Spatial and Environmental Data:
Model Selection and Long-range dependencies



Gaussian Processes: Model selection
Climate networks

Degree distribution and connectivity
Nonlinear relationships

Dipole discovery



Which kernel function?
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| could fit several models to my data — GPs with different kernels, kernels
with different parameters (bandwidth, noise variance 72 etc) — which one
is the most suitable?
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many covariance functions have parameters 6, e.g. length scale ¢

© estimate generalization error: cross validation
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Fitting covariance functions

many covariance functions have parameters 6, e.g. length scale ¢

© estimate generalization error: cross validation
leave-one-out or k-fold

@ maximize log marginal likelihood of the data, p(y|X, ) with respect
to 0 (e.g. 0 =1)
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1. Leave-one-out cross validation

Given data (x1,y1),---, (XN, YN):
@ For each i, remove (x;, y;) from the data and fit a GP to the rest
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1. Leave-one-out cross validation

Given data (x1,y1),---, (XN, YN):
@ For each i, remove (x;, y;) from the data and fit a GP to the rest
(X—iyy—i)-
@ Predict yu,_; and o, _;. These depend on 0!
o What is the validation “loss”? compute predictive probability

1 (y' — M —')2 1
log p(yi|X,y-i,0) = 3 log a3 ; — e
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1. Leave-one-out cross validation

Given data (x1,y1),---, (XN, YN):
@ For each i, remove (x;, y;) from the data and fit a GP to the rest
(X—iyy—i)-
@ Predict yu,_; and o, _;. These depend on 0!
o What is the validation “loss”? compute predictive probability
2
log p(yi|X,y—i,0) = —% log o2 ; — (y’%‘j'") - % log 27

|—i

@ choose parameters 6 (e.g., bandwidth) that maximize log predictive
probability

N
rax D log p(yilX,y_i,0).
i=1
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2. Maximize log marginal lielihood

@ trades off data fit and complexity

e maximize log marginal likelihood of the data, p(y|X, #) with respect
tof (e.g. 0 =1)

log p(y|X,0) = — 3y "K'y —1log|K| — 5log2r
N e e, !
AV (1)
Nz0
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@ trades off data fit and complexity

e maximize log marginal likelihood of the data, p(y|X, #) with respect
tof (e.g. 0 =1)

log p(y|X,0) = — 3y "K'y —Jlog|K| — 5log2nm
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data fit



2. Maximize log marginal lielihood

@ trades off data fit and complexity

e maximize log marginal likelihood of the data, p(y|X, #) with respect
tof (e.g. 0 =1)

log p(y|X,0) = — 3y "K'y —1log|K| — 5log2r
N e e, !

data fit  complexity penalty
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lower plot: Rasmussen & Williams. Gaussian Processes for Machine Learning.
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Here, likelihood has 2 local maxima (2 “good” parameter settings (7, ¢)).

Source: Rasmussen & Williams. Gaussian Processes for Machine Learning.
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Here, likelihood has 2 local maxima (2 “good” parameter settings (7, ¢)).

Source: Rasmussen & Williams. Gaussian Processes for Machine Learning.
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@ Gaussian Processes: Model selection
@ Climate networks
@ Nonlinear relationships

@ Dipole discovery






Long-range climate correlations
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Climate networks

@ Idea: build a graph G = (V/, E) to represent relationships!

e Construction: based on e.g. sea surface temp. or pressure (hPa)

e nodes v;: spatial grid points (2664), each has a time series.
yr.(7) : pressure in month m, year t at location i

e edge (v;,v;) if time series y(i), y(j) are sufficiently correlated:

[r(y(i), y(j))| > threshold . \037 0
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Climate networks

@ Idea: build a graph G = (V/, E) to represent relationships!

e Construction: based on e.g. sea surface temp. or pressure (hPa)

e nodes v;: spatial grid points (2664), each has a time series.
yr.(7) : pressure in month m, year t at location i

e edge (v;,v;) if time series y(i), y(j) are sufficiently correlated:
[r(y(i), y(j))| > threshold

