CTL.SC1x -Supply Chain & Logistics Fundamentals

Exponential Smoothing: Seasonality

Annual Seasonality for Various Products

CTL.SC1x - Supply Chain and Logistics Fundamentals

Lesson: Exponential Smoothing with Seasonality

Agenda

- Double Exponential Smoothing Model
 Level & Seasonality
- Holt-Winter Model
 Level, Trend & Seasonality
- Initialization of Parameters
- Practical Concerns

Double Exponential Smoothing

Time Series Analysis

- Exponential Smoothing for Level & Seasonality
 - Double exponential smoothing
 - Introduces multiplicative seasonal term

Demand rate

time

CTL.SC1x - Supply Chain and Logistics Fundamentals

Seasonality

- For multiplicative seasonality, think of the F_i as "percent of average demand" for a period i
- The sum of the F_i for all periods within a season must equal P

Suppose we are in Monday (t=105) forecasting for Thursday (t=108)? What is $F_{t+tau-P}$?

- This means t=105, P=5 and τ =3 and thus t+ τ -P=105+3-5 = 103
- So, $x^{105,108} = a^{105}F^{103}$
- We modify the most recent estimate of level by the most recent relevant seasonality index

Example: Forecasting Bagels

- We observe that demand is level with seasonality by day of week. It is now Friday (t=104) and we have estimated the level (a_{104}°) to be 1210 gels. The current daily seasonality factors are shown to the right and smoothing factors alpha=0.1 and gamma=0.05.
- What is your forecast for Monday (x[^]_{104,105})?

Recall that: $\hat{x}_{t,t+\tau} = \hat{a}_t \hat{F}_{t+\tau-P}$ so $x^{104,105} = (121)(0.50) = 60.5$

Suppose our actual bagel sales on Monday (t=105) was 76.
 What is our forecasted demand for Tuesday (t=106)?

1.50

Normalizing Seasonality Indices

Holt-Winter Model

Time Series: Level, Trend, & Seasonal Data

Example II: Forecasting Bagels

- We now observe that demand is level with additive trend and multiplicative seasonality by day of week. It show Friday (t=104)and we have estimated the level (a_{104}^{-}) to be 121 bagels with a trend $(b_{104}) \neq 0.3$ bagles per day. The current daily seasonality factors are shown to the right and smoothing factors are alpha=0.1, beta=0.08, and gamma=0.05.
- What is your forecast for Monday $(x_{104,105})$?

Recall that: $\hat{x}_{t,t+\tau} = (\hat{a}_t + \tau \hat{b}_t) \hat{F}_{t+\tau-P}$ so $x_{104,105}^* = (121+0.3)(0.50) = 60.7$ Suppose our actual bagel sales on Monday (t=105) was 76 What

is our forecasted demand for Tuesday (t=106)?

. . . .

t

100

101

102

103

DOW

Mon

Tues

Wed

Thur

0.50

0.75

1.25

1.00

Initialization of Models

Initialization of Parameters

- Points to Note
 - No single best method many good ones
 - Need to partition the data (initialization, training, and testing)
- Simple Exponential Smoothing Model
 - Estimate initial level parameter (a[^]₀)
 - Use average demand for first several periods
- Holt Model
 - Estimate initial level (a[^]₀) and trend (b[^]₀) parameters (a⁸₀ b)
 - Find best fit linear equation to data in initial data set \succ
 - Use ordinary least squares regression of demand for several periods
 - Dependent variable = demand in each time period = x_t
 - Independent variable = slope = β_1
 - Regression equation: $x_t = \beta_0 + \beta_1 t$
 - Note: this gives equal weight to each observation in the initialization data sample

Initialization of Parameters

- Seasonality Models
 - These are much more complicated
 - Several different methods used in practice
 - You need lots of data >2 seasons worth but prefer ≥ 4 seasons
- Double Exponential Smoothing Model
 - Estimate initial level parameter (a_0°) & seasonality indices (F_i°)
 - Find average demand for each common season period
 - Find average demand for all periods
 - Set initial seasonality indices to ratio of each season to all periods

	Average	Initial	
	Daily	Seasonality	
Day	Demand	Index	
Mon	60 -	0.50 🗸	
Tues	90 🦯	0.75 🖊	
Wed	151	1.25	
Thur	121 🧹	1.00	
Fri	181 🖊	1.50	
All Days	121		

Initialization – Holt-Winter

- 1. Estimate initial level for each season
 - Find P-Moving Avg centered in each season
 - Take ratio of actual to initial F_i estimate
- 2. Find initial season indices
 - Average F_i for common periods

