In the Plots pane, view the scatter plot matrix that has been generated, as shown below.

5. Note that this plot is comprised of a number of scatter plots. For each variable there is both a row

and a column. The variable is plotted on the vertical axis in the row, and on the horizontal axis in

the column. In this way, every combination of cross plots for all variables are displayed in both

possible orientations. This type of plot allows you to examine the relationships between many

variables in one view. The alternative of examining a large number of scatter plot combinations

one at a time is both tedious and in all likelihood difficult since you need to remember

relationships you have already viewed to understand the overall structure of the data.

Some particular features you can notice include:

 You can see plots of RelativeCompactness vs. SurfaceArea; second from left in the top

row and second from top in the left most column. These two variable appear to be highly

correlated. We may not want to use both features in a model.

 Many of the other variables seem to cluster into two groups based on the value of

OverallHeight.

 HeatingLoad clusters into two groups for certain variables. For example, look at the cross

plots between HeatingLoad and RelativeCompactness and SurfaceArea.

Create Conditioned Scatter Plots
1. In the VisualizeEE.R pane, under the comment ## Use ggplot2 to create conditioned scatter

plots, select the following code.

library(ggplot2)

plotCols <- c("RelativeCompactness",

 "SurfaceArea",

 "WallArea",

 "RoofArea",

 "GlazingArea",

 "GlazingAreaDistribution")

plotEE <- function(x){

 title <- paste("Heating load vs", x, "\n conditioned on

OverallHeight and Orientation")

 ggplot(eeframe, aes_string(x, "HeatingLoad")) +

 geom_point() +

 facet_grid(OverallHeight ~ Orientation) +

 ggtitle(title) +

 stat_smooth(method = "lm")

}

lapply(plotCols, plotEE)

2. With the code above selected, on the VisualizeEE.R toolbar, click Run. The code performs the

following actions:

 Loads the ggplot2 library.

 Creates scatter plot charts that compare Heating Load with:

 Relative Compactness

 Surface Area

 Wall Area

 Roof Area

 Glazing Area

 Glazing Area Distribution

 Adds conditions for Overall Height and Orientation to each of these scatter plots.

3. In the Plots pane, use the Previous Plot and Next Plot toolbar buttons to view each of the

scatter plots, as shown below.

4. Note that each chart includes eight scatter plots. There are four shaded tiles horizontally across

the top, one for each level (unique value) of Orientation. Two shaded tiles, arranged vertically, on

the right represent the two levels (unique values) of OverallHeight. Each of these scatter plots

has RelativeCompactness on the vertical (x) axis and HeatingLoad on the vertical (y) axis. The

data are grouped by, or condition on Overall Height value (3.5 and 7) and Orientation value (2,

3, 4, and 5).

5. Examine this chart and note the following interesting features in these scatter plots:

 The range of values of HeatingLoad are quite different between the upper and lower

rows; OverallHeight of 3.5 and 7, respectively. In fact, there is very little overlap in these

values, indicating that OverallHeight is an important feature in these data.

 The distribution of these data does not change significantly with the levels of

Orientation, indicating it is not a significant feature.

 There is a notable trend of HeatingLoad with respect to RelativeCompactness,

indicating RelativeCompactness is a significant feature.

Create Histograms
1. In the VisualizeEE.R pane, under the comment ## Create histograms, select the following code.

plotCols4 <- c("RelativeCompactness",

 "SurfaceArea",

 "WallArea",

 "RoofArea",

 "GlazingArea",

 "GlazingAreaDistribution",

 "HeatingLoad")

library(gridExtra)

eeHist <- function(x) {

 title <- paste("Histogram of", x, "conditioned on

OverallHeight")

 ggplot(eeframe, aes_string(x)) +

 geom_histogram(aes(y = ..density..)) +

 facet_grid(. ~ OverallHeight) +

 ggtitle(title) +

 geom_density()

}

lapply(plotCols4, eeHist)

2. With the code above selected, on the VisualizeEE.R toolbar, click Run. The code performs the

following actions:

a. Creates histograms for each of the following columns:

 Relative Compactness

 Surface Area

 Wall Area

 Roof Area

 Glazing Area

 Glazing Area Distribution

 Heating Load

b. Adds a condition for Overall Height to each of these histogram.

c. Adds a line to indicate density.

