Single Period Inventory Models: Allowing for Stockouts
Assumptions: EOQ with Planned Backorders

- Demand
 - **Constant** vs Variable
 - **Known** vs Random
 - **Continuous** vs Discrete
- Lead Time
 - **Instantaneous**
 - Constant vs Variable
 - Deterministic vs Stochastic
 - Internally Replenished
- Dependence of Items
 - **Independent**
 - Correlated
 - Indentured
- Review Time
 - **Continuous** vs Periodic
- Number of Locations
 - **One** vs Multi vs Multi-Echelon
- Capacity / Resources
 - **Unlimited**
 - Limited / Constrained
- Discounts
 - **None**
 - All Units vs Incremental vs One Time
- Excess Demand
 - **None**
 - All orders are backordered
 - Lost orders
 - Substitution
- Perishability
 - **None**
 - Uniform with time
 - Non-linear with time
- Planning Horizon
 - Single Period
 - Finite Period
 - **Infinite**
- Number of Items
 - **One** vs Many
- Form of Product
 - **Single Stage**
 - Multi-Stage
What will happen to Q^* and T^* if we allow for planned backorders at some cost (c_s)?
EOQ with Planned Back Orders
Notation

\(D = \) Average Demand (units/time)
\(c = \) Variable (Purchase) Cost ($/unit)
\(c_t = \) Fixed Ordering Cost ($/order)
\(h = \) Carrying or Holding Charge ($/inventory $/time)
\(c_e = c \cdot h = \) Excess Holding Cost ($/unit/time)
\(c_s = \) Shortage Cost ($/unit/time)
\(Q = \) Replenishment Order Quantity (units/order)
\(T = \) Order Cycle Time (time/order)
\(N = 1/T = \) Orders per Time (order/time)

\(TRC(Q) = \) Total Relevant Cost ($/time)
\(TC(Q) = \) Total Cost ($/time)
EOQ with Planned Backorders

From similar triangles:
\[
\frac{Q}{T} = \frac{(Q - b)}{T_1} = \frac{b}{T_2}
\]

\[
T_1 = \frac{(Q - b)}{Q} \quad T_2 = \frac{b}{Q}
\]

\[
TRC(Q, b) = c_t \left(\frac{D}{Q} \right) + c_e \left(\frac{1}{2} \right) \left(\frac{T_1}{T} \right) (Q - b) + c_s \left(\frac{1}{2} \right) \left(\frac{T_2}{T} \right) (b)
\]

\[
TRC(Q, b) = c_t \left(\frac{D}{Q} \right) + c_e \left(\frac{1}{2} \right) \left(\frac{(Q - b)}{Q} \right) (Q - b) + c_s \left(\frac{1}{2} \right) \left(\frac{b}{Q} \right) (b)
\]

\[
TRC(Q, b) = c_t \left(\frac{D}{Q} \right) + c_e \left(\frac{(Q - b)^2}{2Q} \right) + c_s \left(\frac{b^2}{2Q} \right)
\]
Planned Backorders - Solution
EOQ with Planned Backorders

\[TRC(Q, b) = c_t \left(\frac{D}{Q} \right) + c_e \left(\frac{(Q - b)^2}{2Q} \right) + c_s \left(\frac{b^2}{2Q} \right) \]

\[Q_{PBO}^* = \sqrt{\frac{2c_tD}{c_e}} \sqrt{\left(\frac{c_s + c_e}{c_s} \right)} = Q^* \sqrt{\frac{c_s + c_e}{c_s}} \]

\[b^* = \frac{c_e Q_{PBO}^*}{(c_s + c_e)} = \left(1 - \frac{c_s}{(c_s + c_e)} \right) Q_{PBO}^* \]

Inventory Policy

Order \(Q_{PBO}^* \) when IOH = - \(b^* \)

Order \(Q_{PBO}^* \) every \(T_{PBO}^* \) time periods

Critical Ratio

\[CR = \frac{c_s}{(c_s + c_e)} \]
EOQ with Planned Backorders

Critical Ratio

If \(c_s \) is very small, then \(Q^*_{PBO} \gg Q^* \)

\[
Q^*_{PBO} = Q^* \sqrt{\frac{1}{CR}}
\]

If \(c_s \) is very big, then \(Q^*_{PBO} = Q^* \)

\[
CR = \frac{c_s}{c_s + c_e}
\]
Probabilistic Demand:
Single Period Models
Assumptions: Single Period Models

- Demand
 - Constant vs Variable
 - Known vs Random
 - Continuous vs Discrete

- Lead Time
 - Instantaneous
 - Constant vs Variable
 - Deterministic vs Stochastic
 - Internally Replenished

