Wb

» Non-linear classification and regression

Feature maps, their inner products

Kernel functions induced from feature maps
Kernel methods, kernel perceptron

Other non-linear classifiers (e.g., Random Forest)
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Linear classifiers on the real line




In feature space
t P2




Back to the real line




D1




Polynomial features

» We can add more polynomial terms

» Means lots of features in higher dimensions



%n-lin. classification & regression

CSAIL

» Non-linear classification
h(x;0,00) = sign(6 - p(x) + bo)

» Non-linear regression
f(x;0,00) =0 - o(x) + 0

e.g., ¢(x)

x,x



\f@ﬁgﬁ Non-linear regression

CSAIL

linear 3rd order




Hh Why not feature vectors?

» By mapping input examples explicitly into feature
vectors, and performing linear classification or
regression on top of such feature vectors, we get a lot of
expressive power

» But the downside is that these vectors can be quite high
dimensional



44 Inner products, kernels

» Computing the inner product between two feature
vectors can be cheap even if the vectors are very high
dimensional
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Aghd Kernels vs features

» For some feature maps, we can evaluate the inner
products very efficiently, e.qg.,

» In those cases, it is advantageous to express the linear
classifiers (regression methods) in terms of kernels
rather than explicitly constructing feature vectors



\f@ﬁ& Recall perceptron

CSAIL

=0

run through:=1,...,n
if (¢ . gb(:z;(i)) <0
0 04y Do(xV)
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@Eﬁ Feature engineering, kernels

CSAIL

» Composition rules:

L.
2.

If Kq(z,2") and Ko

K(x,x") =1 is a kernel function.

Let f:R* — R and K(z,2’) is a kernel. Then so is
K(z,2') = f(x)K(z,2") f(2')

. If Kq(z,2") and Ko(x,2") are kernels, then

(
K(x,z") = Ki(x,2") + Ko(z,2") is a kernel
(, ) are kernels, then
K

K(x,2") = Ki(x,2")Ko(z,2") is a kernel



@5& Radial basis kernel

CSAIL

» The feature vectors can be infinite dimensional... this
means that they have unlimited expressive power

1
K(z,2') = exp(~ |l — «'|P)
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(A Radial basis kernel

» The feature vectors can be infinite dimensional... this
means that they have unlimited expressive power

1
K(z,2') = exp(~ |l — «'|P)




&@% Other non-linear classifiers

CSAIL

» Random forest is a good default classifier for (almost)
any setting

» Procedure:
- boostrap sample
- build a (randomized) decision tree
- average predictions (ensemble)



Wb

» We can get non-linear classifiers or regression methods
by simply mapping examples into feature vectors non-
linearly, and applying a linear method on the resulting
vectors

» These feature vectors can be high dimensional, however

» We can turn the linear methods into kernel methods by
casting the computations in terms of inner products

» A kernel function is simply an inner product between two
feature vectors

» Using kernels is advantageous when the inner products
are faster to evaluate than using explicit vectors (e.qg.,
when the vectors would be infinite dimensionall!)





