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Outline (part 1)
‣ Feed-forward neural networks 
‣ The power of hidden layers 
‣ Learning feed-forward networks 

- SGD and back-propagation



Motivation
‣ So far our classifiers rely on pre-compiled features
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Neural Networks
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(Artificial) Neural Networks
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A unit in a neural network
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Deep Neural Networks

‣ Deep neural networks
- loosely motivated by biological neurons, networks 
- adjustable processing units (~ linear classifiers) 
- highly parallel, typically organized in layers 
- deep = many transformations (layers) before output 

e.g., edges -> simple parts-> parts -> objects -> scenes

(c) Michael DeBellis



Deep Learning
‣ Deep learning has overtaken a number of academic 

disciplines in just a few years 
- computer vision (e.g., image, scene analysis) 
- natural language processing (e.g., machine translation) 
- speech recognition 
- computational biology, etc. 
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- speech recognition 
- computational biology, etc.  

‣ Key role in recent successes 
- self driving vehicles  
- speech recognition 
- conversational agents 
- superhuman game playing  

‣ Many more underway 
- personalized/automated medicine 
- chemistry, robotics, materials science, etc.



‣ Reason #1: lots of data 
- many significant problems can only be solved at scale  

‣ Reason #2: computational resources (esp. GPUs) 
- platforms/systems that support running deep (machine) 

learning algorithms at scale 

‣ Reason #3: large models are easier to train 
- large models can be successfully estimated with simple 

gradient based learning algorithms 

‣ Reason #4: flexible neural “lego pieces” 
- common representations, diversity of architectural choices

Deep learning … why now?
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One hidden layer model
‣ Neural signal transformation
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Example Problem
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Does orientation matter?
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Random hidden units
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(10 randomly chosen units)

Hidden layer units

Random hidden units



(10 randomly chosen units)
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(10 randomly chosen units)

Are the points 
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(10 randomly chosen units)

Random hidden units

Hidden layer units

what are the coordinates??



Summary 
‣ Units in neural networks are linear classifiers, just with

different output non-linearity
‣ The units in feed-forward neural networks are arranged

in layers (input, hidden,…, output)
‣ By learning the parameters associated with the hidden

layer units, we learn how to represent examples (as
hidden layer activations)

‣ The representations in neural networks are learned
directly to facilitate the end-to-end task

‣ A simple classifier (output unit) suffices to solve complex
classification tasks if it operates on the hidden layer
representations
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