- Dependence of Items
 - Independent
 - Correlated
 - Indentured

- Review Time
 - Continuous vs Periodic

- Number of Locations
 - One vs Multi vs Multi-Echelon

- Capacity / Resources
 - Unlimited
 - Limited / Constrained

- Discounts
 - None
 - All Units vs Incremental vs One Time

- Excess Demand
 - None
 - All orders are backordered
 - Lost orders
 - Substitution

- Perishability
 - None
 - Uniform with time
 - Non-linear with time

- Planning Horizon
 - Single Period
 - Finite Period
 - Infinite

- Number of Items
 - One vs Many

- Form of Product
 - Single Stage
 - Multi-Stage
Example: NFL Replica Jerseys

- **Situation:**
 - In 2002 Reebok had sole rights to sell replica NFL football jerseys
 - Jerseys have unique names & numbers
 - Peak sales last about 8 weeks
 - Lead time from contract manufacturer is 12-16 weeks

- **Main Issue:**
 - Reebok had to commit to an order in advance while the actual demand was uncertain

- **Question:**
 - How many Jerseys of each player should they order?

Image Source: http://commons.wikimedia.org/wiki/File:Tom_Brady_%28cropped%29.jpg
Example: NFL Replica Jerseys

- **Data:**
 - Unit cost = \(c = 10.90 \) $/jersey
 - Unit selling price = \(p = 24 \) $/jersey
 - Forecast demand = 32,000 jerseys (\(\sigma = 11,000 \))
 - History showed demand to be Normally distributed

- Select \(Q^* \) that maximizes profit where \(X = \) actual demand:

\[
\text{Profit} = p \left(\text{MIN}\left[x, Q \right] \right) - cQ
\]

- How do I determine the “best” policy?
 1. Data table
 2. Marginal analysis
Solving Single Period Model: Data Table
Sample spreadsheets in MS Excel and LibreOffice are available in this unit.

Data Table

<table>
<thead>
<tr>
<th>Demand</th>
<th>Prob</th>
<th>Price</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.3%</td>
<td>$214</td>
<td>$240</td>
</tr>
<tr>
<td>4</td>
<td>0.2%</td>
<td>$166</td>
<td>$180</td>
</tr>
<tr>
<td>6</td>
<td>0.4%</td>
<td>$118</td>
<td>$132</td>
</tr>
<tr>
<td>8</td>
<td>0.6%</td>
<td>$70</td>
<td>$81</td>
</tr>
<tr>
<td>10</td>
<td>0.8%</td>
<td>$22</td>
<td>$33</td>
</tr>
<tr>
<td>12</td>
<td>1.2%</td>
<td>$26</td>
<td>$30</td>
</tr>
<tr>
<td>14</td>
<td>1.6%</td>
<td>$74</td>
<td>$84</td>
</tr>
<tr>
<td>16</td>
<td>2.2%</td>
<td>$122</td>
<td>$132</td>
</tr>
<tr>
<td>18</td>
<td>2.9%</td>
<td>$170</td>
<td>$180</td>
</tr>
<tr>
<td>20</td>
<td>3.6%</td>
<td>$218</td>
<td>$228</td>
</tr>
<tr>
<td>22</td>
<td>4.4%</td>
<td>$266</td>
<td>$276</td>
</tr>
<tr>
<td>24</td>
<td>5.2%</td>
<td>$314</td>
<td>$324</td>
</tr>
</tbody>
</table>

Profit = \(p \text{MIN}(x, Q) - cQ \)

Profit calculation:

