Modeling with Machine Learning: RNN (part 1)

Outline (part 1)

- Modeling sequences
- The problem of encoding sequences
- Recurrent Neural Networks (RNNs)

造

- How to cast as a supervised learning problem?

蹖

- How to cast as a supervised learning problem?

- Historical data can be broken down into feature vectors and target values (sliding window)

$$
\begin{gather*}
{\left[\begin{array}{c}
0.82 \\
0.80 \\
0.73 \\
0.72
\end{array}\right]}
\end{gathered} \quad \begin{gathered}
\\
\phi(t) \tag{t}
\end{gather*} \quad y^{(t)}
$$

- Language modeling: what comes next?

This course has been a tremendous

chot csalt

- Language modeling: what comes next?

This course has been a tremendous...

- Language modeling: what comes next?

This course has been a tremendous ...

What are we missing?

- Sequence prediction problems can be recast in a form amenable to feed-forward neural networks
- But we have to engineer how "history" is mapped to a vector (representation). This vector is then fed into, e.g., a neural network
- how many steps back should we look at?
- how to retain important items mentioned far back?
- Instead, we would like to learn how to encode the "history" into a vector

Learning to encode/decode

- Language modeling

This course has been a
success (?)
-1

- Machine translation

I have seen better lectures

Olen nähnyt parempia luentoja

Key concepts

- Encoding (this lecture)
- e.g., mapping a sequence to a vector
- Decoding (next lecture)
- e.g., mapping a vector to, e.g., a sequence

CSAIL

Encoding everything

"Efforts and courage are not enough without purpose and direction" - JFK
sentences

- Easy to introduce adjustable "lego pieces" and optimize them for end-to-end performance

<null>

Efforts and courage are not

- Easy to introduce adjustable "lego pieces" and optimize them for end-to-end performance

$$
s_{t}=\tanh \left(W^{s, s} s_{t-1}+W^{s, x} x_{t}\right)
$$

<null>

Efforts and courage are not

- Easy to introduce adjustable "lego pieces" and optimize them for end-to-end performance

$$
s_{t}=\tanh \left(W^{s, s} s_{t-1}+W^{s, x} x_{t}\right)
$$

Efforts and courage are not

- Easy to introduce adjustable "lego pieces" and optimize them for end-to-end performance

$$
s_{t}=\tanh \left(W^{s, s} s_{t-1}+W^{s, x} x_{t}\right)
$$

lego piece

Efforts and courage are not

- Easy to introduce adjustable "lego pieces" and optimize them for end-to-end performance

$$
s_{t}=\tanh \left(W^{s, s} s_{t-1}+W^{s, x} x_{t}\right)
$$

summary of

"Efforts"

Efforts and courage are not

- Easy to introduce adjustable "lego pieces" and optimize them for end-to-end performance

$$
s_{t}=\tanh \left(W^{s, s} s_{t-1}+W^{s, x} x_{t}\right)
$$

lego piece

- Easy to introduce adjustable "lego pieces" and optimize them for end-to-end performance

$$
s_{t}=\tanh \left(W^{s, s} s_{t-1}+W^{s, x} x_{t}\right)
$$

lego piece

Example: encoding sentences

- Easy to introduce adjustable "lego pieces" and optimize them for end-to-end performance

$$
s_{t}=\tanh \left(W^{s, s} s_{t-1}+W^{s, x} x_{t}\right) \quad \text { lego piece }
$$

- There are three differences between the encoder (unfolded RNN) and a standard feed-forward architecture
- input is received at each layer (per word), not just at the beginning as in a typical feed-forward network
- the number of layers varies, and depends on the length of the sentence
- parameters of each layer (representing an application of an RNN) are shared (same RNN at each step)

What's in the box?

- We can make the RNN more sophisticated...

$$
s_{t}=\tanh \left(W^{s, s} s_{t-1}+W^{s, x} x_{t}\right)
$$

What's in the box?

CSAIL

- We can make the RNN more sophisticated...

$$
\begin{aligned}
& g_{t}=\operatorname{sigmoid}\left(W^{g, s} s_{t-1}+W^{g, x} x_{t}\right) \\
& s_{t}=\left(1-g_{t}\right) \odot s_{t-1}+g_{t} \odot \tanh \left(W^{s, s} s_{t-1}+W^{s, x} x_{t}\right)
\end{aligned}
$$

What's in the box?

CSAIL

- We can make the RNN more sophisticated...

$$
\begin{aligned}
f_{t} & =\operatorname{sigmoid}\left(W^{f, h} h_{t-1}+W^{f, x} x_{t}\right) \quad \text { forget gate } \\
i_{t} & =\operatorname{sigmoid}\left(W^{i, h} h_{t-1}+W^{i, x} x_{t}\right) \quad \text { input gate } \\
o_{t} & =\operatorname{sigmoid}\left(W^{o, h} h_{t-1}+W^{o, x} x_{t}\right) \quad \text { output gate } \\
c_{t} & =f_{t} \odot c_{t-1}+i_{t} \odot \tanh \left(W^{c, h} h_{t-1}+W^{c, x} x_{t}\right) \text { memory } \\
h_{t} & =o_{t} \odot \tanh \left(c_{t}\right) \text { visible state }
\end{aligned}
$$

Key things

- Neural networks for sequences: encoding
- RNNs, unfolded
- state evolution, gates
- relation to feed-forward neural networks
- back-propagation (conceptually)
- Issues: vanishing/exploding gradient
- LSTM (operationally)

