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Time series

Time series: collection of observations x1, . . . , xn indexed by time
(fixed time intervals)

realizations of a collection of random variables X1, . . . ,Xn indexed by
time

Where do time series come up?

economics, finance

social sciences

epidemiology

fMRI / neuroscience

environmental sciences

speech analysis . . .
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Examples of Time series: Johnson & Johnson quarterly
earnings per share

4 1 Characteristics of Time Series

Fig. 1.1. Johnson & Johnson quarterly earnings per share, 84 quarters, 1960-I to
1980-IV.

from di↵erent subject areas. The following cases illustrate some of the com-
mon kinds of experimental time series data as well as some of the statistical
questions that might be asked about such data.

Example 1.1 Johnson & Johnson Quarterly Earnings

Figure 1.1 shows quarterly earnings per share for the U.S. company Johnson
& Johnson, furnished by Professor Paul Gri�n (personal communication) of
the Graduate School of Management, University of California, Davis. There
are 84 quarters (21 years) measured from the first quarter of 1960 to the
last quarter of 1980. Modeling such series begins by observing the primary
patterns in the time history. In this case, note the gradually increasing un-
derlying trend and the rather regular variation superimposed on the trend
that seems to repeat over quarters. Methods for analyzing data such as these
are explored in Chapter 2 (see Problem 2.1) using regression techniques and
in Chapter 6, §6.5, using structural equation modeling.

To plot the data using the R statistical package, type the following:1

1 load("tsa3.rda") # SEE THE FOOTNOTE

2 plot(jj, type="o", ylab="Quarterly Earnings per Share")

Example 1.2 Global Warming

Consider the global temperature series record shown in Figure 1.2. The data
are the global mean land–ocean temperature index from 1880 to 2009, with

1 We assume that tsa3.rda has been downloaded to a convenient directory. See
Appendix R for further details.

source: R.H. Shumway, D.S. Stoffer. Time Series Analysis and its Applications, with Examples in R. Springer, 2011.
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Examples of Time series: global air traffic passengers

source: S. M. Iacus, F. Natale, C. Santamaria, S. Spyratos, M. Vespe. Estimating and projecting air passenger traffic during the

COVID-19 coronavirus outbreak and its socio-economic impact. Safety Science vol 129, 2020.
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Examples of Time series: Exchange rates GBP to NZ dollar

source: P. S.P. Cowpertwait, A. V. Metcalfe. Introductory Time Series with R. Springer, 2009.

Stefanie Jegelka (and Caroline Uhler) 6 / 33



Examples of Time series: Air pressure & fish population
8 1 Characteristics of Time Series
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Fig. 1.5. Monthly SOI and Recruitment (estimated new fish), 1950-1987.

suggests trying some version of regression analysis as a procedure for relat-
ing the two series. Transfer function modeling, as considered in Chapter 5,
can be applied in this case to obtain a model relating Recruitment to its
own past and the past values of the SOI.

The following R code will reproduce Figure 1.5:
1 par(mfrow = c(2,1)) # set up the graphics

2 plot(soi, ylab="", xlab="", main="Southern Oscillation Index")

3 plot(rec, ylab="", xlab="", main="Recruitment")

Example 1.6 fMRI Imaging

A fundamental problem in classical statistics occurs when we are given a
collection of independent series or vectors of series, generated under varying
experimental conditions or treatment configurations. Such a set of series is
shown in Figure 1.6, where we observe data collected from various locations
in the brain via functional magnetic resonance imaging (fMRI). In this ex-
ample, five subjects were given periodic brushing on the hand. The stimulus
was applied for 32 seconds and then stopped for 32 seconds; thus, the signal
period is 64 seconds. The sampling rate was one observation every 2 seconds
for 256 seconds (n = 128). For this example, we averaged the results over
subjects (these were evoked responses, and all subjects were in phase). The

source: R.H. Shumway, D.S. Stoffer. Time Series Analysis and its Applications, with Examples in R. Springer, 2011.
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Examples of Time series: Price Index USA

source: Roberto Rigobon
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Differences bteween the time series

“components”

smoothness: correlation in time
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Objectives of Time Series Analysis

Time series: collection of random variables X0, . . . ,Xn indexed in
time

Descriptive analysis (visualization, components, dependencies)

Modeling

Forecasting

Time Series Regression

Control

. . .
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Some Basic Statistics

Marginal mean per time step: µX (t) = E[Xt ].