3. In the Plots pane, use the Previous Plot and Next Plot toolbar buttons to view each of the

histograms, as shown below.

Note: A histogram plots the density of a distribution of the vertical axis, vs. bins of values on the

horizontal axis. The values of a continuous variable are placed into one of several equal width

bins. The density for each bin is the count of values in that bin. As the number or width of the

bins changes, the details of the histogram will change. Histograms provide an empirical view of

the distribution of the data being plotted.

4. Examine the pairs of histograms created. In most cases, the range of values on the horizontal azis

are quite different for the two values of Overall Height; 7 and 3.5. A few of histogram pairs show

little difference between the two values of Overall Height.

Direct your attention to the histograms of Heating Load. Examine this chart and note how

different the distribution of Heating Load is for the two values of Overall Height. In fact, there is

very little overlap in the range of values for the two levels of Overall Height. Additionally, note

the outliers in both distributions shown.

Create Box Plots

1. In the VisualizeEE.R pane, under the comment ## Create box plots, select the following code.

eebox <- function(x) {

 title <- paste("Box plot of", x, "by OverallHeight")

 ggplot(eeframe, aes_string('OverallHeight', x)) +

 geom_boxplot() +

 ggtitle(title)

}

lapply(plotCols4, eebox)

2. With the code above selected, on the VisualizeEE.R toolbar, click Run. The code creates a box

plot of each of the following columns conditioned on OverallHeight:

 Relative Compactness

 Surface Area

 Wall Area

 Roof Area

 Glazing Area

 Glazing Area Distribution

 Heating Load

3. In the Plots pane, use the Previous Plot and Next Plot toolbar buttons to view each of the box

plots, as shown below.

Note: The most prominent feature of a boxplot is the box. The box encloses the inner two

quartiles of the distribution; first upper and first lower quartile. The line inside the box is placed at

the median value. The lines or whiskers coming from the top and bottom of the box represent the

outer upper and lower most quartiles of the distribution; second upper and second lower quartile.

Any outliers are represented by symbols beyond the end of the end of the whiskers.

4. Examine the boxplots created for each of the variables. These boxplots show a different view of

similar distribution information as the histograms.

In most cases, there is little overlap in the values of the variable when grouped by the two levels

(values) of Overall Height; 7 and 3.5. A few of boxplots show little difference between the two

values of Overall Height.

Direct your attention to the boxplot of Heating Load. Examine this chart and note how different

the distribution of Heating Load is for the two values of Overall Height. In fact, there is very

little overlap in the range of values for the two levels of Overall Height.

Create Visualizations in an Azure Machine Learning Experiment
1. If you have not already done so, open a browser and browse to https://studio.azureml.net. Then

sign in using the Microsoft account associated with your Azure ML account.

2. Create a new blank experiment, and give it the title Visualize Data (R).

3. Search for the Energy Efficiency Regression data dataset, and drag it to the experiment canvas.

4. Search for the Project Columns module and drag it to the canvas below the Energy Efficiency

Regression data dataset. Then connect the output port from the Energy Efficiency Regression

data dataset to the first input port of the Project Columns module.

5. Select the Project Columns module, and in the Properties pane, launch the column selector.

Then configure the column selector to begin with all columns and exclude the Cooling Load

column as shown in the following image.

6. Search for the Metadata Editor module, and drag it to the canvas below the Project Columns

module. Then connect the Results dataset output port from the Project Columns module to the

input port of the Metadata Editor module.

7. Select the Metadata Editor module, and in the Properties pane, launch the column selector.

Then configure the column selector to begin with no columns and include the Overall Height

and Orientation column names as shown in the following image.