- Potential order sizes (Q)
- Potential demand (x)
- Probability of demand \(P[x] \)
<table>
<thead>
<tr>
<th>Demand</th>
<th>Prob</th>
<th>Order</th>
<th>Price</th>
<th>StdDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.3%</td>
<td></td>
<td>(214)</td>
<td>(34)</td>
</tr>
<tr>
<td>4</td>
<td>0.5%</td>
<td></td>
<td>(166)</td>
<td>(125)</td>
</tr>
<tr>
<td>6</td>
<td>0.9%</td>
<td></td>
<td>(118)</td>
<td>(177)</td>
</tr>
<tr>
<td>8</td>
<td>1.5%</td>
<td></td>
<td>(70)</td>
<td>(129)</td>
</tr>
<tr>
<td>10</td>
<td>2.3%</td>
<td></td>
<td>(6)</td>
<td>(139)</td>
</tr>
<tr>
<td>12</td>
<td>3.5%</td>
<td></td>
<td>(43)</td>
<td>(187)</td>
</tr>
<tr>
<td>14</td>
<td>5.1%</td>
<td></td>
<td>(22)</td>
<td>(209)</td>
</tr>
<tr>
<td>16</td>
<td>7.3%</td>
<td></td>
<td>(33)</td>
<td>(257)</td>
</tr>
<tr>
<td>18</td>
<td>10.2%</td>
<td></td>
<td>(91)</td>
<td>(268)</td>
</tr>
<tr>
<td>20</td>
<td>13.8%</td>
<td></td>
<td>(54)</td>
<td>(279)</td>
</tr>
<tr>
<td>22</td>
<td>18.2%</td>
<td></td>
<td>(31)</td>
<td>(301)</td>
</tr>
<tr>
<td>24</td>
<td>23.4%</td>
<td></td>
<td>9</td>
<td>(323)</td>
</tr>
<tr>
<td>26</td>
<td>29.3%</td>
<td></td>
<td>(13)</td>
<td>(334)</td>
</tr>
<tr>
<td>28</td>
<td>35.8%</td>
<td></td>
<td>(2)</td>
<td>(344)</td>
</tr>
<tr>
<td>30</td>
<td>42.8%</td>
<td></td>
<td>(61)</td>
<td>(345)</td>
</tr>
<tr>
<td>32</td>
<td>50.0%</td>
<td></td>
<td>(24)</td>
<td>(346)</td>
</tr>
<tr>
<td>34</td>
<td>57.2%</td>
<td></td>
<td>(51)</td>
<td>(347)</td>
</tr>
<tr>
<td>36</td>
<td>64.2%</td>
<td></td>
<td>(83)</td>
<td>(348)</td>
</tr>
<tr>
<td>38</td>
<td>71.0%</td>
<td></td>
<td>(113)</td>
<td>(349)</td>
</tr>
<tr>
<td>40</td>
<td>76.6%</td>
<td></td>
<td>(33)</td>
<td>(350)</td>
</tr>
<tr>
<td>42</td>
<td>81.8%</td>
<td></td>
<td>(39)</td>
<td>(351)</td>
</tr>
<tr>
<td>44</td>
<td>86.2%</td>
<td></td>
<td>(43)</td>
<td>(352)</td>
</tr>
<tr>
<td>46</td>
<td>89.9%</td>
<td></td>
<td>(76)</td>
<td>(353)</td>
</tr>
<tr>
<td>48</td>
<td>94.9%</td>
<td></td>
<td>(36)</td>
<td>(354)</td>
</tr>
<tr>
<td>50</td>
<td>96.5%</td>
<td></td>
<td>(39)</td>
<td>(355)</td>
</tr>
<tr>
<td>52</td>
<td>97.7%</td>
<td></td>
<td>(33)</td>
<td>(356)</td>
</tr>
<tr>
<td>54</td>
<td>98.5%</td>
<td></td>
<td>(41)</td>
<td>(357)</td>
</tr>
<tr>
<td>56</td>
<td>99.1%</td>
<td></td>
<td>(354)</td>
<td>(358)</td>
</tr>
<tr>
<td>58</td>
<td>99.5%</td>
<td></td>
<td>(40)</td>
<td>(359)</td>
</tr>
<tr>
<td>60</td>
<td>99.9%</td>
<td></td>
<td>(354)</td>
<td>(360)</td>
</tr>
<tr>
<td>62</td>
<td>99.9%</td>
<td></td>
<td>(40)</td>
<td>(361)</td>
</tr>
<tr>
<td>64</td>
<td>99.9%</td>
<td></td>
<td>(354)</td>
<td>(362)</td>
</tr>
<tr>
<td>66</td>
<td>100.0%</td>
<td></td>
<td>(40)</td>
<td>(363)</td>
</tr>
</tbody>
</table>

Formula: \(=\text{SUMPRODUCT}(\text{C7:C48}, E7:E48)\)
Expected Profits

Expected Total Profit ($k)

Order Quantity

Expected Profit

Row 42

Ordered Too Little

Order Too Much

Q *
Solving Single Period Model: Marginal Analysis
For single-period problems we have two costs:

\[c_e = \text{Excess cost when } D<Q \text{ (}/\text{unit}) \text{ i.e. having too much product} \]

\[c_s = \text{Shortage cost when } D>Q \text{ (}/\text{unit}) \text{ i.e. having too little product} \]

Assuming a continuous distribution of demand, we get

\[c_e P[X\leq Q] = \text{expected excess cost of the Qth unit ordered} \]

\[c_s (1-P[X\leq Q]) = \text{expected shortage cost of the Qth unit ordered} \]

If \(E[\text{Excess Cost}] < E[\text{Shortage Cost}] \) then increase \(Q \)

We are at \(Q^* \) when \(E[\text{Shortage Cost}] = E[\text{Excess Cost}] \)
Marginal Analysis

