Time Series Analysis: Autocorrelation and Stationarity



@ What are time series?
@ Statistics on time series
@ Stationarity

@ Transformations

@ Autocorrelation
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(fixed time intervals) B -
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Time series

o Time series: collection of observations xi, ..

(fixed time intervals)

., Xp indexed by time

@ realizations of a collection of random variables Xi, ..., X}, indexed by

time

Where do time series come up?

economics, finance
social sciences
epidemiology

fMRI / neuroscience
environmental sciences

speech analysis . ..
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source: R.H. Shumway, D.S. Stoffer. Time Series Analysis and its Applications, with Examples in R. Springer, 2011.
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Examples of Time

series: Air pressure & fish population

Southern Oscillation Index
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source: R.H. Shumway, D.S. Stoffer. Time Series Analysis and its Applications, with Examples in R. Springer, 2011.
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@ ‘“components”
@ smoothness: correlation in time /‘7\/\/‘/ :
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Objectives of Time Series Analysis

Time series: collection of random variables X, ..., X, indexed in
time

@ Descriptive analysis (visualization, components, dependencies)
e Modeling

@ Forecasting

@ Time Series Regression Q(L_; @"T‘vk—\— S{ L
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Objectives of Time Series Analysis

Time series: collection of random variables X, ..., X, indexed in
time

Descriptive analysis (visualization, components, dependencies)
Modeling

Forecasting

Time Series Regression

Control
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@ What are time series?

@ Statistics on time series

@ Stationarity

@ Transformations towards stationarity
@ Autocorrelation



e Marginal mean per time step: px(t) = E[X}].
e Marginal variance: var(X;) = E[(X; — ux(t))?]



Some Basic Statistics

e Marginal mean per time step: px(t) = E[X}].
e Marginal variance: var(X;) = E[(X; — pux(t))?]

e Autocovariance x(s, t):

Yx (s, t) = cov(Xs, Xe) = E[(Xs — px(s))(Xe — pux(t))]
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e Marginal mean per time step: px(t) = E[X}].
e Marginal variance: var(X;) = E[(X; — ux(t))?] = 7(t, t)

e Autocovariance x(s, t):

Yx (s, t) = cov(Xs, X¢) = E[(Xs — px(s))(Xe — px(t))]

Can we estimate these?



We will need to compute statistics, fit models, etc.
important concept for estimation, forecasting, ...: stationarity
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Stationarity

We will need to compute statistics, fit models, etc.
important concept for estimation, forecasting, ...: stationarity

e weak stationarity: mean/variance same for all X;:
o ux(t) = px, varx(t) = ok
e cov(Xs, X;) :w_—\tl‘ covariance only a function of gap
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Stationarity

We will need to compute statistics, fit models, etc.
important concept for estimation, forecasting, ...: stationarity

e weak stationarity: mean/variance same for all X;: @/

o ux(t) = px, varx(t) = ok
e cov(Xs, Xt) = yx(s —t) covariance only a function of gap

@ strong stationarity: distribution of X;,... X}, same as distribution
of Xitpy ... Xeanen for any t, n, h.
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Stationarity

We will need to compute statistics, fit models, etc.
important concept for estimation, forecasting, ...: stationarity

e weak stationarity: mean/variance same for all X;:

o ux(t) = px, varx(t) = ok

e cov(Xs, Xt) = yx(s —t) covariance only a function of gap

@ strong stationarity: distribution of X;,... X}, same as distribution
of Xitpy ... Xeanen for any t, n, h.

@ stationarity allows estimation!
Typically: transform series to be stationary, then estimate.
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weak stationarity;

o ux(t) = px, varx(t) = ok
@ cov(Xs, Xt) = vx(s — t) covariance only a function of gap

@ Trend: non-constant expected value
@ Periodical oscillations (seasonal effect) JW


mitx
Pencil


weak stationarity: [/

o ux(t) = px, varx(t) = ok
@ cov(Xs, Xt) = vx(s — t) covariance only a function of gap

@ Trend: non-constant expected value
@ Periodical oscillations (seasonal effect)

@ Non-constant variance
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Evidence for Non-Stationarity

weak stationarity:
o ux(t) = px, varx(t) = ok
cov(Xs, Xt) = yx(s — t) covariance only a function of gap

Trend: non-constant expected value

Periodical oscillations (seasonal effect)

Non-constant variance
Changes in the dependency structure
jgr——1
=
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Detecting Non-Stationarity

@ Plot series: trends, seasonal effects, variance
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Evidence for Non-Stationarity

weak stationarity:
o ux(t) = px, varx(t) = ok
cov(Xs, Xt) = yx(s — t) covariance only a function of gap

—_—

Trend: non-constant expected value
Periodical oscillations (seasonal effect)

Non-constant variance

Changes in the dependency structure

Detecting Non-Stationarity
@ Plot series: trends, seasonal effects, variance

@ Autocovariance:
trends/seasonal effects, changes in dependency structure
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@ What are time series?

