
Modeling with Machine 
Learning: RNN (part 1)



Outline (part 1)
‣ Modeling sequences 
‣ The problem of encoding sequences 
‣ Recurrent Neural Networks (RNNs)



Temporal/sequence problems
‣ How to cast as a supervised learning problem?
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‣ How to cast as a supervised learning problem? 

‣ Historical data can be broken down into feature vectors 
and target values (sliding window)
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‣ Language modeling: what comes next?
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‣ Language modeling: what comes next?

Temporal/sequence problems

This course has been a tremendous …
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‣ Sequence prediction problems can be recast in a form 
amenable to feed-forward neural networks 

‣ But we have to engineer how “history” is mapped to a 
vector (representation). This vector is then fed into, e.g.,  
a neural network 
- how many steps back should we look at? 
- how to retain important items mentioned far back? 

‣ Instead, we would like to learn how to encode the 
“history” into a vector

What are we missing?



‣ Language modeling 

‣ Sentiment classification 

‣ Machine translation

Learning to encode/decode

I have seen better lectures -1

I have seen better lectures Olen nähnyt parempia 
luentoja

encoding decoding

This course has been a success (?)



Key concepts
‣ Encoding (this lecture) 

- e.g., mapping a sequence to a vector 
‣ Decoding (next lecture) 

- e.g., mapping a vector to, e.g., a sequence



“Efforts and courage are not enough
without purpose and direction” — JFK

…
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1. Wikimedia, public domain
2. Defense.gov, Public Doman, 
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them for end-to-end performance
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‣ There are three differences between the encoder 
(unfolded RNN) and a standard feed-forward architecture 
- input is received at each layer (per word), not just at the 

beginning as in a typical feed-forward network 
- the number of layers varies, and depends on the length of the 

sentence 
- parameters of each layer (representing an application of an 

RNN) are shared (same RNN at each step)
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‣ We can make the RNN more sophisticated…

context
or state

new information

new context
or state✓

What’s in the box?

basic
RNN

st = tanh(W s,sst�1 +W s,xxt)



‣ We can make the RNN more sophisticated…
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gt = sigmoid(W g,sst�1 +W g,xxt)

st = (1� gt)� st�1 + gt � tanh(W s,sst�1 +W s,xxt)



‣ We can make the RNN more sophisticated…

context
or state

new information

new context
or state✓

What’s in the box?

LSTM
(one of many)

ft = sigmoid(W f,hht�1 +W f,xxt)

it = sigmoid(W i,hht�1 +W i,xxt)

ot = sigmoid(W o,hht�1 +W o,xxt)

ct = ft � ct�1 + it � tanh(W c,hht�1 +W c,xxt)

ht = ot � tanh(ct)

forget gate

input gate
output gate

memory 
cell

visible state



Key things
‣ Neural networks for sequences: encoding 
‣ RNNs, unfolded 

- state evolution, gates 
- relation to feed-forward neural networks 
- back-propagation (conceptually) 

‣ Issues: vanishing/exploding gradient 
‣ LSTM (operationally) 
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