CTL.SC1x -Supply Chain & Logistics Fundamentals

Lead Time Variability & Mode Selection

Agenda

- Connections to Inventory Planning —
- Transit Time Reliability —
- Handling Lead Time Variability
- Mode Selection —

Transportation Impact on Inventory

Impact on Inventory

$$TC(Q) = cD + c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{Q}{2} + k\sigma_{DL} + LD\right) + B_{SO} \left(\frac{D}{Q}\right) \Pr[SO]$$

- How does transportation impact our total costs?
 Cost of transportation -Value & Structure
 Lead Time

 Value & Variability & Schedule

 Capacity

 Limits on Q
 Miscellaneous Factors
 - Special Cases

Transportation Cost Functions

Shipping Shoes from Shenzhen II - The Next Chapter

Shipping Shoes II

How should I ship my shoes from Shenzhen to Kansas City?

- General Information
 - Shoes are manufactured, labeled, and packed at plant
 - Demand ~N(4.5M, 0.54M) annual demand
 - 3,000 shoe boxes fit into one TEU
 - Average cost ~\$35 per pair
 - Cost of product in container \$105,000
 - Average sales price ~\$75 per pair /
 - Order for shipment cost \$5000 per order
 - Holding costs are 15%
 - Assume 50 weeks/year, 350 days/year
 - Assume CSL 95%

Which option provides the lowest <u>logistics</u> cost?

Transportation Options

Inland Origin: Shenzhen to Ports (\$/container)

- Yantian (\$35, 2 day)
- Hong Kong (\$30, 5 days)

Port to Port: China to US (\$/container)

- CSCL (AAC) Yantian to POLA (\$1100, 20 days)
- CSCL (AAS) Hong Kong to POLA (\$1025, 13 days)
- APL Hong Kong to New York (\$1200, 29 days)
- Destination Port: US Ports (\$/container)
 - POLA (5 days)
 - New York / New Jersey (3 days)

Inland Destination: To Kansas City (\$/container)

- POLA to KC by BNSF (\$1100, 11 days)
- PANYNJ to KC by NS (\$800, 5 days)
- PANYNJ to KC by HJBT Truckload (\$1150, 2 days)

Shipping Shoes

Shipping Shoes Part 2.									
$TC(Q) = cD + c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{Q}{2} + k\sigma_{DL} + LD\right) \qquad \qquad$									
Path	L (days)	C _{trans} (\$/cnt)	c (\$/cnt)	C _t (\$/ord)	C _e (\$/cnt/yr)	D (cnt/yr)	Q (cnt/ord)	σ _D (cnt	
1	38 (\$2,235	\$107,235	\$5,000	\$16,085	1,500	30	59.3	
2	34	\$2,155	\$107,155	\$5,000	\$16,073	1,500	30	56.	
3	42	¢2 020	¢107.020	¢E 000	¢16.055	1 500	20	67	

\$5,000

\$107,380

Path	Purchase Cost (\$M)	Ordering Cost (\$K)	Cycle Stock Cost (\$K)	Safety Stock Cost (\$M)	Pipeline Inventory (\$M)	Total Cost (\$M)	Logistics Cost Per Shoe
1	\$160.8	\$250 🔨	\$241	\$1.57	<u>\$2</u> .62	\$165.5	\$1.77
2	\$160,7	\$250	\$241	\$1.48	\$2.34	\$165.0	\$1.67
3	\$160.5	\$250	\$241	\$1.65	\$2.89	\$165.5	\$1.78
4	\$161.1	\$250	\$242	\$1.59	\$2.69	\$165.9	\$1.86

Lowest **total** cost path is (2) at \$2155 /container = \$1.67 / pair of shoes

4

39

\$2,380

\$16,107

1,500

 σ_{DL} (cnt)

59.3

56.1

62.4

60.1

30

Transit Time Reliability

CTL.SC1x - Supply Chain and Logistics Fundamentals Lesson: Lead Time Variability & Mode Selection

Lead / Transit Time Reliability

- Key Questions:
 - What is the definition of reliability within a firm?
 - What are the sources of unreliability/variability?
 - How can the current situation be improved?
- Two Dimensions of Reliability
 - Credibility
 - Did the carrier reserve slots as agreed to? (Rejections / Bumping)
 Did the carrier stop at all ports agreed to? (Skipping)
 Did the carrier load all containers committed? (Cut & Run)
 - Schedule Consistency
 - How close was the carrier's performance to their quoted schedule?
 - How consistent was the carrier's actual transit time?

Material adapted from Arntzen, B. (2011) "Global Ocean Transportation Project," Internal MIT Center for Transportation & Logistics (CTL) Report.

Definitions of Schedule Consistency

Compare actual transit time to the published ship schedule.

Compare actual transit time to the average of the last 6 months.

