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Overview

Statistical models

Time series regression

Fitting statistical models
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Recap

Time series: collection of observations x1, . . . , xn indexed by time
(fixed time intervals)

realizations of a collection of random variables X1, . . . ,Xn

Weakly stationary:
(1) mean, variance independent of t: µX (t) = µ, varX (t) = varX
(2) autocovariance: γX (s, t) = γ(|s − t|).

Autocovariance / Autocorrelation:

γX (s, t) = cov(Xs ,Xt)

ρX (h) = γX (h)/γX (0) for − n < h < n
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Models 1: White Noise

{Wt}t uncorrelated, mean zero, same variance σ2
w :

µ(t) = E[Wt ] = 0 ∀t, cov(Ws ,Wt) = 0 s 6= t

often iid, e.g. Gaussian

auto-covariance:

γW (s, t) =

{
σ2
W if s = t

0 otherwise.

depends only on |s − t|.
stationary

checking for white noise: for white noise, ρ̂(h) is approximately N (0, 1
n ),

under mild conditions.
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Models 2: Autoregressive AR(p)

Autoregressive: Xt = φ1Xt−1 + φ2Xt−2 + . . . φpXt−p + Wt

3.2 Autoregressive Moving Average Models 87
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Fig. 3.1. Simulated AR(1) models: � = .9 (top); � = �.9 (bottom).

Example 3.2 Explosive AR Models and Causality

In Example 1.18, it was discovered that the random walk xt = xt�1 + wt

is not stationary. We might wonder whether there is a stationary AR(1)
process with |�| > 1. Such processes are called explosive because the values
of the time series quickly become large in magnitude. Clearly, because |�|j
increases without bound as j ! 1,

Pk�1
j=0 �

jwt�j will not converge (in mean
square) as k ! 1, so the intuition used to get (3.6) will not work directly.
We can, however, modify that argument to obtain a stationary model as
follows. Write xt+1 = �xt + wt+1, in which case,

xt = ��1xt+1 � ��1wt+1 = ��1
�
��1xt+2 � ��1wt+2

�
� ��1wt+1

...

= ��kxt+k �
k�1X

j=1

��jwt+j , (3.10)

by iterating forward k steps. Because |�|�1 < 1, this result suggests the
stationary future dependent AR(1) model

source: R.H. Shumway, D.S. Stoffer. Time Series Analysis and its Applications, with Examples in R. Springer, 2011.
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Models 2: Autoregressive AR(p)

Xt = φ1Xt−1 + φ2Xt−2 + . . . φpXt−p + Wt

Can we model seasonality with this?
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Models 2: Autoregressive AR(p)

Xt = φ1Xt−1 + φ2Xt−2 + . . . φpXt−p + Wt

autocorrelation decays exponentially (never zero)

stationary only under conditions (later)

Xt = 1.5Xt−1 − 0.75Xt−2 + Wt
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Models 3: Random Walk (with drift)

1.3 Time Series Statistical Models 15

random walk
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Fig. 1.10. Random walk, �w = 1, with drift � = .2 (upper jagged line), without
drift, � = 0 (lower jagged line), and a straight line with slope .2 (dashed line).

for t = 1, 2, . . .; either use induction, or plug (1.4) into (1.3) to verify this
statement. Figure 1.10 shows 200 observations generated from the model
with � = 0 and .2, and with �w = 1. For comparison, we also superimposed
the straight line .2t on the graph.

To reproduce Figure 1.10 in R use the following code (notice the use of
multiple commands per line using a semicolon).

1 set.seed(154) # so you can reproduce the results

2 w = rnorm(200,0,1); x = cumsum(w) # two commands in one line

3 wd = w +.2; xd = cumsum(wd)

4 plot.ts(xd, ylim=c(-5,55), main="random walk")

5 lines(x); lines(.2*(1:200), lty="dashed")

Example 1.12 Signal in Noise

Many realistic models for generating time series assume an underlying signal
with some consistent periodic variation, contaminated by adding a random
noise. For example, it is easy to detect the regular cycle fMRI series displayed
on the top of Figure 1.6. Consider the model

xt = 2 cos(2⇡t/50 + .6⇡) + wt (1.5)

for t = 1, 2, . . . , 500, where the first term is regarded as the signal, shown in
the upper panel of Figure 1.11. We note that a sinusoidal waveform can be
written as

