

Data Science and Machine Learning

Essentials
Lab 1 – Getting Started with Azure Machine Learning

By Graeme Malcolm and Stephen Elston

Overview
In this lab, you will learn how to open and navigate Microsoft Azure Machine Learning (Azure ML) Studio.

You will also learn how to create and run experiments and to use SQL in Azure ML modules.

What You’ll Need
To complete this lab, you will need the following:

 An Azure ML account.
 A web browser and Internet connection.
 The lab files for this lab

Note: To set up the required environment for the lab, follow the instructions in the Setup Guide for this

course. Then download and extract the lab files for this lab.

Creating an Azure ML Experiment
Azure ML enables you to create experiments in which you can manipulate data, create predictive models,

and visualize the results. In this exercise, you will create a simple experiment in which you will explore a

sample dataset that contains details of bike rentals, from which you would like to predict the number of

bike rentals on a given day based on seasonal and weather variables.

Sign into Azure ML Studio

1. Open a browser and browse to https://studio.azureml.net.

2. Click Sign In and sign in using the Microsoft account associated with your free Azure ML account.

3. If the Welcome page is displayed, close it by clicking the OK icon (which looks like a checkmark).

Then, if the New page (containing a collection of Microsoft samples) is displayed, close it by

clicking the Close icon (which looks like an X).

4. You should now be in Azure ML Studio with the Experiments page selected, which looks like the

following image (if not, click the Studio tab at the top of the page).

https://studio.azureml.net/

Create an Experiment and Add Modules
1. In the Studio, at the bottom left, click NEW. Then in the collection of Microsoft samples, select

Blank Experiment. This creates a blank experiment, which looks similar to the following image.

2. Change the title of your experiment from “Experiment created on today’s date” to “Bike Rentals”

3. In the experiment items pane on the left, expand Saved Datasets, expand Samples, and drag

Bike Rental UCI dataset to the experiment canvas in the middle of the page, as shown in the

following image.

Note: The Bike Rentals UCI dataset is one of a number of sample datasets provided with Azure

ML. In Module 2 of this course, you’ll learn how to upload your own datasets and consume data

from external data sources.

4. Select the Bike Rental UCI dataset on the canvas, and note that it has a single output port

(indicated as a circle containing the value 1 at the bottom of the dataset icon). Right-click this

output port and click Visualize to see the data that the dataset contains.

5. In the dataset, scroll the table pane on the left if necessary to see the cnt column, and then click

the cnt column header so that a column summary and histogram for that column is displayed as

shown in the following image. This column represents the count of bike rentals on a given day

and hour.

6. Select any of the other columns (for example temp, atemp, or hum), and note the statistics and
histogram that is displayed. By visualizing statistics about the distribution of values in your data,
and the relationships between values in columns, you can learn a lot about your data and refine
it to build a more effective and accurate predictive model.

Note: You will learn about more advanced techniques for visualizing data in Module 2 of this
course.

7. Close the dataset, and in the experiment items pane, in the search box, type “Project Columns”.

Then, in the filtered experiment items pane, under Data Transformation and Manipulation, drag

the Project Columns module to the canvas and place it under the Bike Rental UCI dataset.

8. Click the output port of the Bike Rentals UCI dataset, and drag it to the input port at the top of

the Project Columns module to connect the items. Your experiment should now look like the

following image.

9. Select the Project Columns module, and in the Properties pane on the right, click Launch

column selector. The column selector is a common user interface element in Azure ML modules,

and enables you to select the columns you want to use in the module. In this case, the Project

Columns module is used to filter out columns you don’t need, so that only the columns you want

to use are passed (or projected) into the data flow for the next module.

10. In the Select columns dialog box, select option to begin with all columns, and exclude the

registered and casual column names as shown in the image below. Then click the OK icon to

close the column selector.

The cnt column is simply the registered and casual columns added together, so while including

these columns in the model would make predicting the total number of rentals quite easy, the

model might not work well when the number of casual and registered bike rentals are unknown!

11. On the toolbar at the bottom of the page, click SAVE to save the experiment. Then click RUN to

run the experiment.

12. When the experiment has finished running, note the status displayed at the top-right of the

experiment canvas and the green checkmark that indicates that the Project Columns module

completed successfully.

13. Visualize the Result Dataset output port of the Project Columns module, and verify that the

registered and casual columns have been removed, as shown here. Then close the results

dataset.

Add Script Modules to an Experiment
1. In the experiment items pane, search for “Execute R Script”. Then drag the Execute R Script

module to the experiment canvas, under the Project Columns module; and connect the output

port from the Project Columns module to the first (left-most) input port of the Execute R Script

module so that your experiment looks like this:

Note: R is a commonly used scripting language in data science experiments, and it enables you to

include custom logic in an Azure ML experiment. You’ll learn more about using R in data science

experiments in Module 2, but for now, you’ll use a simple R script to remove some more columns

from the dataset.

