Machine Learning Lecture 4

Outline

- Understanding optimization view of learning
 - large margin linear classification
 - regularization, generalization
- Optimization algorithms
 - preface: gradient descent optimization
 - stochastic gradient descent
 - quadratic program

 Machine learning problems are often cast as optimization problems

objective function = average loss + regularization

 Large margin linear classification as optimization (Support Vector Machine)

$$J(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^n \operatorname{Loss}_h \left(y^{(i)} (\theta \cdot x^{(i)} + \theta_0) \right) + \frac{\lambda}{2} \|\theta\|^2$$

 $\lambda = 1$

 $\lambda = 1$ 0 θ ٠ 0 0 0 0 0 • 0 • 0 $\theta \cdot x + \theta_0 \not\models 1$ $\theta \cdot \dot{k} + \theta_0 = -1$ + ¦ $\theta \cdot x + \theta_0 = 0$

$$J(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^n \operatorname{Loss}_h \left(y^{(i)} (\theta \cdot x^{(i)} + \theta_0) \right) + \frac{\lambda}{2} \|\theta\|^2$$

Outline

- Understanding optimization view of learning
 - large margin linear classification
 - regularization, generalization
- Optimization algorithms
 - preface: gradient descent optimization
 - stochastic gradient descent
 - quadratic program

 $\mathbf{h}J(\theta)$ θ

 $\mathbf{h}J(\theta)$ θ

Stochastic gradient descent

$$J(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^n \operatorname{Loss}_h \left(y^{(i)} (\theta \cdot x^{(i)} + \theta_0) \right) + \frac{\lambda}{2} \|\theta\|^2$$
$$= \frac{1}{n} \sum_{i=1}^n \left[\operatorname{Loss}_h \left(y^{(i)} (\theta \cdot x^{(i)} + \theta_0) \right) + \frac{\lambda}{2} \|\theta\|^2 \right]$$

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\text{Loss}_h(y^{(i)}\theta \cdot x^{(i)}) + \frac{\lambda}{2} \|\theta\|^2 \right]$$

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\text{Loss}_h(y^{(i)}\theta \cdot x^{(i)}) + \frac{\lambda}{2} \|\theta\|^2 \right]$$

Select $i \in \{1, ..., n\}$ at random $\theta \leftarrow \theta - \eta_t \nabla_{\theta} \left[\text{Loss}_h(y^{(i)}\theta \cdot x^{(i)}) + \frac{\lambda}{2} \|\theta\|^2 \right]$

Support Vector Machine

- Support Vector Machine finds the maximum margin linear separator by solving the quadratic program that corresponds to $J(\theta, \theta_0)$
- In the realizable case, if we disallow any margin violations, the quadratic program we have to solve is

Find θ , θ_0 that minimize $\frac{1}{2} \|\theta\|^2$ subject to $y^{(i)}(\theta \cdot x^{(i)} + \theta_0) \ge 1, \quad i = 1, \dots, n$

Summary

- Learning problems can be formulated as optimization problems of the form: loss + regularization
- Linear, large margin classification, along with many other learning problems, can be solved with stochastic gradient descent algorithms
- Large margin linear classifier can be also obtained via solving a quadratic program (Support Vector Machine)