A cos(2⇡!t + �), (1.6)

where A is the amplitude, ! is the frequency of oscillation, and � is a phase
shift. In (1.5), A = 2, ! = 1/50 (one cycle every 50 time points), and
� = .6⇡.
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Random Walk: properties

Random Walk:

Xt = Xt−1 + Wt

= X0 + W1 + . . .+ Wt

(assume X0 = 0 fixed)

Random Walk with drift: Xt = δ + Xt−1 + Wt = tδ + X0 +
∑t

s=0 Ws

E[Xt ] = tδ + X0

without drift: var(Xt) = tσ2
w
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Autocovariance for Random Walk

Random Walk: Xt = Xt−1 + Wt

= X0 + W1 + . . .+ Wt

Stefanie Jegelka (and Caroline Uhler) 10 / 37

mitx
Pencil



Random Walk: properties

Random Walk:

Xt = Xt−1 + Wt
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(assume X0 = 0 fixed)

Random Walk with drift: Xt = δ + Xt−1 + Wt = tδ + X0 +
∑t

s=0 Ws

E[Xt ] = tδ + X0
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w

without drift: γX (s, t) = min{s, t}σ2
w

not stationary, but ∇Xt is stationary
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Models 4: Moving Average MA(q)
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Models 4: Moving Average
1.3 Time Series Statistical Models 13

white noise
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Fig. 1.8. Gaussian white noise series (top) and three-point moving average of the
Gaussian white noise series (bottom).

1 w = rnorm(500,0,1) # 500 N(0,1) variates

2 v = filter(w, sides=2, rep(1/3,3)) # moving average

3 par(mfrow=c(2,1))

4 plot.ts(w, main="white noise")

5 plot.ts(v, main="moving average")

The speech series in Figure 1.3 and the Recruitment series in Figure 1.5,
as well as some of the MRI series in Figure 1.6, di↵er from the moving average
series because one particular kind of oscillatory behavior seems to predom-
inate, producing a sinusoidal type of behavior. A number of methods exist
for generating series with this quasi-periodic behavior; we illustrate a popular
one based on the autoregressive model considered in Chapter 3.

Example 1.10 Autoregressions

Suppose we consider the white noise series wt of Example 1.8 as input and
calculate the output using the second-order equation

xt = xt�1 � .9xt�2 + wt (1.2)

successively for t = 1, 2, . . . , 500. Equation (1.2) represents a regression or
prediction of the current value xt of a time series as a function of the past
two values of the series, and, hence, the term autoregression is suggested

Stefanie Jegelka (and Caroline Uhler) 14 / 37



Models 4: Moving Average MA(q)

Xt = Wt + θ1Wt−1 + θ2Wt−2 + . . .+ θqWt−q

E[Xt ] =

0

autocovariance?
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Autocovariance for Moving Average MA(q)

Example: Xt = 1
3 (Wt + Wt−1 + Wt−2)

cov(Xt ,Xt) = 1
9 cov(Wt + Wt−1 + Wt−2,Wt + Wt−1 + Wt−2)

= 3
9σ

2

cov(Xt ,Xt−1) = 1
9 cov(Wt + Wt−1 + Wt−2,Wt−1 + Wt−2 + Wt−3)

= 2
9σ

2

cov(Xt ,Xt−2) = 1
9 cov(Wt + Wt−1 + Wt−2,Wt−2 + Wt−3 + Wt−4)

= 1
9σ

2

cov(Xt ,Xt−3) = 0

autocovariance γ depends only on |s − t|
reflects order: γ(s, t) = 0 if |s − t| > q
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Models 4: Moving Average MA(q)

Xt = Wt + θ1Wt−1 + θ2Wt−2 + . . .+ θqWt−q

E[Xt ] = 0

autocovariance γ depends only on |s − t| ⇒ stationary

ACF reflects order: γ(s, t) = 0 if |s − t| > q

ACF distinguishes MA and AR models!