2. Select the Execute R Script module, and in the Properties pane, replace the default R script with

the following code. You can copy and paste this code from the Bike Rentals Code.txt file in the

folder where you extracted the lab files for this lab:

frame1 <- maml.mapInputPort(1)

Delete instant and dteday columns

frame1$instant <- NULL

frame1$dteday <- NULL

maml.mapOutputPort('frame1')

Tip: To paste code from the clipboard into the code editor in the Azure ML Properties pane,
press CTRL+A to select the existing code, and then press CTRL+V to paste the code from the
clipboard, replacing the existing code.

This code creates an R data frame from the data that is passed to the first input port of the script

module, and then removes the instant and dteday columns, before passing the modified data

frame to the output port of the script module. Because scripts are so flexible, it can be useful to

document what the script does as a comment on the module in the Azure ML experiment.

3. Right-click the Execute R Script module and click Edit Comment. Then type “Remove columns”

in the comment box, and click a blank area of the canvas to finish editing the comment, and click

the v icon in the Execute R Script module to expand the comment. Your experiment should now

look like this:

4. In the experiment items pane, search for “Execute Python Script”. Then drag the Execute Python

Script module to the experiment canvas, under the Execute R Script module, and connect the

Result Dataset output port (the left-most output) from the Execute R Script module to the first

(left-most) input port of the Execute Python Script module so that your experiment looks like

this:

Note: Python is another commonly used scripting language in data science experiments; and like

R, it enables you to include custom logic in an Azure ML experiment. You’ll learn more about

using Python in data science experiments in Module 2, and throughout the rest of this course

you’ll have the opportunity to choose either R or Python for scripting tasks.

5. Select the Execute Python Script module, and in the Properties pane, replace the default Python

script with the following code. You can copy and paste this code from the Bike Rentals Code.txt

file in the folder where you extracted the lab files for this lab – make sure you indent the code

under the comment ## delete yr and weathersit columns (the code uses four spaces to indent

lines):

def azureml_main(dataframe1 = None, dataframe2 = None):

delete yr and weathersit columns

 dataframe1 = dataframe1.drop('yr', 1)

 dataframe1 = dataframe1.drop('weathersit', 1)

 return dataframe1

Tip: To paste code from the clipboard into the code editor in the Azure ML Properties pane,
press CTRL+A to select the existing code, and then press CTRL+V to paste the code from the
clipboard, replacing the existing code.

 This code creates a Python pandas data frame from the data that is passed to the first input port

of the script module, and then removes the yr and weathersit columns, before passing the

modified data frame to the output port of the script module.

6. In the experiment items pane, search for “Apply SQL Transformation”. Then drag the Apply SQL

Transformation module to the experiment canvas, under the Execute Python Script module,

and connect the Result Dataset output port (the left-most output) from the Execute Python

Script module to the first (left-most) input port of the Apply SQL Transformation module so

that your experiment looks like this:

Note: The Apply SQL Transformation module enables you to write custom log in SQLite, a

variant of the ANSI SQL language. If you are familiar with Transact-SQL in Microsoft databases

such as SQL Server and Azure SQL Database, you can apply your SQL knowledge to working with

data in an Azure ML experiment.

7. Select the Apply SQL Transformation module, and in the Properties pane, replace the default

SQL script with the following code. You can copy and paste this code from the Bike Rentals

Code.txt file in the folder where you extracted the lab files for this lab:

SELECT *, hum*hum AS humsqrd FROM t1

WHERE mnth BETWEEN 1 AND 12

AND hr BETWEEN 0 AND 23;

Tip: To paste code from the clipboard into the code editor in the Azure ML Properties pane,
press CTRL+A to select the existing code, and then press CTRL+V to paste the code from the
clipboard, replacing the existing code.

 This code returns all columns for the rows passed to the input port in which the mnth column

value is between 1 and 12, and the hr column value is between 0 and 23. This removes any rows

that contain an invalid month or hour value. Additionally, it generates a new column named

humsqrd that contains the humidity value squared. Sometimes you can improve the performance

of a predictive model by generating polynomial columns such as this, in a technique called feature

engineering.

Note: You will learn about more options for filtering and cleansing data in Module 2. Feature

engineering and column selection for model training are discussed in more depth in Module 3.

8. Save and run the experiment. Then, when the experiment has finished, visualize the Results

dataset output of the Apply SQL Transformation module, and view the filtered data, as shown

here. Then close the results dataset.

Creating a Model
Now that you have created a simple experiment that processes data, you can use the data to train a

predictive model. In this exercise, you will use the data to create a model that tries to predict the number

of bike rentals on a given day and hour based on the features in your dataset.

