
 
 
 

Data Science and Machine Learning 

Essentials 
Lab 1 – Getting Started with Azure Machine Learning  

By Graeme Malcolm and Stephen Elston  

 

Overview 
In this lab, you will learn how to open and navigate Microsoft Azure Machine Learning (Azure ML) Studio. 

You will also learn how to create and run experiments and to use SQL in Azure ML modules. 
 

What You’ll Need 
To complete this lab, you will need the following: 

 An Azure ML account. 
 A web browser and Internet connection. 
 The lab files for this lab 

 
Note: To set up the required environment for the lab, follow the instructions in the Setup Guide for this 

course. Then download and extract the lab files for this lab. 

Creating an Azure ML Experiment 
Azure ML enables you to create experiments in which you can manipulate data, create predictive models, 

and visualize the results. In this exercise, you will create a simple experiment in which you will explore a 

sample dataset that contains details of bike rentals, from which you would like to predict the number of 

bike rentals on a given day based on seasonal and weather variables. 

Sign into Azure ML Studio 

1. Open a browser and browse to https://studio.azureml.net. 

2. Click Sign In and sign in using the Microsoft account associated with your free Azure ML account. 

3. If the Welcome page is displayed, close it by clicking the OK icon (which looks like a checkmark). 

Then, if the New page (containing a collection of Microsoft samples) is displayed, close it by 

clicking the Close icon (which looks like an X). 

4. You should now be in Azure ML Studio with the Experiments page selected, which looks like the 

following image (if not, click the Studio tab at the top of the page). 

https://studio.azureml.net/


 
 

 
 

Create an Experiment and Add Modules 
1. In the Studio, at the bottom left, click NEW. Then in the collection of Microsoft samples, select 

Blank Experiment. This creates a blank experiment, which looks similar to the following image. 



 
 

 

2. Change the title of your experiment from “Experiment created on today’s date” to “Bike Rentals” 

3. In the experiment items pane on the left, expand Saved Datasets, expand Samples, and drag 

Bike Rental UCI dataset to the experiment canvas in the middle of the page, as shown in the 

following image. 



 
 

 

Note: The Bike Rentals UCI dataset is one of a number of sample datasets provided with Azure 

ML. In Module 2 of this course, you’ll learn how to upload your own datasets and consume data 

from external data sources. 

4. Select the Bike Rental UCI dataset on the canvas, and note that it has a single output port 

(indicated as a circle containing the value 1 at the bottom of the dataset icon). Right-click this 

output port and click Visualize to see the data that the dataset contains. 

5. In the dataset, scroll the table pane on the left if necessary to see the cnt column, and then click 

the cnt column header so that a column summary and histogram for that column is displayed as 

shown in the following image. This column represents the count of bike rentals on a given day 

and hour. 



 
 

 

6. Select any of the other columns (for example temp, atemp, or hum), and note the statistics and 
histogram that is displayed. By visualizing statistics about the distribution of values in your data, 
and the relationships between values in columns, you can learn a lot about your data and refine 
it to build a more effective and accurate predictive model.  

Note: You will learn about more advanced techniques for visualizing data in Module 2 of this 
course. 

7. Close the dataset, and in the experiment items pane, in the search box, type “Project Columns”. 

Then, in the filtered experiment items pane, under Data Transformation and Manipulation, drag 

the Project Columns module to the canvas and place it under the Bike Rental UCI dataset. 

8. Click the output port of the Bike Rentals UCI dataset, and drag it to the input port at the top of 

the Project Columns module to connect the items. Your experiment should now look like the 

following image. 

 

9. Select the Project Columns module, and in the Properties pane on the right, click Launch 

column selector. The column selector is a common user interface element in Azure ML modules, 

and enables you to select the columns you want to use in the module. In this case, the Project 

Columns module is used to filter out columns you don’t need, so that only the columns you want 

to use are passed (or projected) into the data flow for the next module. 

10. In the Select columns dialog box, select option to begin with all columns, and exclude the 

registered and casual column names as shown in the image below. Then click the OK icon to 

close the column selector. 



 
 

 

The cnt column is simply the registered and casual columns added together, so while including 

these columns in the model would make predicting the total number of rentals quite easy, the 

model might not work well when the number of casual and registered bike rentals are unknown! 

11. On the toolbar at the bottom of the page, click SAVE to save the experiment. Then click RUN to 

run the experiment. 

12. When the experiment has finished running, note the status displayed at the top-right of the 

experiment canvas and the green checkmark that indicates that the Project Columns module 

completed successfully. 

13. Visualize the Result Dataset output port of the Project Columns module, and verify that the 

registered and casual columns have been removed, as shown here. Then close the results 

dataset. 

 

Add Script Modules to an Experiment 
1. In the experiment items pane, search for “Execute R Script”. Then drag the Execute R Script 

module to the experiment canvas, under the Project Columns module; and connect the output 

port from the Project Columns module to the first (left-most) input port of the Execute R Script 

module so that your experiment looks like this: 



 
 

 

Note: R is a commonly used scripting language in data science experiments, and it enables you to 

include custom logic in an Azure ML experiment. You’ll learn more about using R in data science 

experiments in Module 2, but for now, you’ll use a simple R script to remove some more columns 

from the dataset. 