Marginal variance: var(Xt) = E[(Xt − µX (t))2]

= γ(t, t)

Autocovariance γX (s, t):

γX (s, t) = cov(Xs ,Xt) = E[(Xs − µX (s))(Xt − µX (t))]

Can we estimate these?
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Stationarity

We will need to compute statistics, fit models, etc.
important concept for estimation, forecasting, . . . : stationarity

weak stationarity: mean/variance same for all Xt :

µX (t) = µX , varX (t) = σ2
X

cov(Xs ,Xt) = γX (s − t) covariance only a function of gap

strong stationarity: distribution of Xt , . . .Xt+n same as distribution
of Xt+h, . . .Xt+n+h for any t, n, h.

stationarity allows estimation!
Typically: transform series to be stationary, then estimate.
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Stationary?

1.3 Time Series Statistical Models 13

white noise
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Fig. 1.8. Gaussian white noise series (top) and three-point moving average of the
Gaussian white noise series (bottom).

1 w = rnorm(500,0,1) # 500 N(0,1) variates

2 v = filter(w, sides=2, rep(1/3,3)) # moving average

3 par(mfrow=c(2,1))

4 plot.ts(w, main="white noise")

5 plot.ts(v, main="moving average")

The speech series in Figure 1.3 and the Recruitment series in Figure 1.5,
as well as some of the MRI series in Figure 1.6, di↵er from the moving average
series because one particular kind of oscillatory behavior seems to predom-
inate, producing a sinusoidal type of behavior. A number of methods exist
for generating series with this quasi-periodic behavior; we illustrate a popular
one based on the autoregressive model considered in Chapter 3.

Example 1.10 Autoregressions

Suppose we consider the white noise series wt of Example 1.8 as input and
calculate the output using the second-order equation

xt = xt�1 � .9xt�2 + wt (1.2)

successively for t = 1, 2, . . . , 500. Equation (1.2) represents a regression or
prediction of the current value xt of a time series as a function of the past
two values of the series, and, hence, the term autoregression is suggested

Stefanie Jegelka (and Caroline Uhler) 14 / 33
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Evidence for Non-Stationarity

weak stationarity:

µX (t) = µX , varX (t) = σ2
X

cov(Xs ,Xt) = γX (s − t) covariance only a function of gap

Trend: non-constant expected value

Periodical oscillations (seasonal effect)

Non-constant variance

Changes in the dependency structure

Detecting Non-Stationarity

Plot series: trends, seasonal effects, variance

Autocovariance:
trends/seasonal effects, changes in dependency structure
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Search for Stationarity

remove trends and seasonal components: Xt = Tt + St + Yt

deterministic trend Tt : linear regression
deterministic seasonal component St
remainder: stationary, mean zero

2.2 Classical Regression in the Time Series Context 49

Fig. 2.1. Global temperature deviations shown in Figure 1.2 with fitted linear trend
line.

1 summary(fit <- lm(gtemp~time(gtemp))) # regress gtemp on time

2 plot(gtemp, type="o", ylab="Global Temperature Deviation")

3 abline(fit) # add regression line to the plot

The linear model described by (2.1) above can be conveniently written in
a more general notation by defining the column vectors zzzt = (zt1, zt2, . . . , ztq)

0

and ��� = (�1,�2, . . . ,�q)
0, where 0 denotes transpose, so (2.1) can be written

in the alternate form
xt = ���0zzzt + wt. (2.2)

where wt ⇠ iid N(0,�2
w). It is natural to consider estimating the unknown

coe�cient vector ��� by minimizing the error sum of squares

Q =

nX

t=1

w2
t =

nX

t=1

(xt � ���0zzzt)
2, (2.3)

with respect to �1,�2, . . . ,�q. Minimizing Q yields the ordinary least squares
estimator of ���. This minimization can be accomplished by di↵erentiating (2.3)
with respect to the vector ��� or by using the properties of projections. In the
notation above, this procedure gives the normal equations

✓ nX

t=1

zzztzzz
0
t

◆
b��� =

nX

t=1

zzztxt. (2.4)

The notation can be simplified by defining Z = [zzz1 | zzz2 | · · · | zzzn]0 as the
n ⇥ q matrix composed of the n samples of the input variables, the ob-
served n ⇥ 1 vector xxx = (x1, x2, . . . , xn)0 and the n ⇥ 1 vector of errors

2.3 Exploratory Data Analysis 59

Fig. 2.4. Detrended (top) and di↵erenced (bottom) global temperature series. The
original data are shown in Figures 1.2 and 2.1.