Stefanie Jegelka (and Caroline Uhler) 17 / 37



Autocorrelation to distinguish models

Sample ACF for white Gaussian (hence i.i.d.) noise
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Models 5: ARMA

Autoregressive: Xt = φ1Xt−1 + φ2Xt−2 + . . . φpXt−p + Wt

Moving Average: Xt = Wt + θ1Wt−1 + θ2Wt−2 + . . .+ θqWt−q

ARMA(p,q): autoregressive moving average:

Xt =φ1Xt−1 + φ2Xt−2 + . . . φpXt−p

+ Wt + θ1Wt−1 + θ2Wt−2 + . . .+ θqWt−q

ARIMA: ARMA after differencing

Stefanie Jegelka (and Caroline Uhler) 19 / 37
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Overview

Statistical models

White noise
Autoregressive and Random Walk
Moving Average
ARMA

Time series regression

Fitting statistical models

Forecasting

Stefanie Jegelka (and Caroline Uhler) 20 / 37



Regression & Time Series

critical: linearity, stationarity, homogeneity of variances over time

model: Xt = β1zt1 + β2zt2 + . . .+ Wt = β>zt + Wt

Ex. 1: linear trend: Xt = β1 + β2t + Wt

Ex. 2: AR(2) model: Xt = φ1Xt−1 + φ2Xt−2 + Wt

Ex. 3: external regressors: Xt = β1Xt−1 + β2Yt + Wt

least squares estimate: minβ
∑

t(xt − β>zt)
2

Careful: errors may be correlated over time!

Remark: could also use nonlinearities.

Which external variables? Order of the model?

Stefanie Jegelka (and Caroline Uhler) 21 / 37
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Autocorrelation (ACF) as a diagnostic tool

Use ACF to determine fit: should look like white noise.
Also PACF (coming soon).

Example: Xt = Tt + Yt , sum of

linear trend: Tt = 50 + 3t

AR(1) model: Yt = 0.8Yt−1 + Wt , σW = 20.

left: series; right: autocorrelation of residuals after fitting only a linear trend.
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Example: external regressors - fish and SOI
8 1 Characteristics of Time Series

Southern Oscillation Index
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Fig. 1.5. Monthly SOI and Recruitment (estimated new fish), 1950-1987.

suggests trying some version of regression analysis as a procedure for relat-
ing the two series. Transfer function modeling, as considered in Chapter 5,
can be applied in this case to obtain a model relating Recruitment to its
own past and the past values of the SOI.

The following R code will reproduce Figure 1.5:
1 par(mfrow = c(2,1)) # set up the graphics

2 plot(soi, ylab="", xlab="", main="Southern Oscillation Index")

3 plot(rec, ylab="", xlab="", main="Recruitment")

Example 1.6 fMRI Imaging

A fundamental problem in classical statistics occurs when we are given a
collection of independent series or vectors of series, generated under varying
experimental conditions or treatment configurations. Such a set of series is
shown in Figure 1.6, where we observe data collected from various locations
in the brain via functional magnetic resonance imaging (fMRI). In this ex-
ample, five subjects were given periodic brushing on the hand. The stimulus
was applied for 32 seconds and then stopped for 32 seconds; thus, the signal
period is 64 seconds. The sampling rate was one observation every 2 seconds
for 256 seconds (n = 128). For this example, we averaged the results over
subjects (these were evoked responses, and all subjects were in phase). The
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subjects (these were evoked responses, and all subjects were in phase). The

2 series: {Xt}nt=1, {Ys}ns=1.

Cross-covariance: γXY (t, s) = cov(Xt ,Ys)

2nd-order stationary: Cross-cov only a function of the lag h:

cov(Xt+h,Yt) = γXY (h)

Estimation: γ̂XY (h) = 1
n

∑n−h
t=1 (xt+h − x̄)(yt − ȳ)

Cross-correlation (CCF): ρXY (h) = γXY (h)
σXσY
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3 plot(rec, ylab="", xlab="", main="Recruitment")

Example 1.6 fMRI Imaging

A fundamental problem in classical statistics occurs when we are given a
collection of independent series or vectors of series, generated under varying
experimental conditions or treatment configurations. Such a set of series is
shown in Figure 1.6, where we observe data collected from various locations
in the brain via functional magnetic resonance imaging (fMRI). In this ex-
ample, five subjects were given periodic brushing on the hand. The stimulus
was applied for 32 seconds and then stopped for 32 seconds; thus, the signal
period is 64 seconds. The sampling rate was one observation every 2 seconds
for 256 seconds (n = 128). For this example, we averaged the results over
subjects (these were evoked responses, and all subjects were in phase). The

2 series: {Xt}nt=1, {Ys}ns=1.

