
	

	 	

CASE STUDY ACTIVITY TUTORIAL
CASE	STUDY	1.2	–	LDA	ANALYSIS	

	
2017	©	MASSACHUSETTS	INSTITUTE	OF	TECHNOLOGY		

MODULE	1:	MAKING	SENSE	OF	UNSTRUCTURED	DATA	

2017	©	Massachusetts	Institute	of	Technology	
1	

CA
SE
	S
TU

D
Y	
AC

TI
VI
TY
	T
U
TO

RI
AL
	|
		C
S	
1.
2	

	

CASE	STUDY	ACTIVITY	TUTORIAL	

CASE	STUDY	1.2	–	LDA	ANALYSIS	

Instructor: Tamara Broderick

TA: Qiuying (Giulia) Lai

In this document, we walk through some tips to help you with doing your own analysis on MIT EECS
faculty data using stochastic variational inference on LDA. We provide some examples for the
following programming environment: Python. You can find the full code for this project here: [4]. We
cover the following:

1. Scraping your own dataset

2. Pre-processing the dataset

3. Implementing your own LDA code

4. Visualizing the results

1.	Scraping	your	dataset	

Using BeautifulSoup (https://www.crummy.com/software/BeautifulSoup/), and by analyzing the
structure of the source code of arXiv, we could scrape the name list of MIT EECS faculty members.
Using this information, we could list the query we send to arXiv. A possible format for the arXiv
search for papers by authors is the following:

arxiv.org/find/(subject)/1/au:+(lastname)_(initial)/0/1/0/all/0/1

You could therefore adapt the names you scraped, and query through all the relevant arXiv search
pages.

Within the arXiv source code, look for < class span=list-identifier >, which will give the identifier for
the papers listed in your query results. Similarly look for the tag for the “Abstract” within each paper
and scrape the abstract for each paper you find.

Note that you might want to scrape more information than you need and then do some local
processing with the text you have instead.

2.	Pre-processing	the	dataset	

In the original work we have processed the data as raw documents as the dataset size was small.
However if you want to use Matthew Hoffman’s original SVI code instead [3], that code takes a text
file with a specific format. Once you have each abstract in a separate text file, you may find the

2017	©	Massachusetts	Institute	of	Technology		
2	

CA
SE
	S
TU

D
Y	
AC

TI
VI
TY
	T
U
TO

RI
AL
	|
		C
S	
1.
2	

following Python packages useful: io, collections, nltk. It is good practice to keep your dataset in its
own folder, so io can be used to access that folder using a constant (relative) path. Read each file
and use nltk.tokenize to tokenize each chunk of text. Use collections to process each abstract using
a Counter/Dictionary, before writing the counts of words of each individual abstract as a line in the
text file.

3.	Implementing	your	own	SVI-LDA	code	

Latent Dirichlet allocation (LDA) is a generative statistical model in natural language processing, and
can be used to discover ‘topics’ in a large set of documents. This is first presented by David Blei,
Andrew Ng, and Michael Jordan [1]. The key idea is that if we see a ‘topic’ as a collection of certain
words, we can look at each document as a collection of topics, the proportion of each topic depends
on the proportion of words in the document that are associated with that topic. For example, the
‘sports’ topic may consist of the words: tennis, football, gymnastics.

When given a set of documents, we can calculate the posterior distribution for the topics. In the
original LDA paper, this is done using a coordinate descent algorithm for mean-field variational
inference, and later on researchers also used Gibbs Sampling and expectation propagation.

In this tutorial we will be looking only at Stochastic Variational Inference for LDA. SVI was first
published in 2013 by Matt Hoffman, David Blei, Chong Wang, and John Paisley [2]. Traditional
coordinate-descent variational inference requires each update to be carried out with all of the data,
and these updates become inefficient when the dataset gets large as each update scales linearly
with the size of the data. The key idea with SVI is to update global variational parameters more
frequently.

Using local and global parameters, and given the dataset with a known number of datapoints, we
could randomly take 1 data point at a time, update the local parameter, and project the change into
the global parameters. Like traditional coordinate-descent variational inference, this is done until the
result converges, i.e., the change in the global parameters is smaller than a certain value.

The implementation we will be talking about is a naive implementation of the algorithm described in
the original paper [2].

3.1	Variable	Notation	

Here we provide a brief overview of the input variables for LDA and SVI. Variables that can be set are
the following:

• λ: what we want in the end (the posterior distribution for the topics for each word

• vocab: this is the overall vocabulary we will have in the docs

• K: this is the number of topics we want to get in the end

• D: this is the total number of documents

• α: parameter for per-document topic distribution

• η: parameter for per-topic vocab distribution

2017	©	Massachusetts	Institute	of	Technology	
3	

CA
SE
	S
TU

D
Y	
AC

TI
VI
TY
	T
U
TO

RI
AL
	|
		C
S	
1.
2	

• τ: delay that down weights early iterations

• κ: forgetting rate, controls how quickly old information is forgotten; the larger the value, the

slower it is.