2. Select the Execute R Script module, and in the Properties pane, replace the default R script with 

the following code. You can copy and paste this code from the Bike Rentals Code.txt file in the 

folder where you extracted the lab files for this lab: 

frame1 <- maml.mapInputPort(1) 

## Delete instant and dteday columns 

frame1$instant <- NULL 

frame1$dteday <- NULL 

maml.mapOutputPort('frame1') 

Tip: To paste code from the clipboard into the code editor in the Azure ML Properties pane, 
press CTRL+A to select the existing code, and then press CTRL+V to paste the code from the 
clipboard, replacing the existing code. 

This code creates an R data frame from the data that is passed to the first input port of the script 

module, and then removes the instant and dteday columns, before passing the modified data 

frame to the output port of the script module. Because scripts are so flexible, it can be useful to 

document what the script does as a comment on the module in the Azure ML experiment. 

3. Right-click the Execute R Script module and click Edit Comment. Then type “Remove columns” 

in the comment box, and click a blank area of the canvas to finish editing the comment, and click 

the v icon in the Execute R Script module to expand the comment. Your experiment should now 

look like this: 

 

4. In the experiment items pane, search for “Execute Python Script”. Then drag the Execute Python 

Script module to the experiment canvas, under the Execute R Script module, and connect the 

Result Dataset output port (the left-most output) from the Execute R Script module to the first 

(left-most) input port of the Execute Python Script module so that your experiment looks like 

this: 



 
 

 

Note: Python is another commonly used scripting language in data science experiments; and like 

R, it enables you to include custom logic in an Azure ML experiment. You’ll learn more about 

using Python in data science experiments in Module 2, and throughout the rest of this course 

you’ll have the opportunity to choose either R or Python for scripting tasks. 

5. Select the Execute Python Script module, and in the Properties pane, replace the default Python 

script with the following code. You can copy and paste this code from the Bike Rentals Code.txt 

file in the folder where you extracted the lab files for this lab – make sure you indent the code 

under the comment ## delete yr and weathersit columns (the code uses four spaces to indent 

lines): 

def azureml_main(dataframe1 = None, dataframe2 = None): 

## delete yr and weathersit columns 

    dataframe1 = dataframe1.drop('yr', 1) 

    dataframe1 = dataframe1.drop('weathersit', 1) 

    return dataframe1 

Tip: To paste code from the clipboard into the code editor in the Azure ML Properties pane, 
press CTRL+A to select the existing code, and then press CTRL+V to paste the code from the 
clipboard, replacing the existing code. 

 This code creates a Python pandas data frame from the data that is passed to the first input port 

of the script module, and then removes the yr and weathersit columns, before passing the 

modified data frame to the output port of the script module.  

6. In the experiment items pane, search for “Apply SQL Transformation”. Then drag the Apply SQL 

Transformation module to the experiment canvas, under the Execute Python Script module, 

and connect the Result Dataset output port (the left-most output) from the Execute Python 

Script module to the first (left-most) input port of the Apply SQL Transformation module so 

that your experiment looks like this: 



 
 

 

Note: The Apply SQL Transformation module enables you to write custom log in SQLite, a 

variant of the ANSI SQL language. If you are familiar with Transact-SQL in Microsoft databases 

such as SQL Server and Azure SQL Database, you can apply your SQL knowledge to working with 

data in an Azure ML experiment. 

7. Select the Apply SQL Transformation module, and in the Properties pane, replace the default 

SQL script with the following code. You can copy and paste this code from the Bike Rentals 

Code.txt file in the folder where you extracted the lab files for this lab: 

SELECT *, hum*hum AS humsqrd FROM t1 

WHERE mnth BETWEEN 1 AND 12 

AND hr BETWEEN 0 AND 23; 

Tip: To paste code from the clipboard into the code editor in the Azure ML Properties pane, 
press CTRL+A to select the existing code, and then press CTRL+V to paste the code from the 
clipboard, replacing the existing code. 

 This code returns all columns for the rows passed to the input port in which the mnth column 

value is between 1 and 12, and the hr column value is between 0 and 23. This removes any rows 

that contain an invalid month or hour value. Additionally, it generates a new column named 

humsqrd that contains the humidity value squared. Sometimes you can improve the performance 

of a predictive model by generating polynomial columns such as this, in a technique called feature 

engineering. 

Note: You will learn about more options for filtering and cleansing data in Module 2. Feature 

engineering and column selection for model training are discussed in more depth in Module 3. 

8. Save and run the experiment. Then, when the experiment has finished, visualize the Results 

dataset output of the Apply SQL Transformation module, and view the filtered data, as shown 

here. Then close the results dataset. 

 



 
 

 
 

Creating a Model 
Now that you have created a simple experiment that processes data, you can use the data to train a 

predictive model. In this exercise, you will use the data to create a model that tries to predict the number 

of bike rentals on a given day and hour based on the features in your dataset. 