DOW	Average of F _i Estimates	Normalized F _i s
Μ	0.501 🥒	0.506
Т	0.741	0.748
W	1.195	1.195 🥣
R	0.998	0.998
F	1.516	1.515
Sum	4.952	5.000

			Actual	MA5 Contor	Initial E
Week	t	DOW	Demand	point	Estimate
1	80	Μ	62		
	81	Т	91		
	82	W	163	128.3	1.273
	83	R	129	129.4	1.000
	84	F	196	132.0	1.483
2	85	Μ	68	137.9	0.492
	86	Т	104	141.3	0.735
	87	W	193	147.3	1.307
	88	R	147	149.8	0.979
	89	F	226	152.5	1.481
3	90	М	80	154.3	0.518
	91	Т	118	160.0	0.736
	92	W	201	169.7	1.186
	93	R	175	172.2	1.018
	94	F	274	176.9	1.551
4	95	Μ	92	185.9	0.495
	96	Т	142	188.4	0.752
	97	W	246	191.5	1.286
	98	R	187		
	99	F	290		

CTL.SC1x - Supply Chain and Logistics Fundamentals

Lesson: Exponential Smoothing with Seasonality

Initialization – Holt-Winter

- 3. Estimate initial level and trend values
 - De-season each observation by dividing by its estimated Seasonality Index
 - Use these values to estimate a[^]₀ and b[^]₀ using OLS regression

Final Comments on Exponential Smoothing

Comments on Time Series Models

- Three phases of work on three different data sets
 - Initialize: Estimate level, trend, and/or seasonality factors
 - Train: Determine the smoothing parameters to use
 - Test: Evaluate the quality (accuracy & bias) of forecasts
- Selecting data for use in model formulation
 - Needs to be appropriately long but still relevant
 - Needs to be cleaned of all non-repeating events
- Picking appropriate smoothing factors
 - Level (α)
 - Stationary: ranges from 0.01 to 0.30 (0.1 reasonable)
 - Trend/Season: ranges from 0.02 to 0.51 (0.19 reasonable)
 - Trend (β)
 - Ranges from 0.005 to 0.176 (0.053 reasonable)
 - Seasonality (γ)
 - Ranges from 0.05 to 0.50 (0.10 reasonable)

Comments on Time Series Models

- Most of the work is bookkeeping
 - Initialization procedures are somewhat arbitrary
 - Adding seasonality greatly complicates calculations
- Measuring Bias in Forecasts
 - Track the cumulative sum of Forecast Errors
 - Normalize by mean square of errors
 - Should fluctuate around 0

$$C_{t} = C_{t-1} + e_{t}$$
$$C_{t}^{N} = C_{t} / \sqrt{MSE_{t}}$$

Comments on Time Series Models

- Variety of More Sophisticated Models
 - Seasonality: None, Additive, or Multiplicative
 - Trend: None, Additive, or Multiplicative
 - Trend Damping: None or Present
 - Box-Jenkins or Autoregressive Integrated Moving Average (ARIMA)

			Seasonality Component		
			None	Additive	Multiplicative
Trend omponent	٦t	None	Simple		Double
	nei	Additive	Holt		Holt-Winter
	od	Additive Damped	Holt Damped		
	E O D	Multiplicative			
(Ŭ	Multiplicative Damped			

CTL.SC1x -Supply Chain & Logistics Fundamentals

Questions, Comments, Suggestions? Use the Discussion!

"Ginger Belle" Photo courtesy Yankee Golden Retriever Rescue (www.ygrr.org)

caplice@mit.edu

Image Credits

- slide 2
 - "Valentines Day Chocolates from 2005" by John Hritz from Ann Arbor, MI, USA Flickr. Licensed under Creative Commons Attribution 2.0 via Wikimedia Commons - http:// commons.wikimedia.org/wiki/ File:Valentines_Day_Chocolates_from_2005.jpg#mediaviewer/ File:Valentines_Day_Chocolates_from_2005.jpg
 - "Johns Inc Salad Bar Buffet" by Tudokin Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons -<u>http://commons.wikimedia.org/wiki/File:Johns Inc Salad Bar Buffet.jpg#mediaviewer/ File:Johns Inc Salad Bar Buffet.jpg</u>
 - By Das Ant (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons. http://commons.wikimedia.org/wiki/File%3AGartengeraete.jpg
 - "Bandaż" by Original uploader was Reytan at pl.wikipedia Transferred from pl.wikipedia; transferred to Commons by User:Pjahr using CommonsHelper.. Licensed under Public domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Banda %C5%BC.jpg#mediaviewer/File:Banda%C5%BC.jpg