• max:iterations: the number of maximum iterations the updates should go on for. We usually

set a check such that if the difference in two consecutive values of λ is smaller than a certain

value, we say the algorithm has converged. However, sometimes we could set this certain

value too small, so we set a maximum iteration value to avoid updates running forever.

3.2	LDA	Generative	Model	

We review the LDA generative model here. LDA assumes each document has K topics with different
proportions. It models a corpus w of size D as follows:

• Draw distribution over vocabulary βk ~ Dirichlet(η) for topics k ∈ {1…K}

• For each document d ∈ {1…D} :	
– Draw topic proportions θd ~ Dirichlet(α);

– For each word 𝑊$	% in the document:

* Draw topic indicator 𝑍$	%~ Multinomial (θd)

* Draw word 𝑊$	% ~ Multinomial (β()%)

Note that this model follows the ‘bag of words’ assumption, such that given the topic proportions,
each word drawn is independent of any other words in the document.

3.3	Code	Walkthrough	

Sometimes it is helpful to have your algorithm in a class, such that if you have multiple datasets,
parameters and results, you keep them separated from each other. We can also initialize and here.

class SVILDA():
def __init__(self, vocab, K, D, alpha, eta, tau, kappa, docs, iterations):
self ._vocab = vocab
self ._V = len(vocab)
self ._K = K
self ._D = D
self ._alpha = alpha
self ._eta = eta
self ._tau = tau
self ._kappa = kappa
self ._lambda = 1* n.random.gamma(100., 1./100., (self._K, self._V))

2017	©	Massachusetts	Institute	of	Technology		
4	

CA
SE
	S
TU

D
Y	
AC

TI
VI
TY
	T
U
TO

RI
AL
	|
		C
S	
1.
2	

self ._Elogbeta = dirichlet_expectation(self._lambda)
self ._expElogbeta = n.exp(self._Elogbeta)
self ._docs = docs
self.ct = 0
self._iterations = iterations

In this version we assume that the data has not been preprocessed, and also note that numpy was
imported as n.
The function dirichlet_expectation is as follows, and it calculates the expectation for a beta
distribution given its parameter, and is taken from Matthew Hoffman’s original implementation on
the Blei Lab GitHub space [3].

def dirichlet_expectation(alpha):
'''see onlineldavb.py by Matthew Hoffman'''
if (len(alpha.shape) == 1):
return (psi(alpha) - psi(n.sum(alpha)))
return (psi(alpha) - psi(n.sum(alpha, 1))[:, n.newaxis])

Now we can look at the local update and global update. The update function should closely follow
the original algorithm, so we won’t discuss in detail here as it is best to cross reference the original
paper [2], but the key idea is to have the UpdateLocal function take in a parsed document, update
the local variables, and then the UpdateGlobal function update the global parameters, like this:

def UpdateLocal(self, doc):
(words, counts) = doc
newdoc = []
N_d = sum(counts)
phi_d = n.zeros((self._K, N_d))
gamma_d = n.random.gamma(100., 1./100., (self._K))
Elogtheta_d = dirichlet_expectation(gamma_d)
expElogtheta_d = n.exp(Elogtheta_d)
for i, item in enumerate(counts):

for j in range(item):
newdoc.append(words[i])

assert len(newdoc) == N_d, "error"

for i in range(self._iterations):
for m, word in enumerate(newdoc):

phi_d[:, m] = n.multiply(expElogtheta_d, self._expElogbeta[:, word]) + 1e-100
phi_d[:, m] = phi_d[:, m]/n.sum(phi_d[:, m])

gamma_new	=	self._alpha	+	n.sum(phi_d,	axis	=	1)		
meanchange	=	n.mean(abs(gamma_d	-	gamma_new))	
if	(meanchange	<	meanchangethresh):		

break	

gamma_d	=	gamma_new	
Elogtheta_d	=	dirichlet_expectation(gamma_d)		
expElogtheta_d	=	n.exp(Elogtheta_d)	

2017	©	Massachusetts	Institute	of	Technology	
5	

CA
SE
	S
TU

D
Y	
AC

TI
VI
TY
	T
U
TO

RI
AL
	|
		C
S	
1.
2	

newdoc = n.asarray(newdoc)
return phi_d, newdoc, gamma_d

def UpdateGlobal(self, local_param, doc):
lambda_d = n.zeros((self._K, self._V))
for k in range(self._K):

phi_dk = n.zeros(self._V)
for m, word in enumerate(doc):

phi_dk[word] += phi_d[k][m]
lambda_d[k] = self._eta + self._D * phi_dk

rho = (self.ct + self._tau) **(-self._kappa)
self._lambda = (1-rho) * self._lambda + rho * lambda_d
self._Elogbeta = dirichlet_expectation(self._lambda)
self._expElogbeta = n.exp(self._Elogbeta)

