Modeling with Machine Learning: RNN (part 2)

encoding decoding

Outline (part 2)

- Modeling sequences: language models
 - Markov models
 - as neural networks
 - hidden state, Recurrent Neural Networks (RNNs)
- Example: decoding images into sentences

Markov Models

 Next word in a sentence depends on previous symbols already written (history = one, two, or more words)

The lecture leaves me bumfuzzled

 Similar, next character in a word depends on previous characters already written

bumfuzzled

 We can model such kth order dependences between symbols with Markov Models

Markov Language Models

- Let $w \in V$ denote the set of possible words/symbols that includes
 - an UNK symbol for any unknown word (out of vocabulary)
 - <beg> symbol for specifying the start of a sentence
 - <end> symbol for specifying the end of the sentence

 $w_0 \quad w_1 \quad w_2 \quad w_3 \quad w_4 \quad w_5 \quad w_6$

 In a first order Markov model (bigram model), the next symbol only depends on the previous one

A first order Markov model

 w_i

 Each symbol (except <beg>) in the sequence is predicted using the same conditional probability table until an <end> symbol is seen

		ML	course	is	UNK	<end></end>
w_{i-1}	<beg></beg>	0.7	0.1	0.1	0.1	0.0
	ML	0.1	0.5	0.2	0.1	0.1
	course	0.0	0.0	0.7	0.1	0.2
	is	0.1	0.3	0.0	0.6	0.0
	UNK	0.1	0.2	0.2	0.3	0.2

Sampling from a Markov model

 w_i

Maximum likelihood estimation

 The goal is to maximize the probability that the model can generate all the observed sentences (corpus S)

$$s \in S, \ s = \{w_1^s, w_2^s, \dots, w_{|s|}^s\}$$

Maximum likelihood estimation

 The goal is to maximize the probability that the model can generate all the observed sentences (corpus S)

$$s \in S, \ s = \{w_1^s, w_2^s, \dots, w_{|s|}^s\}$$

 The ML estimate is obtained as normalized counts of successive word occurrences (matching statistics)

Feature based Markov Model

 We can also represent the Markov model as a feedforward neural network (very extendable)

Feature based Markov Model

 We can also represent the Markov model as a feedforward neural network (very extendable)

Language modeling: what comes next?

A trigram language model

A trigram language model

RNNs for sequences

Language modeling: what comes next?

This course has been a tremendous ...

RNNs for sequences

Language modeling: what comes next?

This course has been a tremendous ...

$$s_t = \tanh(W^{s,s}s_{t-1} + W^{s,x}x_t)$$
 state
 $p_t = \operatorname{softmax}(W^os_t)$ output distribution

Decoding, RNNs

 Our RNN now also produces an output (e.g., a word) as well as update its state

 $p_t = \operatorname{softmax}(W^o s_t)$ output distribution

vector encoding of a sentence "I have seen better lectures"

sampled word = Olen nähnyt parem. luentoja <end> $p_1 \quad p_2 \quad p_3 \quad p_4 \quad p_5$ vector encoding
of a sentence
"I have seen better
lectures"

Decoding (into a sentence)

- Our RNN now needs to also produce an output (e.g., a word) as well as update its state
- The output is fed in as an input (to gauge what's left)

Examples

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

A skateboarder does a trick

A little girl in a pink hat is blowing bubbles.

A red motorcycle parked on the

A dog is jumping to catch a

A refrigerator filled with lots of food and drinks.

A yellow school bus parked

Describes without errors

Describes with minor errors

Somewhat related to the image

Unrelated to the image

Key things

- Markov models for sequences
 - how to formulate, estimate, sample sequences from
- RNNs for generating (decoding) sequences
 - relation to Markov models
 - evolving hidden state
 - sampling from
- Decoding vectors into sequences