
Machine Learning 
Lecture 2



Review of basic concepts
‣ Feature vectors, labels 

‣ Training set 

‣ Classifier 

‣ Training error 

‣ Test error 

‣ Set of classifiers



Review: training set
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Review: a classifier
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Review: test set
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This lecture
‣ The set of linear classifiers  

‣ Linear separation 

‣ Perceptron algorithm 
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Linear classifiers through origin
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Linear separation: ex
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Linear separation

Definition:
Training examples Sn = {(x(i), y(i)}), i = 1, . . . , n} are
linearly separable if there exists a parameter vector ✓̂ and
o↵set parameter ✓̂0 such that y(i)(✓̂ · x(i) + ✓̂0) > 0 for all
i = 1, ..., n.



Learning linear classifiers
‣ Training error for a linear classifier (through origin) 



Learning linear classifiers
‣ Training error for a linear classifier 



Learning algorithm: perceptron

Algorithm 1 Perceptron Algorithm (without offset)
procedure Perceptron({(x(i), y(i)), i = 1, . . . , n}, T )

✓ = 0 (vector)
for t = 1, . . . , T do

for i = 1, . . . , n do
if y(i)(✓ · x(i))  0 then

✓ = ✓ + y(i)x(i)

return ✓

We should first establish that the perceptron updates tend to correct mistakes. Too see
this, consider a simple two dimensional example in figure 4. The points x(1) and x(2) in the
figure are chosen such that the algorithm makes a mistake on both of them during its first
pass. As a result, the updates become: ✓(0) = 0 and

✓(1) = ✓(0) + x(1) (7)
✓(2) = ✓(1) + (�1)x(2) (8)

In this simple case, both updates result in correct classification of the respective examples,
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Figure 4: The perceptron update rule

and the algorithm would terminate. However, each update can also undershoot in the sense
that the example that triggered the update would be misclassified even after the update.
Can you construct a setting where an update would undershoot?

Let’s look at the updates more algebraically. Note that when we make a mistake the
product y(i)(✓(k) · x(i)) is negative or zero. Suppose we make a mistake on x(i). Then the
updated parameters are given by ✓(k+1) = ✓(k) + y(i)x(i). If we consider classifying the same
example x(i) again right after the update, using the new parameters ✓(k+1), then

y(i)(✓(k+1)
· x(i)) = y(i)(✓(k) + y(i)x(i)) · x(i) (9)

= y(i)(✓(k) · x(i)) + (y(i))2(x(i)
· x(i)) (10)

= y(i)(✓(k) · x(i)) + kx(i)
k
2 (11)

In other words, the value of y(i)(✓ · x(i)) increases as a result of the update (becomes more
positive). If we consider the same example repeatedly, then we will necessarily change the
parameters such that the example will be classified correctly, i.e., the value of y(i)(✓ · x(i))
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Perceptron (with offset)

becomes strictly positive. Of course, mistakes on other examples may steer the parameters
in different directions so it may not be clear that the algorithm converges to something
useful if we repeatedly cycle through the training examples. Luckily, we can show that the
algorithm does converge in the realizable case (we assume that T , the number of passes
through the training set, is large enough to allow this).

The number of mistakes that the algorithm makes as it passes through the training
examples depends on how easy or hard the classification task is. If the training examples are
well-separated by a linear classifier (a notion which we will define formally), the perceptron
algorithm converges quickly, i.e., it makes only a few mistakes in total until all the training
examples are correctly classified. The convergence guarantee holds independently of the
order in which the points are traversed. While the order does impact the number of mistakes
that the algorithm makes, it does not change the fact that it converges after a finite number
of mistakes. Similarly, we could use any (finite) initial setting of ✓ without loosing the
convergence guarantee but again affecting the number of mistakes accumulated.

The perceptron algorithm and the above statements about convergence naturally extend
to the case with the offset parameter.

Algorithm 2 Perceptron Algorithm
1: procedure Perceptron({(x(i), y(i)), i = 1, . . . , n}, T )
2: ✓ = 0 (vector), ✓0 = 0 (scalar)
3: for t = 1, . . . , T do
4: for i = 1, . . . , n do
5: if y(i)(✓ · x(i) + ✓0)  0 then
6: ✓ = ✓ + y(i)x(i)

7: ✓0 = ✓0 + y(i)

8: return ✓, ✓0

Why is the offset parameter updated in this way? Think of it as a parameter associated
with an additional coordinate that is set to 1 for all examples. In other words, we map
our examples x 2 Rd to x0

2 Rd+1 such that x0 = [x1, . . . , xd, 1]T , and our parameters
✓ 2 Rd to ✓0 2 Rd+1 such that ✓0 = [✓1, . . . , ✓d, ✓0]T . In this setup, the perceptron algorithm
through origin will reduce exactly to the algorithm shown above. In terms of convergence, if
training examples are linearly separable (not necessarily through the origin), then the above
perceptron algorithm with the offset parameter converges after a finite number of mistakes.

What if the training examples are not linearly separable? In this case, the algorithm
will continue to make updates during each of the T passes. It cannot converge. Better
algorithms exist for this setting, and we will discuss them later on.

2.5 Perceptron Convergence Theorem

We can understand which problems are easy or hard for the perceptron algorithm. Easy
problems mean that the algorithm converges quickly (and will also have good guarantees
of generalization, i.e., will accurately classify new examples). Hard problems, even if still
linearly separable, will require many passes through the training set before the algorithm
finds a separating solution. More formally, the notion of “easy” relates to how far the training
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Key things to understand
‣ Parametric families (sets) of classifiers  

‣ The set of linear classifiers 

‣ Linear separation 

‣ Perceptron algorithm 


