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Recap: Time series models

White Noise: Xt = Wt ;
Wt independent, mean zero, same variance σ2

w

Autoregressive AR(p):
Xt = φ1Xt−1 + φ2Xt−2 + . . . φpXt−p + Wt

Moving Average MA(q):
Xt = Wt + θ1Wt−1 + θ2Wt−2 + . . .+ θqWt−q

ARMA / ARIMA:
Xt = φ1Xt−1 + . . . φpXt−p + Wt + θ1Wt−1 + . . .+ θqWt−q
(ARIMA: ARMA after differencing)
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Fitting a time series: Overview (Part I)

1 transform to make it stationary

log-transform
remove trends / seasonality
differentiate successively

2 check for white noise (ACF)

3 if stationary: plot autocorrelation. If finite lag, fit MA (ACF gives
order), otherwise AR.

Fitting AR(p):

1 compute PACF to get order

2 estimate coefficients φk and noise variance σ2
w via Yule-Walker

equations

3 compute residuals, test for white noise
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Model order for AR(p)

MA(q) model: autocorrelation reveals order q

But not for AR(p) model!

Example AR(1): Xt = φXt−1 + Wt

corr(Xt ,Xt−2) = φ2γ(0)

Correlation via Xt−1.

Idea: if we remove linear effect of Xt−1, then Xt ,Xt−2 should be
uncorrelated.
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Partial Autocorrelation (PACF)

Partial Correlation of X ,Y given Z :

regress X on Z ; Y on Z

ρXY |Z = corr(X − X̂ ,Y − Ŷ ).

for time series: Partial Autocorrelation of Xt ,Xt−h.
Remove the effect of all variables “in between”, Xt−1, . . .Xt−h+1.

equivalent computation:

fit AR(h) model to obtain φ̂h1, . . . φ̂hh
(estimated) partial autocorrelation is last coefficient φ̂hh

for AR(p): φhh = 0 for h > p.
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Autocorrelation (ACF) and PACF for AR(2)

3.4 Autocorrelation and Partial Autocorrelation 107
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Fig. 3.4. The ACF and PACF of an AR(2) model with �1 = 1.5 and �2 = �.75.

because, by causality, xt � bxt depends only on {wt+h�1, wt+h�2, . . .}; recall
equation (3.54). When h  p, �pp is not zero, and �11, . . . ,�p�1,p�1 are not
necessarily zero. We will see later that, in fact, �pp = �p. Figure 3.4 shows
the ACF and the PACF of the AR(2) model presented in Example 3.10.

To reproduce Figure 3.4 in R, use the following commands:
1 ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24)[-1]

2 PACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24, pacf=TRUE)

3 par(mfrow=c(1,2))

4 plot(ACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)

5 plot(PACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)

Example 3.16 The PACF of an Invertible MA(q)

For an invertible MA(q), we can write xt = �P1
j=1 ⇡jxt�j + wt. Moreover,

no finite representation exists. From this result, it should be apparent that
the PACF will never cut o↵, as in the case of an AR(p).

For an MA(1), xt = wt + ✓wt�1, with |✓| < 1, calculations similar to
Example 3.14 will yield �22 = �✓2/(1 + ✓2 + ✓4). For the MA(1) in general,
we can show that

�hh = � (�✓)h(1 � ✓2)

1 � ✓2(h+1)
, h � 1.

In the next section, we will discuss methods of calculating the PACF. The
PACF for MA models behaves much like the ACF for AR models. Also, the
PACF for AR models behaves much like the ACF for MA models. Because
an invertible ARMA model has an infinite AR representation, the PACF will
not cut o↵. We may summarize these results in Table 3.1.
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Partial ACF as a diagnostic tool: example from last lecture

Example: Xt = Tt + Yt , sum of
linear trend (Tt = 50 + 3t) and AR(1) (Yt = 0.8Yt−1 + Wt , σW = 20).

top: series; bottom: autocorrelation and partial autocorrelation of residuals after

fitting only a linear model.
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Overview: ACF, PACF and model order

ACF PACF

AR(p) decays zero for h > p

MA(q) zero for h > q decays

ARMA(p,q) decays decays
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Akaike Information Criterion (AIC)

Main idea: tradeoff between data fit and model complexity.