To detrend in the series in R, use the following commands. We also show
how to di↵erence and plot the di↵erenced data; we discuss di↵erencing af-
ter this example. In addition, we show how to generate the sample ACFs
displayed in Figure 2.5.

1 fit = lm(gtemp~time(gtemp), na.action=NULL) # regress gtemp on time

2 par(mfrow=c(2,1))

3 plot(resid(fit), type="o", main="detrended")

4 plot(diff(gtemp), type="o", main="first difference")

5 par(mfrow=c(3,1)) # plot ACFs

6 acf(gtemp, 48, main="gtemp")

7 acf(resid(fit), 48, main="detrended")

8 acf(diff(gtemp), 48, main="first difference")

In Example 1.11 and the corresponding Figure 1.10 we saw that a random
walk might also be a good model for trend. That is, rather than modeling
trend as fixed (as in Example 2.4), we might model trend as a stochastic
component using the random walk with drift model,

µt = � + µt�1 + wt, (2.30)

Stefanie Jegelka (and Caroline Uhler) 17 / 33
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The notation can be simplified by defining Z = [zzz1 | zzz2 | · · · | zzzn]0 as the
n ⇥ q matrix composed of the n samples of the input variables, the ob-
served n ⇥ 1 vector xxx = (x1, x2, . . . , xn)0 and the n ⇥ 1 vector of errors

2.3 Exploratory Data Analysis 59

Fig. 2.4. Detrended (top) and di↵erenced (bottom) global temperature series. The
original data are shown in Figures 1.2 and 2.1.

To detrend in the series in R, use the following commands. We also show
how to di↵erence and plot the di↵erenced data; we discuss di↵erencing af-
ter this example. In addition, we show how to generate the sample ACFs
displayed in Figure 2.5.

1 fit = lm(gtemp~time(gtemp), na.action=NULL) # regress gtemp on time

2 par(mfrow=c(2,1))

3 plot(resid(fit), type="o", main="detrended")

4 plot(diff(gtemp), type="o", main="first difference")

5 par(mfrow=c(3,1)) # plot ACFs

6 acf(gtemp, 48, main="gtemp")

7 acf(resid(fit), 48, main="detrended")

8 acf(diff(gtemp), 48, main="first difference")

In Example 1.11 and the corresponding Figure 1.10 we saw that a random
walk might also be a good model for trend. That is, rather than modeling
trend as fixed (as in Example 2.4), we might model trend as a stochastic
component using the random walk with drift model,

µt = � + µt�1 + wt, (2.30)
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Search for Stationarity

remove trends and seasonal components: Xt = Tt + St + Yt

deterministic trend Tt : linear regression
deterministic seasonal component St
remainder: stationary, mean zero

Stefanie Jegelka (and Caroline Uhler) 18 / 33

mitx
Pencil



Seasonal patterns

fit periodic regression model & subtract

subtract monthly averages

Fourier analysis (we don’t cover this)

smoothing, e.g. by moving averages: new series Yt =
∑k

h=−k ahXt+h
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Search for Stationarity

remove trends and seasonal components: Xt = Tt + St + Zt

deterministic trend Tt : linear regression
deterministic seasonal component St
remainder: stationary, mean zero

nonlinear transformations, e.g. Yt = log(Xt − µt), Yt =
√
Xt − µt
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Search for Stationarity

remove trends and seasonal components: Xt = Tt + St + Zt

deterministic trend Tt : linear regression
deterministic seasonal component St
remainder: stationary, mean zero

nonlinear transformations, e.g. Yt = log(Xt − µt), Yt =
√
Xt − µt

differentiation

Yt = ∇Xt = Xt − Xt−1 removes linear trend

∇2Xt = ∇Xt −∇Xt−1

= Xt − 2Xt−1 + Xt−2 removes quadratic trend

{Xt}t is integrated of order p: {∇pXt}t is stationary
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Search for Stationarity: illustration

2.2 Classical Regression in the Time Series Context 49

Fig. 2.1. Global temperature deviations shown in Figure 1.2 with fitted linear trend
line.