Measure the "tightness" of the distribution of transit times.

Material adapted from Arntzen, B. (2011) "Global Ocean Transportation Project," Internal MIT Center for Transportation & Logistics (CTL) Report.

Lesson: Lead Time Variability & Mode Selection

Three Observations from Practice

Observation 1: Contract reliability in procurement and operations do not always match

Material adapted from Caplice, C and Kalkanci, B. (2011) "Managing Global Supply Chains: Building end-to-end Reliability," Internal MIT Center for Transportation & Logistics (CTL) Report.

CTL.SC1x - Supply Chain and Logistics Fundamentals Lesson: Lead Time Variability & Mode Selection

Three Observations from Practice

Observation 2: Contract reliability differs dramatically across different route segments

While accurate estimates of the port-to-port transit times exist, there is only limited information on port dwell times.

Three Observations from Practice

Observation 3: Most transit variability occurs in inland transportation and at the ports.

						1	
		Origin Landside Transit	Origin Port Dwell	Ocean Transit	Destination Port Dwell	Destination Landside Transit	
/	Asia to North America	1.2	0.9	0.4	1.0	0.8	
	South America to North America	1.3	0.8	0.2	0.8	0.9	
	Europe to North America	0.7	0.7	0.3	0.7	0.7	
	North America to Europe	0.8	0.9	0.5	0.8	1.3	

Coefficient of Variation of Time for Each Segment when $\text{CV}{=}\sigma/\mu$.

Lead Time Variability

Sample of Transit Time Distribution

CTL.SC1x - Supply Chain and Logistics Fundamentals

Lesson: Lead Time Variability & Mode Selection

Lead Time Variability Impact

Random Sums of Random Variables

• Let

Then

- N = is a random variable assuming positive integer values 1, 2, 3....
- X_i = independent random variables so that E[X_i]=E[X]
- S = sum of X_i from i=1 to N
 - $E[S] = E\left[\sum_{i=1}^{N} X_{i}\right] = E[N]E[X]$ $Var[S] = Var\left[\sum_{i=1}^{N} X_{i}\right] = E[N]Var[X] + (E[X])^{2}Var[N]$
- Simple Example
 - N has a mean of 28 and a standard deviation of 7
 - X has a mean of 180 and standard deviation of 68
- What is the mean, variance, and standard deviation of S?
 - $E[S] = \mu_s = (28)(180) = 5040$
 - Var[S] = σ_s^2 = (28)(68)² + (180)²(7)² = 129472 + 1587600 = 1,717,072
 - StdDev[S] = $\sigma_s = \sqrt{(1,717,072)} = 1310$

Full proof and discussion can be found at S. K. Ross, Introduction to Probability Models, 11th Edition, Academic Press, 2014, Chapter 3.

Lead Time Variability

• Sometimes referred to as Hadley-Whitin equation

- Lead Time and Demand are independent RVs
- μ_D = Expected demand (items) during one time period
- $\sigma_{\rm D}$ = Standard deviation of demand (items) during one time period

Unitless multiplier of the base time

period!

- μ_L = Expected number of time periods for lead time
- σ_L = Standard deviation of time periods for lead time
- μ_{DL} = Expected demand (items) over lead time
- σ_{DL} = Standard deviation of demand (items) over lead time

$$\mu_{DL} = \mu_L \mu_D \qquad \sigma_{DL} = \sqrt{\mu_L \sigma_D^2 + (\mu_D)^2 \sigma_L^2}$$

- Transportation Example
 - Suppose that lead time is 12 days on average with a standard deviation of 3 days. The daily demand for an item is 100 units with a standard deviation of 22.
 - What is my expected demand over lead time as well as standard deviation of demand over lead time.

• $\sigma_{DL} = \sqrt{[(12)(22)^2 + (100)^2(3)^2]} = \sqrt{[5808 + 90000]} = 309.5 \sim 310$

I can now find set an inventory performance metric using this demand distribution!

Shipping Shoes from Shenzhen III – The Final Chapter

Shipping Shoes III

How should I ship my shoes from Shenzhen to Kansas City?

- General Information
 - Shoes are manufactured, labeled, and packed at plant
 - Demand ~N(4.5M, 0.54M) annual demand
 - 3,000 shoe boxes fit into one TEU
 - Average cost ~\$35 per pair
 - Cost of product in container \$105,000
 - Average sales price ~\$75 per pair
 - Order for shipment cost \$5000 per order
 - Holding costs are 15%
 - Assume 50 weeks/year, 350 days/year
 - Assume CSL 95%

Which option provides the lowest <u>logistics</u> cost?