Marginal Shortage and Excess Costs

\[c_s (1 - P[x \leq Q]) \]

\[c_e P[x \leq Q] \]

Order Quantity

Marginal Cost per Jersey

$\sim N(32, 11)$
Marginal Analysis

\[c_e P[x \leq Q] = c_s \left(1 - P[x \leq Q]\right) \]

\[c_e P[x \leq Q] = c_s - c_s P[x \leq Q] \]

\[c_e P[x \leq Q] + c_s P[x \leq Q] = c_s \]

\[P[x \leq Q] (c_e + c_s) = c_s \]

The Critical Ratio

\[P[x \leq Q] = \frac{c_s}{c_e + c_s} \]

\[CR = \frac{c_s}{c_e + c_s} \]

\[c_e = c_s \]

\[c_s = 2c_e \]

\[CR = \frac{2}{3} \]

\[\frac{7}{3} \]
NFL Jersey Example - solved
Example: NFL Replica Jerseys

• Data:
 - Total cost = $c = 10.90 \$/jersey
 - Selling price = $p = 24 \$/jersey
 - Forecast demand ~N(32000, 11000)

• Solution:
 - $c_s = p - c = 24 - 10.90 = 13.10 \$
 - $c_e = c = 10.90 \$
 - $CR = (13.10) / (10.90 + 13.10) = 0.546$
 - Select Q where $P[x \leq Q] = 0.546$
 - Normal Table or use spreadsheet:

Image Source: http://commons.wikimedia.org/wiki/File:Tom_Brady_%28cropped%29.jpg
Standard Normal Table

\[P(x \leq Q) = 0.546 \]

Find \(k = 0.115 \)

Recall \(k = (Q - \mu) / \sigma \)

So, \(Q = \mu + k \sigma \)

\[Q = 32000 + (0.115)(11000) \]

\[Q = 33,267 \text{ units} \]
Example: NFL Replica Jerseys

Data:
- Total cost = $c = 10.90$/jersey
- Selling price = $p = 24$/jersey
- Forecast demand ~N(32000, 11000)

Solution:
- $c_s = p - c = 24 - 10.90 = 13.10$
- $c_e = c = 10.90$
- $CR = \frac{13.10}{10.90 + 13.10} = 0.546$
- Select Q where $P[x \leq Q] = 0.546$
 - Normal Table or use spreadsheet:
 - $=\text{NORMINV}(CR, \text{Mean}, \text{StdDev})$
 - $=\text{NORMINV}(0.546, 32000, 11000)$
- $Q^* = 33,267$ - the profit maximizing quantity

But what if I can sell the left overs at a discount?

Image Source: http://commons.wikimedia.org/wiki/File:Tom_Brady_%28cropped%29.jpg
Considering Other Costs

- **Other costs:**
 - \(g = \) salvage value, $/unit
 - \(B = \) Penalty for not satisfying demand (beyond lost profit), $/unit

- The excess and shortage costs change:
 - \(c_s = p - c + B \)
 - \(c_e = c - g \)
 - Critical Ratio: \[\frac{c_s}{c_s + c_e} = \frac{p - c + B}{p - c + B + c - g} = \frac{(p - c + B)}{(p + B - g)} \]
Example: NFL Replica Jerseys

- **Data:**
 - Total cost = \(c = 10.90 \) $/jersey
 - Selling price = \(p = 24 \) $/jersey
 - Forecast demand \(\sim N(32000, 11000) \)
 - Salvage value = \(g = 7 \) $/jersey

- **Solution:**
 - \(c_s = p - c = 24 - 10.90 = $13.10 \)
 - \(c_e = c - g = 10.90 - 7.00 = $3.90 \)
 - \(CR = \frac{13.10}{3.9 + 13.10} = 0.771 \)
 - Select \(Q \) where \(P[x \leq Q] = 0.771 \)
 - Normal Table or use spreadsheet:
 - \(=\text{NORMINV}(CR, \text{Mean}, \text{StdDev})=\text{NORMINV}(0.771, 32000, 11000) \)
 - \(Q^* = 40,149 \) - the profit maximizing quantity

But, how do I determine the profitability?
Key Points from Lesson
Key Points

• Newsvendor problems are everywhere
 • Fashion items, perishable goods, fleet sizing, contracting, space missions, etc.
 • Whenever you have to make a firm bet in the face of uncertain demand in a single period

• Classic trade off between:
 • Having too much (excess cost c_e)
 • Having too little (shortage cost c_s)

• Critical Ratio captures this trade-off
 • $CR = C_s / (C_s + C_e)$
 • $CR = Pct$ of demand distribution to cover
 $= P[x \leq Q]$
Questions, Comments, Suggestions?
Use the Discussion!