Cross-covariance: γXY (t, s) = cov(Xt ,Ys)

2nd-order stationary: Cross-cov only a function of the lag h:

cov(Xt+h,Yt) = γXY (h)

Estimation: γ̂XY (h) = 1
n

∑n−h
t=1 (xt+h − x̄)(yt − ȳ)

Cross-correlation (CCF): ρXY (h) = γXY (h)
σXσY
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Fig. 1.14. Sample ACFs of the SOI series (top) and of the Recruitment series
(middle), and the sample CCF of the two series (bottom); negative lags indicate
SOI leads Recruitment. The lag axes are in terms of seasons (12 months).

� (h) = E[(xxxt+h � µµµ)(xxxt � µµµ)0] (1.42)

can be defined, where the elements of the matrix � (h) are the cross-covariance
functions

�ij(h) = E[(xt+h,i � µi)(xtj � µj)] (1.43)

for i, j = 1, . . . , p. Because �ij(h) = �ji(�h), it follows that

� (�h) = � 0(h). (1.44)

Now, the sample autocovariance matrix of the vector series xxxt is the p⇥ p
matrix of sample cross-covariances, defined as

b� (h) = n�1
n�hX

t=1

(xxxt+h � x̄xx)(xxxt � x̄xx)0, (1.45)

Cross-covariance:
cov(Xt+h,Yt) = γXY (h)

CCF ρXY (h) peaks negatively at
h = −6
(SOI Xt 6 months before).

Possible regression model:
Yt = β1 + β2Xt−6 + Wt
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Overview

Statistical models

White noise
Autoregressive and Random Walk
Moving Average
ARMA

Time series regression

Fitting statistical models

Forecasting
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Fitting a time series: Overview

1 transform to make it stationary

log-transform
remove trends / seasonality
differentiate successively

2 check for white noise (ACF)

3 if stationary: plot autocorrelation.
If finite lag, fit MA (ACF gives order), otherwise AR.

Fitting AR(p):

1 compute PACF to get order

2 estimate coefficients φk and noise variance σ2
w via Yule-Walker

equations

3 compute residuals, test for white noise
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Fitting a time series: Overview

Fitting MA(q):

1 compute ACF to get order

2 estimate coefficients via maximum likelihood (won’t cover, see

Shumway & Stoffer Ch. 3)

3 compute residuals, test for white noise

Fitting ARMA(p,q):

1 attempt to fit an AR model, compute residuals

2 attempt to fit an MA model to residuals (or orig. data)

3 fit ARMA(p,q) using p, q determined in Steps 1,2 (max. likelihood)
(won’t cover, see Shumway & Stoffer)

4 compute residuals, test for white noise
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Parameter Estimation for stationary AR(p)

Xt = φ1Xt−1 + φ2Xt−2 + . . . φpXt−p + Wt

Estimate parameters φ̂1, . . . , φ̂p, σ̂
2
w?

Yule-Walker equations: method of moments

Step 1: estimate autocovariances γ̂(h) for h = 0, 1, 2, . . . from
averages.

Step 2: solve system of linear equations: for h = 1, . . . , p :

γ(h) = φ1γ(h − 1) + φ2γ(h − 2) + . . .+ φpγ(h − p)

σ2
w = γ(0)− φ1γ(1)− φ2γ(2)− . . .− φpγ(p)

use estimates of γ(h).
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Yule-Walker equations in matrix form

p × p covariance matrix Γp with (i , j)th entry γ(i − j)

vector γp = [γ(1), γ(2), . . . , γ(p)]>

γ(h) = φ1γ(h − 1) + φ2γ(h − 2) + . . .+ φpγ(h − p)

γp = Γpφ ⇔ φ = Γ−1
p γp

σ2
w = γ(0)− φ1γ(1)− φ2γ(2)− . . .− φpγ(p)

= γ(0)− γ>p Γ−1
p γp

.