@ preprocessing: remove seasonal variation

) YD) 7l
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Climate networks

@ Idea: build a graph G = (V/, E) to represent relationships!

e Construction: based on e.g. sea surface temp. or pressure (hPa)

e nodes v;: spatial grid points (2664), each has a time series.
yr.(7) : pressure in month m, year t at location i

e edge (v;,v;) if time series y(i), y(j) are sufficiently correlated:
[r(y(i), y(j))| > threshold

@ preprocessing: remove seasonal variation

) YD) 7l
) =)

o Network analysis: degree distribution, clustering coefficient,
centrality
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Climate network analysis (Tsonis et al)

fraction of total global area to which a geographical region is connected (“degree”)

degree distributions: extratropical (30-65°N/S) and tropical (20°N-20°S) region
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Climate network analysis (Tsonis et al)
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Climate network analysis (Tsonis et al)

fraction of total global area to which a geographical region is connected (“degree”)
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@ Gaussian Processes: Model selection
@ Climate networks
@ Nonlinear relationships

@ Dipole discovery



@ correlation # statistical dependence!



@ correlation # statistical dependence!

@ How could we capture nonlinear relations?



Climate networks: Nonlinear relationships (Donges et al.)

@ correlation # statistical dependence!
@ How could we capture nonlinear relations?
e alternative: mutual information I(Y1, Y2) = H(Y1) — H(Y1]Y2)
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Climate networks: Nonlinear relationships (Donges et al.)

correlation # statistical dependence!

How could we capture nonlinear relations?
alternative: mutual information 1(Y1, Y2) = H(Y1) — H(Y1|Y2)

zero only if Y7, Y> are independent
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Climate networks: Nonlinear relationships (Donges et al.)

@ correlation # statistical dependence!
@ How could we capture nonlinear relations?
e alternative: mutual information I(Y1, Y2) = H(Y1) — H(Y1]Y2)

@ zero only if Y7, Y> are independent

e edge between v;,v; if I(Y},Yj) > 7
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e discrete random variable Y, values in Y = {1, ... m}:

H(Y)=>_p(y)log ﬁ =—> _ply)logp(y)

yeYy yey
o if p(y)=2 forally € ) H(Y)—’Zl {?f\m
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e discrete random variable Y, values in Y = {1, ... m}:

H(Y) =" p(y)log Lo > p(y)log p(y)

= p(y) =

o if p(y)= 2L forally € ¥: H(Y) = logm.



Quantifying uncertainty: (discrete) entropy

e discrete random variable Y, values in ) = {1,... m}:

H(Y) = p(y)log I > p(y) log p(y)

= p(y) =

o if p(y) =L forally € y: H(Y) = logm.
o if p(1) = 1and p(y) = 0 for all y # 1: HD= O+ O =0
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H(Y) =" p(y)log Lo > ply)logp(y)

= p(y) =
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Quantifying uncertainty: (discrete) entropy

e discrete random variable Y, values in ) = {1,... m}:

H(Y) = p(y)log I > p(y) log p(y)

ot p(y) =

o if p(y)= 2L forally € ¥: H(Y) = logm.
e if p(1)=1and p(y) =0forall y #1: H(Y)=0.
@ in general: 0 < H(Y) <logm

HY) Beornoull

o % 47"(1’;4')
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Quantifying uncertainty: (discrete) entropy

e discrete random variable Y, values in ) = {1,... m}:

H(Y) = p(y)log I > p(y) log p(y)

ot p(y) =

if p(y) =L forall y € Y: H(Y) = logm.
if p(1) =1and p(y) =0 forall y # 1: H(Y)=0.
in general: 0 < H(Y) <logm

Joint entropy: 2 random variables Y, Z:

H(Y,Z) == ply,z)logp(y,2)

yey,
zeEZ
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Quantifying uncertainty: (discrete) entropy

e discrete random variable Y, values in ) = {1,... m}:

H(Y) = p(y)log I > p(y) log p(y)

ot p(y) =

if p(y) =L forall y € Y: H(Y) = logm.
if p(1) =1and p(y) =0 forall y # 1: H(Y)=0.
in general: 0 < H(Y) <logm

Joint entropy: 2 random variables Y, Z:

H(Y,Z) == ply,z)logp(y,2z) < H(Y)+H(Z)

yey,
zeEZ

Conditional entropy:
H(Y|Z)=H(Y,Z)— H(2)
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Mutual Information

@ reduction in uncertainty: how much does Z tell about Y?