@ Statistics on time series

@ Stationarity

@ Transformations towards stationarity
@ Autocorrelation
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@ remove trends and seasonal components: X; = T; + S + Y;

o deterministic trend T;: linear regression
e deterministic seasonal component S;

e remainder: stationary, mean zero
L6 N
= Q
[ =Bt *©
£

p
% = K e


mitx
Pencil


Global Temperature Deviation

@ remove trends and seasonal components: X; = T; + S + Y;
o deterministic trend T;: linear regression
e deterministic seasonal component S;
e remainder: stationary, mean zero
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@ remove trends and seasonal components: X; = T; + S + Y;

e deterministic trend T;: linear regression
e deterministic seasonal component S; <—
e remainder: stationary, mean zero


mitx
Pencil


o fit periodic regression model & subtract
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o fit periodic regression model & subtract
A
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n
New

@ subtract monthly averages
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o fit periodic regression model & subtract
@ subtract monthly averages

@ Fourier analysis (we don't cover this)



Seasonal patterns

o fit periodic regression model & subtract
@ subtract monthly averages
@ Fourier analysis (we don't cover this)

@ smoothing, e.g. by moving averages: new series Y; = zzsz anXith
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J,_u_/@'\ /Q

L—PP—PFG e S
doc e QOQC

Stefanie Jegelka (and Caroline Uhler) 19 / 33


mitx
Pencil


o fit periodic regression model & subtract
@ subtract monthly averages

@ Fourier analysis (we don't cover this)

@ smoothing, e.g. by moving averages: new series Y; = Zﬁ:_k anXtth




@ remove trends and seasonal components: X; = Ty + S; + Z;

e deterministic trend T;: linear regression
e deterministic seasonal component S;
e remainder: stationary, mean zero

@ nonlinear transformations, e.g. Y: = log( Xy — ut), Yr = VXt — 1t



Search for Stationarity

@ remove trends and seasonal components: X; = T; + S; + Z;

e deterministic trend T;: linear regression
e deterministic seasonal component S;
e remainder: stationary, mean zero

@ nonlinear transformations, e.g. Y; = log(X: — ut), Y = VXt — pit

Log-Transformed Airline Passenger Data
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Search for Stationarity

@ remove trends and seasonal components: X; =

e deterministic trend T;: linear regression
e deterministic seasonal component S;
e remainder: stationary, mean zero

@ nonlinear transformations, e.g. Y; = log(X; —

o differentiation

\/f = x{ “XQ‘\
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Search for Stationarity

@ remove trends and seasonal components: X; = T; + S; + Z;

e deterministic trend T;: linear regression
e deterministic seasonal component S;
e remainder: stationary, mean zero

@ nonlinear transformations, e.g. Y: = log(X¢ — ut), Ye = VXt — 1t
o differentiation

Y = VX = removes linear trend

]

t«b‘%@
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Search for Stationarity

@ remove trends and seasonal components: X; = T; + S; + Z;

e deterministic trend T;: linear regression
e deterministic seasonal component S;
e remainder: stationary, mean zero

@ nonlinear transformations, e.g. Y: = log(X¢ — ut), Ye = VXt — 1t
o differentiation

Y = VX = Xp — Xe1 removes linear trend
V2X: = VX — VX1
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Search for Stationarity

@ remove trends and seasonal components: X; = T; + S; + Z;

e deterministic trend T;: linear regression
e deterministic seasonal component S;
e remainder: stationary, mean zero

@ nonlinear transformations, e.g. Y: = log(X¢ — ut), Ye = VXt — 1t

o differentiation

Y = VX = Xp — Xe1 removes linear trend
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=Xy —2X¢_1+ X¢_»> removes quadratic trend
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Search for Stationarity

@ remove trends and seasonal components: X; = T; + S; + Z;

e deterministic trend T;: linear regression
e deterministic seasonal component S;
e remainder: stationary, mean zero

@ nonlinear transformations, e.g. Y: = log(X¢ — ut), Ye = VXt — 1t
o differentiation

Y = VX = Xp — Xe1 removes linear trend
V2X: = VX — VX1
=Xy —2X¢_1+ X¢_»> removes quadratic trend

{Xt}+ is integrated of order p: {VPX;}¢ is stationary
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@ What are time series?