Transportation Options

Inland Origin: Shenzhen to Ports ($\frac{1}{\sigma_L}$)

- Yantian (\$35, 2 days, 1 day)
- Hong Kong (\$30, 5 days, 5 days)
- Port to Port: China to US (\$/cnt, μ_L , σ_L)
 - CSCL (AAC) Yantian to POLA (\$1100, 20 days, 2 days)
 - CSCL (AAS) Hong Kong to POLA (\$1025, 13 days, 13 days)
- APL Hong Kong to New York (\$1200, 29 days, 3 days) Destination Port: US Ports ($\frac{1}{2}$, σ_1)
 - POLA (\$0, 5 days, 3 days)
 - New York / New Jersey (\$0, 3 days, 1 day)
- Inland Destination: To Kansas City ($\frac{1}{\sigma_l}$, μ_l , σ_l)
 - POLA to KC by BNSF (\$1100, 11 days, 3 days)
 - PANYNJ to KC by NS (\$800, 5 days, 2 days)
 - PANYNJ to KC by HJBT Truckload (\$1150, 2 days, 1 days)

CTL.SC1x - Supply Chain and Logistics Fundamentals

Lesson: Lead Time Variability & Mode Selection

CTL.SC1x - Supply Chain and Logistics Fundamentals

Lesson: Lead Time Variability & Mode Selection

Shipping Shoes III

$TC(Q) = cD + c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{Q}{2} + k\sigma_{DL} + LD\right)$									
Path	Purchase Cost (\$M)	Ordering Cost (\$K)	Cycle Stock Co (\$K)	Safety Stock Cost (\$M)	Pipeline Inventory (\$M)	Total Cost (\$M)	Logistics Cost Per Shoe		
1	\$160.8	\$250	\$241	\$1.66	\$2.62	\$165.6	\$1.79		
2	\$160.7	\$250	\$241	\$2.22	\$2.34	\$165.8	\$1.83		
3	\$160.5	\$250	\$241	\$1.79	\$2.89	\$165.7	\$1.82		
4	\$161.1	\$250	\$242	\$1.73	\$2.69	\$166.0	\$1.89		

Lowest **total** cost path is (1) at \$2235 /container = \$1.79 / pair of shoes

- #3 Lowest transportation cost route @ ~\$0.68 \$/shoe
- #2 Lowest <u>logistics</u> cost route @ ~\$1.67 \$/shoe, not considering variability of transit time
- #1 Lowest <u>logistics</u> cost route @ ~\$1.79 \$/shoe, considering variability of transit time

Mode Selection

Mode Selection

- Criteria for selection between modes
 - Feasible choices:
 - By geography
 - Global: Air versus Ocean
 - Surface: Trucking (TL, LTL, parcel) vs. Rail vs. Intermodal vs. Barge
 - By required speed
 - >500 miles in 1 day Air
 - <500 miles in 1 day TL</p>
 - By shipment size (weight/density/cube, etc.)
 - High weight, cube items cannot be moved by air
 - Large oversized shipments might be restricted to rail or barge
 - By other restrictions
 - Nuclear or hazardous materials (HazMat)
 - Product characteristics //
 - Trade-offs within the set of feasible choices:
 - Cost
 - Time (mean transit time, variability of transit time, frequency)
 - Capacity
 - Loss and Damage

Mode Choice Example

- You are in charge of transportation planning for a manufacturer. One of the lanes you are managing brings raw material from a supplier into your plant. Your plant requires about ~N(3000, 750) pounds of the product per day. The product is valued at \$20 per lb with 20% annual holding cost. You assume a CSL of 95% and 250 working days per year. You take ownership of the product at the origin.
- You have two options for this inbound movement.
 - **Truckload** Transit time is 3 days on average with a standard deviation of 0.5 days and it costs \$1800 per truckload (capacity of 40,000 lbs)
 - Intermodal Transit time is 6 days on average with a standard deviation of 2 days and it costs \$1400 per container (capacity of 40,000 lbs)
- Questions:
 - Your company's policy is to always "weigh out" your shipments. That is, always ship in full truckload or container quantities. Following this policy, what mode should you select?

CTL.SC1x - Supply Chain and Logistics Fundamentals

Lesson: Lead Time Variability & Mode Selection

Solution: Mode Choice

$$TC(Q) = cD + c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{Q}{2} + k\sigma_{DL} + LD\right)$$

c = \$ 20 per lb
h = 20% per year
$$c_e=20(0.20)=4$$
 \$/yr
 μ_D = 3000 lbs/day
 σ_D = 750 lbs/day
k = 1.64