I(Y;Z) = H(Y) - H(Y|Z)

(73
H(YR)
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Mutual Information

@ reduction in uncertainty: how much does Z tell about Y?

I(Y;Z) = H(Y)=H(Y|Z) = H(Z)- H(Z|Y)

@ also captures nonlinear relationships
I(Y;Z)=0if and only if Y, Z are independent.

e I(Z;Y)=1(Y;Z) >0 because
“information never hurts”: H(Y) > H(Y|Z)
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Mutual Information

@ reduction in uncertainty: how much does Z tell about Y?
I(Y;Z)= H(Y)—H(Y|Z) = H(Z)— H(Z|Y)
@ also captures nonlinear relationships
I(Y;Z)=0if and only if Y, Z are independent.

e I(Z;Y)=1(Y;Z) >0 because
“information never hurts”: H(Y) > H(Y|Z)

o Computation:
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Mutual Information

@ reduction in uncertainty: how much does Z tell about Y?
I(Y;Z)= H(Y)—H(Y|Z) = H(Z)— H(Z|Y)
= H(Y)+ H(Z) - H(Y,2)

@ also captures nonlinear relationships
I(Y;Z)=0if and only if Y, Z are independent.
e I(Z;Y)=1(Y;Z) > 0 because
“information never hurts”: H(Y) > H(Y|Z)

o Computation:
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Mutual Information

@ reduction in uncertainty: how much does Z tell about Y?

I(Y;Z) = H(Y)=H(Y|Z) = H(Z)- H(Z|Y)
= H(Y)+ H(Z) - H(Y,Z)

@ also captures nonlinear relationships
I(Y;Z)=0if and only if Y, Z are independent.
e I(Z;Y)=1(Y;Z) > 0 because
“information never hurts”: H(Y) > H(Y|Z)

e Computation: mﬁa':gebe\ﬁé)
° A
. _ (v,2) (\dg()ﬁf‘
1(Y:2) =" ply,2)log X200
; p(y)p(2)
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@ correlation # statistical dependence!
e alternative: mutual information 1(Y1, Y2) = H(Y1) — H(Y1|Y2)

o edge between v;,v; if I(Y;,Y;) > 7



Climate networks: Nonlinear relationships (Donges et al.)

@ correlation # statistical dependence!
e alternative: mutual information 1(Y1, Y2) = H(Y1) — H(Y1|Y2)

@ edge between v;, v; if I(Y},Y)) >
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Climate networks: Nonlinear relationships (Donges et al.)

@ correlation # statistical dependence!

e alternative: mutual information 1(Y1, Y2) = H(Y1) — H(Y1|Y2)

e edge between v;, v; if I(Y;,Y;) > 7
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Betweenness centrality “backbone” follows ocean surface currents!
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@ Mutual information vs correlation: nonlinear, but harder to estimate

@ Check effect of your modeling choices (e.g., threshold for edges)
@ Significance testing

o null hypothesis: network is a random graph with given degree sequence
e scramble time series
o ...