1 summary(fit <- lm(gtemp~time(gtemp))) # regress gtemp on time

2 plot(gtemp, type="o", ylab="Global Temperature Deviation")

3 abline(fit) # add regression line to the plot

The linear model described by (2.1) above can be conveniently written in
a more general notation by defining the column vectors zzzt = (zt1, zt2, . . . , ztq)

0

and ��� = (�1,�2, . . . ,�q)
0, where 0 denotes transpose, so (2.1) can be written

in the alternate form
xt = ���0zzzt + wt. (2.2)

where wt ⇠ iid N(0,�2
w). It is natural to consider estimating the unknown

coe�cient vector ��� by minimizing the error sum of squares

Q =

nX

t=1

w2
t =

nX

t=1

(xt � ���0zzzt)
2, (2.3)

with respect to �1,�2, . . . ,�q. Minimizing Q yields the ordinary least squares
estimator of ���. This minimization can be accomplished by di↵erentiating (2.3)
with respect to the vector ��� or by using the properties of projections. In the
notation above, this procedure gives the normal equations

✓ nX

t=1

zzztzzz
0
t

◆
b��� =

nX

t=1

zzztxt. (2.4)

The notation can be simplified by defining Z = [zzz1 | zzz2 | · · · | zzzn]0 as the
n ⇥ q matrix composed of the n samples of the input variables, the ob-
served n ⇥ 1 vector xxx = (x1, x2, . . . , xn)0 and the n ⇥ 1 vector of errors

2.3 Exploratory Data Analysis 59

Fig. 2.4. Detrended (top) and di↵erenced (bottom) global temperature series. The
original data are shown in Figures 1.2 and 2.1.

To detrend in the series in R, use the following commands. We also show
how to di↵erence and plot the di↵erenced data; we discuss di↵erencing af-
ter this example. In addition, we show how to generate the sample ACFs
displayed in Figure 2.5.

1 fit = lm(gtemp~time(gtemp), na.action=NULL) # regress gtemp on time

2 par(mfrow=c(2,1))

3 plot(resid(fit), type="o", main="detrended")

4 plot(diff(gtemp), type="o", main="first difference")

5 par(mfrow=c(3,1)) # plot ACFs

6 acf(gtemp, 48, main="gtemp")

7 acf(resid(fit), 48, main="detrended")

8 acf(diff(gtemp), 48, main="first difference")

In Example 1.11 and the corresponding Figure 1.10 we saw that a random
walk might also be a good model for trend. That is, rather than modeling
trend as fixed (as in Example 2.4), we might model trend as a stochastic
component using the random walk with drift model,

µt = � + µt�1 + wt, (2.30)
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Measuring Correlation in Time

Marginal mean per time step: µX (t) = E[Xt ].

Marginal variance: var(Xt) = E[(Xt − µX (t))2]

= γ(t, t)

Autocovariance γX (s, t):

γX (s, t) = cov(Xs ,Xt) = E[(Xs − µ(s))(Xt − µ(t))]

Autocorrelation (ACF):

ρX (s, t) =
γX (s, t)√

γX (s, s)γX (t, t)

Properties of γ(s, t):
symmetric
measures linear dependence of Xt , Xs

relates to smoothness
for weakly stationary series: γX (t, t + h) = γX (0, h) =: γX (h)
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Sample estimates for stationary series

µ̂X = x̄ = 1
n

∑n
t=1 xt

std error: var(x̄) = 1
n

∑n
h=−n(1 − |h|

n
)γ(h)

sample autocovariance:

γ̂X (h) =
1

n

n−|h|∑

t=1

(xt − x̄)(xt+|h| − x̄) for − n < h < n

sample autocorrelation:

ρ̂X (h) = γ̂X (h)/γ̂X (0) for − n < h < n
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Example
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Correlogram
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Autocorrelation

14Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
FS 2011 – Week 03

Short Term Correlation
Simulated Short Term Correlation Series
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Stationary series often exhibit short-term correlations.
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Autocorrelation: with trend
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Non-Stationarity in the ACF: Trend
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Autocorrelation: with seasonal pattern (CO2)
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Applied Time Series Analysis
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Non-Stationarity in the ACF: Seasonal Pattern
De-Trended Mauna Loa Data
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Recall: Search for Stationarity

2.2 Classical Regression in the Time Series Context 49

Fig. 2.1. Global temperature deviations shown in Figure 1.2 with fitted linear trend
line.