Split the Data

1. In the experiment items pane, search for “Split”. Then drag the Split module that is found in the

Data Transformation category to the canvas and place it under the Apply SQL Transformation

module, and connect it to the end of the workflow as shown here:

2. Select the Split module, and in the Properties pane, view the default split settings; which split the

data randomly into two equal datasets.

Add and Train a Model
1. In the experiment items pane, search for “Regression”, and view the range of regression-based

models that are supported in Azure ML. Then, drag the Bayesian Linear Regression module that

is found in the Machine Learning > Initialize Model > Regression category to the canvas, and

place it next to the Split module without connecting it to anything.

2. Select the Bayesian Linear Regression module, and in the Properties pane, note that you can

configure a Regularization weight property that determines how the regularization function in

the model is calculated to reduce over-fitting – leave this at its default value of 1.

3. In the experiment items pane, search for “Train Model”, and drag the Train Model module to the

canvas below the Bayesian Linear Regression and Split modules. Then connect the output from

the Bayesian Linear Regression module to the first (left-most) input of the Train Model module;

and connect the first (left-most) output port of the Split module to the second (right-most) input

of the Train Model module, as shown here:

4. Select the Train Model module, and in the properties pane, launch the column selector and

select the cnt column, as shown here:

The experiment is now configured to train a Bayesian Linear Regression model using a training

dataset that consist of half of your original data. When training the model, Azure ML will attempt

to determine a suitable function that can be used to predict the cnt label value based on the

other feature columns in the dataset.

Note: Model training and evaluation are discussed in more depth in Module 3 of this course.

5. In the experiment items pane, search for “Score Model”, and drag the Score Model module to the

canvas below the Train Model module. Then connect the output from the Train Model module

to the first (left-most) input of the Score Model module; and connect the second (right-most)

output port of the Split module to the second (right-most) input of the Score Model module, as

shown here:

The experiment will score the trained model by comparing the predicted and actual values for the

cnt value in the test dataset, which consists of the second half of data from the Split module.

6. Save and run the experiment.

View the Scored results

1. When the experiment is finished, visualize the output from the Score Model module.

2. Select the Scored Label Mean column. This represents the predicted values for the cnt label.

3. Compare the first ten or so values in the Scored Label Mean and cnt columns, noting that some

predictions are reasonably close, but others are significantly wrong.

4. With the Scored Label Mean column selected, in the Visualizations area, in the compare to list,

select cnt; and view the resulting scatter plot chart as shown here:

5. Note that the scatter plot shows a loose correlation between the predicted and actual values, but

the margin of error is quite large. The plots show a slight diagonal trend – a perfect model would

show a single diagonal line in which the predicted value always matches the actual value.

6. Close the scored dataset.

Evaluate the Model
1. In the experiment items pane, search for “Evaluate Model”, and drag the Evaluate Model module

to the canvas below the Score Model module. Then connect the output from the Score Model

module to the first (left-most) input of the Evaluate Model module, as shown here:

2. Save and run the experiment. Then, when the experiment has finished, visualize the Evaluation

Results dataset output of the Evaluate Model module, which should look similar to this:

3. The values shown are measurements of the accuracy of the model when comparing the label

values that it predicts to the known values in the test dataset. For example, in the case of this

regression model, the Relative Squared Error value indicates how well the model explains

variance in the predicted label value and the known label value, with a lower number indicating

a better predictive result. The specific measurements vary by model type, and you can connect

two scored models to the Evaluate Model module in order to compare their effectiveness.

Note: You will learn more about evaluating models in Module 3 of this course.

4. Close the evaluation results dataset.

Save and Close the Experiment
1. Click a blank are of the experiment canvas to select the experiment. Then in the Properties pane,

enter the Summary Bike rental prediction experiment and the Description A simple experiment to

predict bike rentals. Then save the experiment.

2. In the toolbar at the bottom of the page, note (but do not click) the Set up Web Service button.

This enables you to create a web service for your experiment, so that it can be used by client

applications that need to predict bike rentals from new seasonal and meteorological data.

Note: You will learn about considerations for publishing experiments as web services in Module 4

of this course.

3. In the Azure ML Studio page, on the left side, click the Experiments icon and note that your

experiment is listed. You can return to it at any time from here.

Summary
This lab was designed to help you become familiar with the Azure ML Studio environment and the basic

process of creating and scoring a model. The model you produced is not particularly effective at

predicting an accurate value for the number of bike rentals, so clearly some iterative work would be

required to further cleanse the data, identify the most meaningful features to include in the model, and

compare the results when using a range of different algorithms.

In the rest of this course, you will learn how to employ a range of techniques to prepare data for

modeling, build effective models, and evaluate model performance to create a suitable accurate predictive

solution.

Note: The experiment created in this lab is available in the Cortana Analytics library at

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9.

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9