Split the Data 

1. In the experiment items pane, search for “Split”. Then drag the Split module that is found in the 

Data Transformation category to the canvas and place it under the Apply SQL Transformation 

module, and connect it to the end of the workflow as shown here: 

 
 

2. Select the Split module, and in the Properties pane, view the default split settings; which split the 

data randomly into two equal datasets. 



 
 

Add and Train a Model 
1. In the experiment items pane, search for “Regression”, and view the range of regression-based 

models that are supported in Azure ML. Then, drag the Bayesian Linear Regression module that 

is found in the Machine Learning > Initialize Model > Regression category to the canvas, and 

place it next to the Split module without connecting it to anything. 

2. Select the Bayesian Linear Regression module, and in the Properties pane, note that you can 

configure a Regularization weight property that determines how the regularization function in 

the model is calculated to reduce over-fitting – leave this at its default value of 1. 

3. In the experiment items pane, search for “Train Model”, and drag the Train Model module to the 

canvas below the Bayesian Linear Regression and Split modules. Then connect the output from 

the Bayesian Linear Regression module to the first (left-most) input of the Train Model module; 

and connect the first (left-most) output port of the Split module to the second (right-most) input 

of the Train Model module, as shown here: 

 

4. Select the Train Model module, and in the properties pane, launch the column selector and 

select the cnt column, as shown here: 

 

The experiment is now configured to train a Bayesian Linear Regression model using a training 

dataset that consist of half of your original data. When training the model, Azure ML will attempt 



 
 

to determine a suitable function that can be used to predict the cnt label value based on the 

other feature columns in the dataset. 

Note: Model training and evaluation are discussed in more depth in Module 3 of this course. 

5. In the experiment items pane, search for “Score Model”, and drag the Score Model module to the 

canvas below the Train Model module. Then connect the output from the Train Model module 

to the first (left-most) input of the Score Model module; and connect the second (right-most) 

output port of the Split module to the second (right-most) input of the Score Model module, as 

shown here: 

 

The experiment will score the trained model by comparing the predicted and actual values for the 

cnt value in the test dataset, which consists of the second half of data from the Split module. 

6. Save and run the experiment. 

View the Scored results 

1. When the experiment is finished, visualize the output from the Score Model module. 

2. Select the Scored Label Mean column. This represents the predicted values for the cnt label. 

3. Compare the first ten or so values in the Scored Label Mean and cnt columns, noting that some 

predictions are reasonably close, but others are significantly wrong. 

4. With the Scored Label Mean column selected, in the Visualizations area, in the compare to list, 

select cnt; and view the resulting scatter plot chart as shown here: 



 
 

 

5. Note that the scatter plot shows a loose correlation between the predicted and actual values, but 

the margin of error is quite large. The plots show a slight diagonal trend – a perfect model would 

show a single diagonal line in which the predicted value always matches the actual value. 

6. Close the scored dataset. 

Evaluate the Model 
1. In the experiment items pane, search for “Evaluate Model”, and drag the Evaluate Model module 

to the canvas below the Score Model module. Then connect the output from the Score Model 

module to the first (left-most) input of the Evaluate Model module, as shown here: 

 



 
 

2. Save and run the experiment. Then, when the experiment has finished, visualize the Evaluation 

Results dataset output of the Evaluate Model module, which should look similar to this: 

 

3. The values shown are measurements of the accuracy of the model when comparing the label 

values that it predicts to the known values in the test dataset. For example, in the case of this 

regression model, the Relative Squared Error value indicates how well the model explains 

variance in the predicted label value and the known label value, with a lower number indicating 

a better predictive result. The specific measurements vary by model type, and you can connect 

two scored models to the Evaluate Model module in order to compare their effectiveness. 

Note: You will learn more about evaluating models in Module 3 of this course. 

4. Close the evaluation results dataset. 

Save and Close the Experiment 
1. Click a blank are of the experiment canvas to select the experiment. Then in the Properties pane, 

enter the Summary Bike rental prediction experiment and the Description A simple experiment to 

predict bike rentals. Then save the experiment. 

2. In the toolbar at the bottom of the page, note (but do not click) the Set up Web Service button. 

This enables you to create a web service for your experiment, so that it can be used by client 

applications that need to predict bike rentals from new seasonal and meteorological data. 

Note: You will learn about considerations for publishing experiments as web services in Module 4 

of this course. 

3. In the Azure ML Studio page, on the left side, click the Experiments icon and note that your 

experiment is listed. You can return to it at any time from here. 

Summary 
This lab was designed to help you become familiar with the Azure ML Studio environment and the basic 

process of creating and scoring a model. The model you produced is not particularly effective at 

predicting an accurate value for the number of bike rentals, so clearly some iterative work would be 

required to further cleanse the data, identify the most meaningful features to include in the model, and 

compare the results when using a range of different algorithms. 

 

In the rest of this course, you will learn how to employ a range of techniques to prepare data for 

modeling, build effective models, and evaluate model performance to create a suitable accurate predictive 

solution. 

 

Note: The experiment created in this lab is available in the Cortana Analytics library at 

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9. 

 

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9