8. With the Metadata Editor module selected, in the Properties pane, in the Categorical list, select

Make Categorical.

9. Drag a second Metadata Editor module to the canvas below first one. Then connect the Results

dataset output port from the first Metadata Editor module to the input port of the second one.

10. Select the second Metadata Editor module, and in the Properties pane, launch the column

selector. Then configure the column selector to begin with no columns and include all column

names as shown in the following image.

https://studio.azureml.net/

11. With the second Metadata Editor module selected, in the Properties pane, note the list of

selected column names. Then in the New column names text box, enter the column names in

the same order as they are listed, with spaces removed, separated by commas. For example:

RelativeCompactness,SurfaceArea,WallArea,RoofArea,OverallHeight,Orienta

tion,GlazingArea,GlazingAreaDistribution,HeatingLoad

12. Search for the Normalize Data module, and drag it to the canvas below the Metadata Editor

module. Then connect the output port from the Metadata Editor module to the input port of

the Normalize Data module.

13. Select the Normalize Data module, and in the Properties pane, in the Transformation Method

list, select MinMax. Then launch the column selector and configure the module to begin with no

columns, include all Numeric columns, exclude the HeatingLoad column, and exclude all

Categorical columns; as shown in the following image.

14. Search for the Execute R Script module, and drag it to the experiment canvas under the

Metadata Editor module. Then connect the Transformed dataset output port from the

Normalize Data module to the Dataset1 input port of the Execute R Script module. Your

experiment should now look like the following figure:

15. Select the Execute R Script module, and in the Properties pane, replace the default R script with

the code from the VisualizeEE.R script you ran in RStudio (ensure you copy and paste the entire

script).

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML
Properties pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the
code from the clipboard, replacing the existing code.

16. Edit the R script in the Properties pane to change the statement Azure = FALSE to Azure =

TRUE. This is required to use the data from the dataset instead of loading it from a local

variable.

17. Save and run the experiment.

18. When the experiment has finished running, visualize the output from the R Device dataset

output port of the Execute R Script module (the output on the right), and in the Graphics Device

area, view the data visualizations generated by the R script, as shown in the following image.

19. Close the R Device output.

Visualizing Data with Python
Python supports the matplotlib library; which provides extensive graphical capabilities. This makes

Python a useful language with which to create visualizations of your data in order to explore relationships

between the data fields and identify features that may be useful for predicting labels in machine learning

projects.

In this exercise, you will use Python to visualize data from a dataset of metrics for buildings. Specifically,

you will try to identify data fields that influence the heating load of a building, which is a measure of its

energy efficiency.

Note: If you prefer to work with R, skip this exercise and complete the previous exercise, Visualizing

Data with R.

Load the Dataset
1. Start Spyder, and open the PrepEE.py file in the folder where you extracted the lab files for this

course.

2. In the PrepEE.py pane, in the following code, change C://DAT203xLabfiles to the path to the

folder where you extracted the lab files for this course.

Load the data

import pandas as pd

import os

from sklearn import preprocessing

pathName = "c://DAT203xLabfiles"

fileName = "EnergyEfficiencyRegressiondata.csv"

filePath = os.path.join(pathName, fileName)

eeframe = pd.read_csv(filePath)

Remove columns we're not going to use

eeframe = eeframe.drop('Cooling Load', 1)

scale numeric features

scaleList = ["Relative Compactness", "Surface Area",

 "Wall Area", "Roof Area", "Glazing Area",

 "Glazing Area Distribution"]

arry = eeframe[scaleList].as_matrix()

eeframe[scaleList] = preprocessing.scale(arry)

3. Select the code listed above (with the modified path) and on the toolbar, click Run current cell.
The code performs the following actions:

a. Loads a data frame named eeframe with data from a text file named

EnergyEfficiencyRegressiondata.txt.

b. Cleans the data. Specifically:

 The Cooling Load column is removed, because it contains similar data to the

Heating Load column, and is not required for the visualizations you will create in

this exercise.