Stefanie Jegelka (and Caroline Uhler) 30 / 37
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Where do Yule-Walker equations come from?

Least squares regression with AR(p)

assume µX = 0, and predict Xt as:

X̂t = φ̂1Xt−1 + φ̂2Xt−2 + . . .+ φ̂pXt−p

find φ̂k to minimize E[(X̂t − Xt)
2].

Prediction equations: the best linear unbiased estimator (least
squares estimator) satisfies

E[ (X̂t − Xt) ] = 0

E[ (X̂t − Xt)Xt−k ] = 0 for k = 1, . . . , p

Now plug in X̂t = φ̂1Xt−1 + φ̂2Xt−2 + . . .+ φ̂pXt−p.
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Now plug in X̂t = φ̂1Xt−1 + φ̂2Xt−2 + . . .+ φ̂pXt−p.
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Where do Yule-Walker equations come from? Example

Equations: E[ (X̂t − Xt)Xt−k ] = 0 for k = 1, . . . , p

Example: X̂t = φ̂1Xt−1 + φ̂2Xt−2 and k = 2

E
[

(X̂t − Xt)Xt−2

]
= 0

⇔ E
[

(φ̂1Xt−1 + φ̂2Xt−2 − Xt)Xt−2

]
= 0

⇔ Eφ̂1Xt−1Xt−2 + Eφ̂2Xt−2Xt−2 − EXtXt−2 = 0
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Overview

Statistical models

White noise
Autoregressive and Random Walk
Moving Average
ARMA

Time series regression

Fitting statistical models

Forecasting
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Forecasting with AR(p)

predict Xn+m based on observed xn, xn−1, . . . x1.

estimate coefficients φ̂1, . . . , φ̂p and plug in

1-step ahead: x̂n+1|n = φ̂1xn + φ̂2xn−1 + . . . φ̂pxn−p+1

2-step ahead: x̂n+2|n = φ̂1x̂n+1|n + φ̂2xn + . . . φ̂pxn−p+2

general: x̂n+m = φ̂1x̂n+m−1 + φ̂2x̂n+m−2 + . . . φ̂p x̂n+m−p

where we use xt instead of x̂t if xt is available.

always a linear combination of last p observations xn, . . . , xn−p+1

Caution: only for short horizons m. For long horizons, converges to
mean.
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Forecasting with AR(p)

x̂n+m is always a linear combination of last p observations
xn, . . . , xn−p+1

Caution: Fine for short term, but converges to mean for long horizons3.5 Forecasting 119

Fig. 3.6. Twenty-four month forecasts for the Recruitment series. The actual data
shown are from about January 1980 to September 1987, and then the forecasts plus
and minus one standard error are displayed.

and using (3.40) from Example 3.11, we have  j = 1.35 j�1 � .46 j�2 for
j � 2, where  0 = 1 and  1 = 1.35. Thus, for n = 453,

Pn
n+1 = 89.72,

Pn
n+2 = 89.72(1 + 1.352),

Pn
n+3 = 89.72(1 + 1.352 + [1.352 � .46]2),

and so on.
Note how the forecast levels o↵ quickly and the prediction intervals are

wide, even though in this case the forecast limits are only based on one
standard error; that is, xn

n+m ± p
Pn

n+m.
To reproduce the analysis and Figure 3.6, use the following commands:

1 regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE)

2 fore = predict(regr, n.ahead=24)

3 ts.plot(rec, fore$pred, col=1:2, xlim=c(1980,1990),

ylab="Recruitment")

4 lines(fore$pred, type="p", col=2)

5 lines(fore$pred+fore$se, lty="dashed", col=4)

6 lines(fore$pred-fore$se, lty="dashed", col=4)

We complete this section with a brief discussion of backcasting. In back-
casting, we want to predict x1�m, for m = 1, 2, . . ., based on the data
{x1, . . . , xn}. Write the backcast as
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Summary: statistical models and fitting

Statistical models

White noise
Autoregressive and Random Walk
Moving Average
ARMA

Autocorrelation to determine fit, model order, variables to include

Fitting AR(p): Yule-Walker equations

Forecasting: mostly for short-term
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