Modeling with Machine
Learning: RNN (part 1)



Outline (part 1)

» Modeling sequences
» The problem of encoding sequences
» Recurrent Neural Networks (RNNs)
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Wb What are we missing?

» Sequence prediction problems can be recast in a form
amenable to feed-forward neural networks

» But we have to engineer how “history” is mapped to a
vector (representation). This vector is then fed into, e.qg.,

a heural network
- how many steps back should we look at?
- how to retain important items mentioned far back?

» Instead, we would like to learn how to encode the
“history” into a vector



Hh Learning to encode/decode

» Language modeling
This course has been a

» Sentiment classification
| have seen better lectures

» Machine translation
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dba Key concepts

» Encoding (this lecture)
- €.d., mapping a sequence to a vector

» Decoding (next lecture)
- €.d., mapping a vector to, e.g., a sequence
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Hh Example: encoding sentences

» There are three differences between the encoder

(unfolded RNN) and a standard feed-forward architecture

- input is received at each layer (per word), not just at the
beginning as in a typical feed-forward network

- the number of layers varies, and depends on the length of the
sentence

- parameters of each layer (representing an application of an
RNN) are shared (same RNN at each step)
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A What’'s in the box?

» We can make the RNN more sophisticated...
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A What’'s in the box?

» We can make the

or state

fi = sigmoic

RNN more sophisticated...

or state

B (one of many)
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Key things

Neural networks for sequences: encoding

RNNs, unfolded

- state evolution, gates
- relation to feed-forward neural networks
- back-propagation (conceptually)

Issues: vanishing/exploding gradient
LSTM (operationally)
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