 The Relative Compactness, Surface Area, Wall Area, Roof Area, Glazing Area,

and Glazing Distribution columns are scaled so they can be easily compared.

4. In the IPython console pane, enter the following command:

eeframe

6. View the results, which show the first few rows of the data frame. Note that the data includes the

following columns, which describe the physical attributes of a building and its Heating Load

measurement:

 Relative Compactness

 Surface Area

 Wall Area

 Roof Area

 Overall Height

 Orientation

 Glazing Area

 Glazing Area Distribution

 Heating Load

Import the matplotlib Library
1. In Spyder, open the VisualizeEE.py file in the folder where you extracted the lab files for this

course.

2. In the VisualizeEE.py pane, under the comment ## Import Libraries, select the following code.

 import matplotlib

 matplotlib.use('agg') # Set backend

 from pandas.tools.plotting import scatter_matrix

 import pandas.tools.rplot as rplot

 import matplotlib.pyplot as plt

 import numpy as np

3. With the code above selected, on the toolbar, click Run current cell. The code imports the
matplotlib library, and some other libraries used in the script. Please ignore the warning about
rplot being deprecated.

Note: When running in an IPython console on your desktop machine the above code may

generate several warnings. Setting a backend may be ignored. Further, the rplot library will

generate warnings that it has been deprecated. Please ignore these warnings. This code will

operate without warnings in the Azure ML Execute Python Script module.

Create a Pair-Wise Scatter Plot
1. In the VisualizeEE.py pane, under the comment ## Create a pair-wise scatter plot, select the

following code.

Azure = False

If in Azure, frame1 is passed to function

if(Azure == False):

 frame1 = eeframe

fig1 = plt.figure(1, figsize=(10, 10))

ax = fig1.gca()

scatter_matrix(frame1, alpha=0.3,

 diagonal='kde', ax = ax)

plt.show()

if(Azure == True): fig1.savefig('scatter1.png')

2. With the code above selected, on the toolbar, click Run current cell. When running in Azure, a

data frame parameter named frame1 is passed to the first input port of the Execute Python

Script module; but when running locally, this code loads frame1 with the eeframe data frame

you loaded in the PrepEE.py script. The code then creates a scatter plot matrix visualization that

compares all columns in the dataset, and if running in Azure, saves the resulting image so that it

can be included in the output.

3. In the IPython console pane, view the scatter plot matrix that has been generated, as shown

below.

Note: This plot is comprised of a number of scatter plots. For each variable there is both a row

and a column. The variable is plotted on the vertical axis in the row, and on the horizontal axis in

the column. In this way, every combination of cross plots for all variables are displayed in both

possible orientations. This type of plot allows you to examine the relationships between many

variables in one view. The alternative of examining a large number of scatter plot combinations

one at a time is both tedious and in all likelihood difficult since you need to remember

relationships you have already viewed to understand the overall structure of the data.

4. Some particular features you can notice include:

 You can see plots of Relative Compactness vs. Surface Area; second from left in the top

row and second from top in the left most column. These two variable appear to be highly

correlated. We may not want to use both features in a given model.

 Many of the other variables seem to cluster into two groups based on the value of

Overall Height.

 Heating Load clusters into two groups for certain variables. For example, look at the

cross plots between Heating Load and Relative Compactness and Surface Area.

Create Conditioned Scatter Plots
1. In the VisualizeEE.py pane, under the comment ## Create conditioned scatter plots, select the

following code.
Create conditioned scatter plots.

 col_list = ["Relative Compactness",

 "Surface Area",

 "Wall Area",

 "Roof Area",

 'Glazing Area',

 "Glazing Area Distribution"]

 indx = 0

 for col in col_list:

 if(frame1[col].dtype in [np.int64, np.int32,

np.float64]):

 indx += 1

 fig = plt.figure(figsize = (12,6))

 fig.clf()

 ax = fig.gca()

 plot = rplot.RPlot(frame1, x = col, y = 'Heating

Load')

 plot.add(rplot.TrellisGrid(['Overall

Height','Orientation']))

 plot.add(rplot.GeomScatter())

 plot.add(rplot.GeomPolyFit(degree=2))

 ax.set_xlabel(col)

 ax.set_ylabel('Heating Load')

 plot.render(plt.gcf())

 if(Azure == True): fig.savefig('scatter' + col +

'.png')