For a model with k parameters:

AIC (k) = −2log-likelihood︸ ︷︷ ︸
model fit

+ 2k︸︷︷︸
complexity
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Cross-validation for time series

“usual” cross-validation: randomly partition into k folds.
Repeatedly train on k − 1 folds, test on remaining.

cross-validation works in special cases for AR models (Bergmeier,
Hyndman, Koo 2015)

evaluation on a rolling forecasting origin
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Relating MA and AR?

Autoregressive AR(p):
Xt = φ1Xt−1 + φ2Xt−2 + . . . φpXt−p + Wt

Moving Average MA(q):
Xt = Wt + θ1Wt−1 + θ2Wt−2 + . . .+ θqWt−q
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Relating MA and AR: Linear Process

Xt =
∞∑

j=−∞
ψjWt−j

∑

j

|ψj | <∞

causal: ψj = 0 whenever j < 0
(function of the past)

E[Xt ] = 0

γX (t, t + h) =
∑∞

i=−∞ ψiψi+hσ
2
w = γX (h)

Linear Process is stationary!

MA(q) is linear process, causal

What about AR?
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AR(1) as Linear Process

Xt = Wt + φ1Xt−1

=
∞∑

j=0

φj1Wt−j

converges if |φ1| < 1.
Then: AR(1) is causal and stationary.

general result: AR(p) is stationary & causal if linear process
converges.

Similarly: can write MA(1) as an infinite AR process (under similar
convergence conditions) in the form
Wt = Xt − φ1Xt−1 − φ2Xt−2 − . . .. If converges: invertible.
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Overview

Determining model order for AR models

Partial Autocorrelation
Akaike Information Criterion
Cross-validation

Linear Processes

Subseasonal weather forecasting and Local linear regression

J. Hwang, P. Orenstein, K. Pfeiffer, J. Cohen, L. Mackey. Improving
Subseasonal Forecasting in the Western U.S. with Machine Learning.
KDD 2019.
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Subseasonal Rodeo

images: Lester Mackey
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Subseasonal Rodeo: measurements

multiple time series Yt,g , indexed by grid points g

temperature

precipitation

sea surface temperature & sea ice concentration

ENSO index (pressure, wind, SST, temperature, cloudiness)

Madden-Julian oscillation

relative humidity / pressure

North Americal Model Ensemble

use anomalies
at = yt − cmonthday(t)

accuracy measure:

skill(ât , at) = cos(ât , at) =
〈ât , at〉
‖ât‖‖at‖
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Questions

What model should we fit?

Which variables should we use for prediction?
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Local Linear Regression (no time series)

data from a nonlinear function, but we don’t know exact structure

locally well approximated by a linear function

Idea: To predict at x0, locally fit a linear model around x0

D = {x : ‖x− x0‖ ≤ h}

Obtain one β for each x0:

β̂x0
= arg min

β

∑

xi∈D
wi (yi − β>(xi − x0))2

larger h: smoother function

weighting: can use a kernel wi = K (xi−x0
h )

(K (u) = 0 for |u| > 1, K (u) = K (−u), K (u) > 0 for |u| < 1)
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data from a nonlinear function, but we don’t know exact structure

locally well approximated by a linear function

Idea: To predict at x0, locally fit a linear model around x0

D = {x : ‖x− x0‖ ≤ h}

Obtain one β for each x0:

β̂x0
= arg min

β

∑

xi∈D
wi (yi − β>(xi − x0))2

larger h: smoother function

weighting: can use a kernel wi = K (xi−x0
h )

(K (u) = 0 for |u| > 1, K (u) = K (−u), K (u) > 0 for |u| < 1)
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Local Linear Regression for Time Series

one model for each day of the year (shared across years) and grid
point g .

D = ±56-day span around target day of the year

for each day of the year:

β̂g = arg min
β

∑

t∈D
wt,g (yt,g−bt,g − β>xt,g )2

weighting: e.g. wt,g = 1 or wt,g = 1/ var(at)

offsets: bt,g = 0 or bt,g = cmonthday(t)
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Model 1: external regressors with multitask feature
selection

Candidate features: measurements from each data source at
different lags, and constant feature

allow different features for different days of the year

but same features across all grid points for a given day

Backward regression: Start with all features, prune features one by
one.

Drop feature that reduces the prediction accuracy the least, if below a
tolerance threshold

Accuracy: Leave-one-year out cross-validation with “skill”
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Selected features (example)

image source: (Hwang et al 2019)
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Summary

Determining model order for AR models:

Partial Autocorrelation
Akaike Information Criterion
Cross-validation

Relating AR and MA modesl: Linear Processes

Nonlinear model: Local linear regression and application example
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