1 summary(fit <- lm(gtemp~time(gtemp))) # regress gtemp on time

2 plot(gtemp, type="o", ylab="Global Temperature Deviation")

3 abline(fit) # add regression line to the plot

The linear model described by (2.1) above can be conveniently written in
a more general notation by defining the column vectors zzzt = (zt1, zt2, . . . , ztq)

0

and ��� = (�1,�2, . . . ,�q)
0, where 0 denotes transpose, so (2.1) can be written

in the alternate form
xt = ���0zzzt + wt. (2.2)

where wt ⇠ iid N(0,�2
w). It is natural to consider estimating the unknown

coe�cient vector ��� by minimizing the error sum of squares

Q =

nX

t=1

w2
t =

nX

t=1

(xt � ���0zzzt)
2, (2.3)

with respect to �1,�2, . . . ,�q. Minimizing Q yields the ordinary least squares
estimator of ���. This minimization can be accomplished by di↵erentiating (2.3)
with respect to the vector ��� or by using the properties of projections. In the
notation above, this procedure gives the normal equations

✓ nX

t=1

zzztzzz
0
t

◆
b��� =

nX

t=1

zzztxt. (2.4)

The notation can be simplified by defining Z = [zzz1 | zzz2 | · · · | zzzn]0 as the
n ⇥ q matrix composed of the n samples of the input variables, the ob-
served n ⇥ 1 vector xxx = (x1, x2, . . . , xn)0 and the n ⇥ 1 vector of errors

2.3 Exploratory Data Analysis 59

Fig. 2.4. Detrended (top) and di↵erenced (bottom) global temperature series. The
original data are shown in Figures 1.2 and 2.1.

To detrend in the series in R, use the following commands. We also show
how to di↵erence and plot the di↵erenced data; we discuss di↵erencing af-
ter this example. In addition, we show how to generate the sample ACFs
displayed in Figure 2.5.

1 fit = lm(gtemp~time(gtemp), na.action=NULL) # regress gtemp on time

2 par(mfrow=c(2,1))

3 plot(resid(fit), type="o", main="detrended")

4 plot(diff(gtemp), type="o", main="first difference")

5 par(mfrow=c(3,1)) # plot ACFs

6 acf(gtemp, 48, main="gtemp")

7 acf(resid(fit), 48, main="detrended")

8 acf(diff(gtemp), 48, main="first difference")

In Example 1.11 and the corresponding Figure 1.10 we saw that a random
walk might also be a good model for trend. That is, rather than modeling
trend as fixed (as in Example 2.4), we might model trend as a stochastic
component using the random walk with drift model,

µt = � + µt�1 + wt, (2.30)
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Fig. 2.5. Sample ACFs of the global temperature (top), and of the detrended
(middle) and the di↵erenced (bottom) series.

where wt is white noise and is independent of yt. If the appropriate model is
(2.28), then di↵erencing the data, xt, yields a stationary process; that is,

xt � xt�1 = (µt + yt) � (µt�1 + yt�1) (2.31)

= � + wt + yt � yt�1.

It is easy to show zt = yt � yt�1 is stationary using footnote 3 of Chapter 1
on page 20. That is, because yt is stationary,

�z(h) = cov(zt+h, zt) = cov(yt+h � yt+h�1, yt � yt�1)

= 2�y(h) � �y(h + 1) � �y(h � 1)

is independent of time; we leave it as an exercise (Problem 2.7) to show that
xt � xt�1 in (2.31) is stationary.
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Scatter plots (SOI)
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Summary: Statistics and Stationarity

collection of random variables indexed by time

need stationarity to estimate statistics and models

transformations to achieve weak stationarity

autocorrelation: important quantity and diagnostic tool
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