2. With the code above selected, on the toolbar click Run current cell. The code creates scatter

plot charts that compare Heating Load with:

 Relative Compactness

 Surface Area

 Wall Area

 Roof Area

 Glazing Area

 Glazing Area Distribution

The code adds conditions for Overall Height and Orientation to each of these scatter plots.

3. In the IPython console pane, view the scatter plots, as shown below.

4. Note that each chart includes eight scatter plots. There are two rows of shaded tiles horizontally

across the top, one for each level (unique value) of Orientation, and one for each of the two

levels (unique values) of Overall Height. Each of these scatter plots has Relative Compactness

on the vertical (x) axis and Heating Load on the vertical (y) axis. The data are grouped by, or

condition on Overall Height value (3.5 and 7) and Orientation value (2, 3, 4, and 5).

5. Examine this chart and note the following interesting features in these scatter plots:

 The range of values of Heating Load are quite different between the upper and lower

rows; Overall Height of 3.5 and 7, respectively. In fact, there is very little overlap in these

values, indicating that Overall Height is an important feature in these data.

 The distribution of these data does not change significantly with the levels of

Orientation, indicating it is not a significant feature.

 There is a notable trend of Heating Load with respect to Relative Compactness,

indicating Relative Compactness is a significant feature.

Create Histograms
1. In the VisualizeEE.py pane, under the comment ## Histograms of features by Overall Height,

select the following code.

Create histograms

 col_list = ["Relative Compactness",

 "Surface Area",

 "Wall Area",

 "Roof Area",

 'Glazing Area',

 "Glazing Area Distribution",

 "Heating Load"]

 for col in col_list:

 temp7 = frame1.ix[frame1['Overall Height'] == 7,

 col].as_matrix()

 temp35 = frame1.ix[frame1['Overall Height'] == 3.5,

 col].as_matrix()

 fig = plt.figure(figsize = (12,6))

 fig.clf()

 ax7 = fig.add_subplot(1, 2, 1)

 ax35 = fig.add_subplot(1, 2, 2)

 ax7.hist(temp7, bins = 20)

 ax7.set_title('Histogram of ' +col +

 '\n for for Overall Height of 7')

 ax35.hist(temp35, bins = 20)

 ax35.set_title('Histogram of ' +col +

 '\n for for Overall Height of 3.5')

2. With the code above selected, on the toolbar click Run current cell. The code creates histogram

pairs for each of the following columns:

 Relative Compactness

 Surface Area

 Wall Area

 Roof Area

 Glazing Area

 Glazing Area Distribution

 Heating Load

3. In the IPython console pane, view each of the histograms, as shown below.

Note: A histogram plots the density of a distribution of the vertical axis, vs. bins of values on the

horizontal axis. The values of a continuous variable are placed into one of several equal width

bins. The density for each bin is the count of values in that bin. As the number or width of the

bins changes, the details of the histogram will change. Histograms provide an empirical view of

the distribution of the data being plotted.

4. Examine the pairs of histograms created. In most cases, the range of values on the horizontal axis

are quite different for the two values of Overall Height; 7 and 3.5. A few of histogram pairs show

little difference between the two values of Overall Height.

Direct your attention to the histograms of Heating Load. Examine this chart and note how

different the distribution of Heating Load is for the two values of Overall Height. In fact, there is

very little overlap in the range of values for the two levels of Overall Height. Additionally, note

the outliers in both distributions shown.