31

TL	IM							
Lead Time (μ_L) 3				[$\overline{2 \circ \mathbf{D}}$			
Std Dev Lead Time (σ_L) 0.5		days	$ \zeta$	2*=_	$\frac{2c_t D}{dt}$			
) 1800	1400	\$/load		Î Ν	C _e			
			·					
	TL	IM						
Average Demand over Lead Time (μ_{DL})					Shippir	Still use TL		
Std Dev Demand over Lead Time (σ_{DL})			5		weight	weight saves ~ \$10k		
				_ /	nor vo	r = 1.00 + 2000		
		IN	Μ					
Capacity (Q)	25981	229	913	∕ W⊦	When would IM mal			
Number of loads/year $(N = D/Q)$.73	Se	sense for this lane			
Ordering Cost	\$51,962	\$45,	826					
Annual Cycle Stock Cost			826	-Low	-Lower value (c \leq 0.73 s			
Annual Safety Stock Cost			164	-Bett	er servic	$e(\mu_{1}=5, \sigma_{1}=1,$		
Annual Pipeline Inventory Cost		\$72,	000	& c	≤2.67 \$/	(lb) -		
gistics Cost	\$152,94 0	\$204	,815	-Low	er IM rat	$e(c_t \le $263)$		
	TL30.518001800ead Time (μ_D ead Time (σ_D capacity (Q)ar (N = D/Q)ordering Costle Stock Costty Stock Costventory Costgistics Cost	TL IM 3 6 0 0.5 2 1800 1400 1800 1400 ead Time (μ_{DL}) 9000 ead Time (σ_{DL}) 9000 ead Time (σ_{DL}) 1984 Capacity (Q) 25981 ar (N = D/Q) 28.87 Ordering Cost \$51,962 le Stock Cost \$51,962 ty Stock Cost \$13,017 ventory Cost \$36,000 gistics Cost \$152,940	TL IM 3 6 days 0.5 2 days 1800 1400 \$/load 1800 1400 \$/load TL IM ead Time (μ_{DL}) 9000 1800 ead Time (σ_{DL}) 1984 6275 TL IM car (N = D/Q) 25981 229 ar (N = D/Q) 25981 229 ordering Cost \$51,962 \$45, brock Cost \$13,017 \$41, ventory Cost \$36,000 \$72, gistics Cost \$152,946 \$204 \$204	TL IM 3 6 days 0.5 2 days 1800 1400 $\$/load$ TL IM ead Time (μ_{DL}) 9000 18000 ead Time (σ_{DL}) 1984 6275 TL IM capacity (Q) 25981 22913 ar (N = D/Q) 28.87 32.73 Ordering Cost \$51,962 \$45,826 le Stock Cost \$51,962 \$45,826 ty Stock Cost \$13,017 \$41,164 ventory Cost \$36,000 \$72,000 gistics Cost \$152,940 \$294,815	TL IM 3 6 days 0.5 2 days 1800 1400 \$/load TL IM ead Time (μ_{DL}) 9000 18000 ead Time (σ_{DL}) 1984 6275 TL IM Capacity (Q) 25981 22913 ar (N = D/Q) 28.87 32.73 Ordering Cost \$51,962 \$45,826 le Stock Cost \$13,017 \$41,164 wentory Cost \$36,000 \$72,000 gistics Cost \$152,949 \$294,815	TL IM 3 6 days 0.5 2 days 1800 1400 \$/load TL IM ead Time (μ_{DL}) 9000 18000 ead Time (σ_{DL}) 1984 6275 TL IM Sti Shippin ead Time (σ_{DL}) 1984 6275 Sti Capacity (Q) 25981 22913 ar (N = D/Q) 28.87 32.73 When word sense for Ordering Cost \$51,962 \$45,826 -Lower value better service \$45,826 -Lower value -Better service ty Stock Cost \$13,017 \$41,164 -Lower value -Better service wentory Cost \$36,000 \$72,000 -Lower IM rate -Lower IM rate		

CTL.SC1x - Supply Chain and Logistics Fundamentals

Lesson: Lead Time Variability & Mode Selection

Key Points from Lesson

CTL.SC1x - Supply Chain and Logistics Fundamentals Lesson: Lead Time Variability & Mode Selection

Key Points $TC(Q) = OD + C_{t} \left(\frac{D}{Q}\right) + c_{e} \left(\frac{Q}{2} + k\sigma_{DL} + LD\right)$

- Mode/route/carrier selection is a trade-off between
 - Transportation costs //
 - Inventory costs (cycle, safety, pipeline)
 - Level of service
- Need to consider more than just direct transport cost
- Lead time impacts safety stock levels and variability impacts it even more so!
- Be careful about shape of distribution for demand over lead time. $\mu_{DL} = \mu_L \mu_D$

Lesson: Lead Time Variability & Mode Selection

 $\sigma_{DL} = \sqrt{\mu_L \sigma_D^2 + (\mu_D)^2 \sigma_L^2}$

CTL.SC1x -Supply Chain & Logistics Fundamentals Questions, Comments, Suggestions? Use the Discussion!

"Wilson – pondering the Hadley-Whitin Equation " Yankee Golden Retriever Rescued Dog (www.ygrr.org)

Transportation & Logistics

caplice@mit.edu