@ Gaussian Processes: Model selection
@ Climate networks
@ Nonlinear relationships

@ Dipole discovery



Monthy mean subtracted anomaly (hPa)
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Monthy mean subtracted anomaly (hPa)

Dipoles, Oscillations, Teleconnections

Southern Oscillation
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T893 94 95 9 97 98 99 00 of 02 03 Figure 16.1. SST anomalies (°C) observed under El Nisio conditions (December, 1997 left)
Years and La Nifia conditions (January, 2000; right). Reprinted courtesy of NASA /JPL-Caltech.
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Monthy mean subtracted anomaly (hPa)

Dipoles, Oscillations, Teleconnections

Southern Oscillation

| — Tahiti = S 08 JAN 00 g
3L o - - Darwin, Australia| % g -
‘ - N

T893 94 95 9 97 98 99 00 of 02 03 Figure 16.1. SST anomalies (°C) observed under El Nisio conditions (December, 1997 left)
Years and La Nifia conditions (January, 2000; right). Reprinted courtesy of NASA /JPL-Caltech.

o global effects on temperature, rain

@ El Nifio: warm water in east Pacific, floods in Peru, dry in
Australia/Indonesia

o La Niia: opposite

@ Impact on economy, health, world events
Image sources: Kaper, H. Engler. Mathematics & Climate. Kawale et al, SDM 2011.
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Dipole discovery (Kawale et al.)

@ Can we discover dipoles automatically?

@ First: explore pairwise correlations

Frequency
o
N o

-0.5 3] 0.5
Correlation

correlations
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Dipole discovery (Kawale et al.)

@ Can we discover dipoles automatically?

@ First: explore pairwise correlations

x10°
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Correlation

correlations

@ treat positive & negative correlations differently
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Dipole discovery (Kawale et al.)

@ Can we discover dipoles automatically?

@ First: explore pairwise correlations

4.5

Frequency
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Correlation
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Correlation

correlations correlations for distance > 5000

@ treat positive & negative correlations differently
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Dipole discovery (Kawale et al.)

@ Can we discover dipoles automatically?

@ First: explore pairwise correlations

4.5

Frequency
N WA 000 N

Frequency

-1 -0.5 0 0.5

Correlation

-0.5

3] 0.5
Correlation

correlations correlations for distance > 5000

@ treat positive & negative correlations differently

@ reduction of search space: consistency in space
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Procedure (roughly): (1)

Given: time series of pressure data (monthly mean) for 1948-2011.

@ Preprocessing: smooth each time series by averaging over
3-month-windows; remove seasonality (as for climate networks)

@ Divide data into 9 periods of 20 years each, shifted by 5 years
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Procedure (roughly): (1)

Given: time series of pressure data (monthly mean) for 1948-2011.

@ Preprocessing: smooth each time series by averaging over
3-month-windows; remove seasonality (as for climate networks)

@ Divide data into 9 periods of 20 years each, shifted by 5 years

o Build a network via correlations, but different thresholds for positive
(0.85) and negative (0.4) correlations
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Procedure (roughly): (2)

Criteria for dipole:
@ two coherent regions in space
@ negatively correlated
e far apart (long-range)

Dipole search:

@ Pick strongest negative edge (a, b).

@ Pick k most positive local neighbors of a and b each (gives
neighborhoods P,, Pp)
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Procedure (roughly): (2)

Criteria for dipole:
@ two coherent regions in space
@ negatively correlated
e far apart (long-range)
Dipole search:
@ Pick strongest negative edge (a, b).

@ Pick k most positive local neighbors of a and b each (gives
neighborhoods P,, Pp)

© Pick k farthest negative neighbors of a and b each (gives
neighborhoods N,, Np)
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Procedure (roughly): (2)

Criteria for dipole:
@ two coherent regions in space
@ negatively correlated
e far apart (long-range)
Dipole search:
@ Pick strongest negative edge (a, b).

@ Pick k most positive local neighbors of a and b each (gives
neighborhoods P,, Pp)

© Pick k farthest negative neighbors of a and b each (gives
neighborhoods N,, Np)

@ Use P, Ny and P, N N, as dipole pair, if large enough.
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Automatic Dipole Discovery: Results
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Automatic Dipole Discovery: Results

Credit: V. Kumar

Years:1973 1993

Different phases of the Southern Oscillation (SOI), from pressure data
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Summary

@ Modeling short-range interactions: Gaussian Processes
e Interpretation, prediction, experimental design

@ Modeling & studying long-range interactions: network analysis
(climate networks) on spatial grid

e Edges via correlation or mutual information
e Apply network analysis and time series tools from previous modules
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