Create Boxplots
1. In the VisualizeEE.py pane, under the comment ## Create boxplots, select the following code.

 for col in col_list:

 if(frame1[col].dtype in [np.int64, np.int32, np.float64]):

 fig = plt.figure(figsize = (6,6))

 fig.clf()

 ax = fig.gca()

 frame1[[col, 'Overall Height']].boxplot(column = [col],

 ax = ax, by = ['Overall Height'])

 ax.set_xlabel('')

 if(Azure == True): fig.savefig('box_' + col + '.png')

2. With the code above selected, on the toolbar click Run current cell. The code uses the col_list list

you just created to make boxplots for each of the following columns:

 Relative Compactness

 Surface Area

 Wall Area

 Roof Area

 Glazing Area

 Glazing Area Distribution

 Heating Load

3. In the IPython console pane, view each of the boxplot pairs as shown below.

Note: The most prominent feature of a boxplot is the box. The box encloses the inner two

quartiles of the distribution; first upper and first lower quartile. The line inside the box is placed

at the median value. The lines or whiskers coming from the top and bottom of the box represent

the outer upper and lower most quartiles of the distribution; second upper and second lower

quartile. Any outliers are represented by symbols beyond the end of the end of the whiskers.

5. Examine the boxplots created for each of the variables. These boxplots show a different view of

similar distribution information as the histograms.

In most cases, there is little overlap in the values of the variable when grouped by the two levels

(values) of Overall Height; 7 and 3.5. A few of boxplots show little difference between the two

values of Overall Height.

Direct your attention to the boxplot of Heating Load. Examine this chart and note how different

the distribution of Heating Load is for the two values of Overall Height. In fact, there is very

little overlap in the range of values for the two levels of Overall Height.

Create Visualizations in an Azure Machine Learning Experiment
1. If you have not already done so, open a browser and browse to https://studio.azureml.net. Then

sign in using the Microsoft account associated with your Azure ML account.

2. Create a new blank experiment, and give it the title Visualize Data (Python).

3. Search for the Energy Efficiency Regression data dataset, and drag it to the experiment canvas.

4. Search for the Project Columns module and drag it to the canvas below the Energy Efficiency

Regression data dataset. Then connect the output port from the Energy Efficiency Regression

data dataset to the first input port of the Project Columns module.

5. Select the Project Columns module, and in the Properties pane, launch the column selector.

Then configure the column selector to begin with all columns and exclude the Cooling Load

column as shown in the following image.

6. Search for the Normalize Data module, and drag it to the canvas below the Project Columns

module. Then connect the output port from the Project Columns module to the input port of

the Normalize Data module.

7. Select the Normalize Data module, and in the Properties pane, in the Transformation Method

list, select MinMax. Then launch the column selector and configure the module to begin with no

columns, include all Numeric columns, exclude the Heating Load column (which is the label we

hope to predict), and exclude the Overall Height, and Orientation columns (which are

categorical), as shown in the following image.

https://studio.azureml.net/

8. Search for the Execute Python Script module, and drag it to the experiment canvas under the

Normalize Data module. Then connect the Transformed dataset output port from the

Normalize Data module to the first input port of the Execute Python Script module. At this

point your experiment should look like the following figure:

9. Select the Execute Python Script module, and in the Properties pane, replace the default

Python script with the code from the VisualizeEE.py script you ran in Spyder (ensure you copy

and paste the entire script, including the function definition and the return statement!).

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML
Properties pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the
code from the clipboard, replacing the existing code.

10. Edit the Python script in the Properties pane to change the statement Azure = False to

Azure = True. This is required to use the data from the dataset instead of loading it from a

local file.

11. Save and run the experiment.

12. When the experiment has finished running, visualize the output from the Python Device dataset

output port of the Execute Python Script module (the output on the right), and in the Graphics

area, view the data visualizations generated by the Python script, as shown in the following

image.

13. Close the Python device output.

Summary
In this lab, you used custom Python or R code to visualize data. This is an important technique for

exploring data in order to identify relationships between data fields when planning a machine learning

model.

Note: The experiment created in this lab is available in the Cortana Analytics library at

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9.

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9