And finally we could write an overall function to handle all updates taking into account the delay and
forgetting rate, given the input variables:

	 					def	runSVI(self):	

	 for	i	in	range(self._iterations):	

randint	=	random.randint(0,	self._D-1)	

print	"ITERATION",	i,	"	running	document	number	",	randint	doc	=	
parseDocument(self._docs[randint],self._vocab)	phi_doc,	newdoc,	gamma_d	=	
self.updateLocal(doc)	self.updateGlobal(phi_doc,	newdoc)	

self.ct	+=	1	

The	integrated	parseDocument	function	here	is	as	
def	parseDocument(doc,	vocab):	wordslist	=	list()	countslist	=	list()	
doc	=	doc.lower()	

tokens	=	wordpunct_tokenize(doc)	
for	word	in	tokens:	if	word	in	vocab:	wordtk	=	vocab[word]	

if	wordtk	not	in	dictionary:	dictionary[wordtk]	=	1	

else:	dictionary[wordtk]	+=	1	

wordslist.append(dictionary.keys())	
countslist.append(dictionary.values())	

return	(wordslist[0],	countslist[0])	

There	are	also	other	functions	in	the	code	that	are	implemented	and	can	be	found	on	GitHub.	For	example,	
we	could	include	code	which	allow	us	to	‘trace’	the	change	of	values	of	certain	variables	in	order	to	see	the	
convergence	of	that	value.	

4	Visualizing	the	results	

2017	©	Massachusetts	Institute	of	Technology		
6	

CA
SE
	S
TU

D
Y	
AC

TI
VI
TY
	T
U
TO

RI
AL
	|
		C
S	
1.
2	

There	are	many	ways	to	visualize	the	results	once	you	have	the	per-topic	vocab	distributions.	The	first	
insight	we	could	get	is	to	look	at	what	the	most	popular	words	are	in	each	topic.	To	do	this	we	just	take	
our,	and	then	by	taking	out	each	topic	entry,	we	rank	the	words	from	highest	probability	to	lower	
probabilities.	This	is	how	we	arrive	at	the	list	of	words	for	any	topic	in	Figure	1.	There	are	five	such	lists	for	
the	five	topics.	

Another	simple	visualization	is	to	look	at	the	topic	distribution	overall	in	the	documents.	To	do	this	we	could	
look	 at	 each	 document,	 infer	 how	 the	 topics	 are	 distributed	 for	 this	 document,	 and	 then	 sum	 up	 the	
probabilities	for	the	topics	across	all	the	documents.	This	is	how	we	arrived	at	the	pie	chart	representing	
the	topic	proportions	in	Figure	1.	

	

	

Figure	1:	Topic	distribution	and	most	common	words	for	one	instance	of	K	=	5.	

	
Thirdly,	we	could	also	infer,	using	λ,	the	topic	distribution	of	each	document,	and	use	this	to	guess	the	main	
focus	of	each	publication	scraped	on	arXiv.	A	way	to	do	this	is,	for	each	topic,	we	sum	up	the	normalized	
probability	of	each	word	(such	that	a	less-used	word	would	weigh	less)	in	that	topic	over	all	words	in	the	
document,	and	then	we	compare	this	value	across	topics.	
	

2017	©	Massachusetts	Institute	of	Technology	
7	

CA
SE
	S
TU

D
Y	
AC

TI
VI
TY
	T
U
TO

RI
AL
	|
		C
S	
1.
2	

Finally,	note	that	we	have	more	than	one	paper	per	author	and	many	authors	per	lab.	To	find	the	topic	
distribution	within	a	lab,	we	can	collect	all	the	topic	distributions	across	papers	belonging	to	authors	in	
that	lab.	This	is	how	we	arrive	at	the	topic	distributions	for	each	of	the	four	labs	in	Figure	2	

Figure	2:	Lab	Group	interests	for	different	values	of	K.	

References	

[1] Blei,	D.,	Ng,	A.,	and	Jordan,	M.	(2003).	Latent	Dirichlet	allocation.	Journal	of	Machine	
Learning	Research,	3:993–1022.	

[2] Hoffman,	M.,	Blei,	D.,	Wang,	C.,	and	Paisley,	J.	(2013).	Stochastic	variational	
inference.Journal	of	Machine	Learning	Research,	14:1303−1347.	

[3] Hoffman,	M.	D.	(2010).	Online	variational	Bayes	for	latent	Dirichlet	allocation.	https:	
//github.com/blei-lab/onlineldavb	

Lai,	Q.	(2016).	Python	implementation	of	Stochastic	Variational	Inference	for	LDA.	
https://github.com/qlai/stochasticLDA	