@ Statistics on time series

@ Stationarity

@ Transformations towards stationarity
@ Autocorrelation



e Marginal mean per time step: px(t) = E[X].
e Marginal variance: var(X;) = E[(X; — ux(t))?]



e Marginal mean per time step: px(t) = E[X].
e Marginal variance: var(X;) = E[(X; — ux(t))?]

e Autocovariance vx(s,t):

x (s, ) = cov(Xs, Xe) = E[(Xs — p(s))(Xe — p(2))]



Measuring Correlation in Time

e Marginal mean per time step: px(t) = E[X].
e Marginal variance: var(X;) = E[(X: — ux(t))?] = (¢, t)

e Autocovariance vx(s,t):

x (s, t) = cov(Xs, Xe) = E[(Xs — pu(s))(Xe — pa(t))]

e Autocorrelation (ACF):

_ Yx(s t)
px(s,t) Vx(s, s)yx(t, t)
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Measuring Correlation in Time

e Marginal mean per time step: px(t) = E[X].
e Marginal variance: var(X;) = E[(X: — ux(t))?] = (¢, t)

Autocovariance ~x(s, t):

x (s, t) = cov(Xs, Xe) = E[(Xs — pu(s))(Xe — pa(t))]

e Autocorrelation (ACF):

x(s,t
px(s.t) = —2 (s, t)
Properties of 7(s, t):

Vx(s, s)x(t, fw
e symmetric

e measures linear dependence of X;, X
o relates to smoothness
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Measuring Correlation in Time

e Marginal mean per time step: px(t) = E[X].
e Marginal variance: var(X;) = E[(X: — ux(t))?] = (¢, t)

Autocovariance ~x(s, t):

x (s, t) = cov(Xs, Xe) = E[(Xs — pu(s))(Xe — pa(t))]

e Autocorrelation (ACF):

_ Yx(s t)
px(s,t) Vx(s, s)yx(t, t)

Properties of (s, t): w

e symmetric A ,\Q
measures linear dependence of X;, X (;o\l(‘l*{ et = (9\'.0(4
relates to smoothness Xy+8

for weakly stationary series: vx(t,t + h) = vx(0, h) =: vx(h)
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Measuring Correlation in Time

Marginal mean per time step: px(t) = E[X].
Marginal variance: var(X;) = E[(X: — ux(t))?] = (¢, t)

Autocovariance ~x(s, t):

x (s, t) = cov(Xs, Xe) = E[(Xs — pu(s))(Xe — pa(t))]

e Autocorrelation (ACF):

_ Yx(s t)
px(s,t) Vx(s, s)yx(t, t)

Properties of 7(s, t):
e symmetric
measures l/inear dependence of X;, X
relates to smoothness
for weakly stationary series: vx(t,t + h) = vx(0, h) =: vx(h)
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@ sample autocovariance:

—|hl
. 17 _ _
Ax(h) = - ;—1 (xt = X)(Xeqppy —X) for —n<h<n

@ sample autocorrelation:

px(h) =4x(h)/9x(0) for —n<h<n



Sample estimates for stationary series

% D1 Xe std error: var(x) = 1527 (1 — 1"y (h)

° fix =X

eStimetoa pcroc
depecds on ¥e

@ sample autocovariance:

1 n—|h| Not i d\u-lo\‘.
’Ayx(h):g Z(Xf_)_()(xtﬂhl_)_() for —n<h<n
t=1

@ sample autocorrelation:

ﬁx(h) = ﬁx(h)/"’?x(O) for —n< h<n
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100 200 300 400
Time

ACF of Simulated Short Term Correlation Series



mitx
Pencil


Autocorrelation

Simulated Short Term Correlation Series

T T T T T
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Time

ACF of Simulated Short Term Correlation Series
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Stationary series often exhibit short-term correlations.
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Simulated Series with a Trend
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Autocorrelation: with seasonal pattern (CO,)

De-Trended Mauna Loa Data
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Global Temperature Deviation
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Scatter plots (SOI)

soi(t-1) soi(t-2) soit-3)
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Summary: Statistics and Stationarity

@ collection of random variables indexed by time
@ need stationarity to estimate statistics and models
@ transformations to achieve weak stationarity

@ autocorrelation: important quantity and diagnostic tool
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