Data Analysis: Statistical Modeling and Computation in Applications

Spatial and Environmental Data: Model Selection and Long-range dependencies

- Gaussian Processes: Model selection
- Climate networks
- Degree distribution and connectivity
- Nonlinear relationships
- Dipole discovery

Which kernel function?

I could fit several models to my data – GPs with different kernels, kernels with different parameters (bandwidth, noise variance τ^2 etc) – which one is the most suitable?

many covariance functions have parameters $\theta,$ e.g. length scale ℓ

 estimate generalization error: cross validation leave-one-out or k-fold many covariance functions have parameters $\theta,$ e.g. length scale ℓ

- estimate generalization error: cross validation leave-one-out or k-fold
- maximize log marginal likelihood of the data, p(y|X, θ) with respect to θ (e.g. θ = l)

Given data $(x_1, y_1), ..., (x_N, y_N)$:

For each *i*, remove (x_i, y_i) from the data and fit a GP to the rest (X_{-i}, y_{-i}).

Given data $(x_1, y_1), ..., (x_N, y_N)$:

- For each *i*, remove (x_i, y_i) from the data and fit a GP to the rest $(\mathbf{X}_{-i}, \mathbf{y}_{-i})$.
- Predict $\mu_{*|-i}$ and $\sigma_{*|-i}$. These depend on θ !

Given data $(x_1, y_1), ..., (x_N, y_N)$:

- For each *i*, remove (x_i, y_i) from the data and fit a GP to the rest $(\mathbf{X}_{-i}, \mathbf{y}_{-i})$.
- Predict $\mu_{*|-i}$ and $\sigma_{*|-i}$. These depend on θ !
- What is the validation "loss"?

Given data $(x_1, y_1), ..., (x_N, y_N)$:

- For each *i*, remove (x_i, y_i) from the data and fit a GP to the rest $(\mathbf{X}_{-i}, \mathbf{y}_{-i})$.
- Predict $\mu_{*|-i}$ and $\sigma_{*|-i}$. These depend on θ !
- What is the validation "loss"? compute predictive probability

$$\log p(y_i | \mathbf{X}, \mathbf{y}_{-i}, \theta) = -\frac{1}{2} \log \sigma_{*|-i}^2 - \frac{(y_i - \mu_{*|-i})^2}{2\sigma_{*|-i}^2} - \frac{1}{2} \log 2\pi$$

= $\log \frac{1}{2\pi 6_x^2} \exp \left(-\frac{(y_i - \mu_{*|-i})^2}{2 6_x^2}\right)$

Given data $(x_1, y_1), ..., (x_N, y_N)$:

- For each *i*, remove (x_i, y_i) from the data and fit a GP to the rest $(\mathbf{X}_{-i}, \mathbf{y}_{-i})$.
- Predict $\mu_{*|-i}$ and $\sigma_{*|-i}$. These depend on θ !
- What is the validation "loss"? compute predictive probability

$$\log p(y_i | \mathbf{X}, \mathbf{y}_{-i}, \theta) = -\frac{1}{2} \log \sigma_{*|-i}^2 - \frac{(y_i - \mu_{*|-i})^2}{2\sigma_{*|-i}^2} - \frac{1}{2} \log 2\pi$$

 \bullet choose parameters θ (e.g., bandwidth) that maximize log predictive probability

$$\max_{i=1}^{N} \log p(y_i | \mathbf{X}, \mathbf{y}_{-i}, \theta).$$

• trades off data fit and complexity

- trades off data fit and complexity
- maximize log marginal likelihood of the data, p(y|X, θ) with respect to θ (e.g. θ = l)

$$\log p(\mathbf{y}|\mathbf{X}, \theta) = -\underbrace{\frac{1}{2}\mathbf{y}^{\top}\mathbf{K}^{-1}\mathbf{y}}_{=\mathbf{O}} \underbrace{-\frac{1}{2}\log|\mathbf{K}|}_{-\frac{n}{2}\log 2\pi}$$

- trades off data fit and complexity
- maximize log marginal likelihood of the data, p(y|X, θ) with respect to θ (e.g. θ = l)

$$\log p(\mathbf{y}|\mathbf{X}, \theta) = -\underbrace{\frac{1}{2}\mathbf{y}^{\top}\mathbf{K}^{-1}\mathbf{y}}_{\text{data fit}} \underbrace{-\frac{1}{2}\log|\mathbf{K}|}_{-\frac{1}{2}\log|\mathbf{K}|} - \frac{n}{2}\log 2\pi$$

- trades off data fit and complexity
- maximize log marginal likelihood of the data, p(y|X, θ) with respect to θ (e.g. θ = l)

$$\log p(\mathbf{y}|\mathbf{X}, \theta) = -\underbrace{\frac{1}{2}\mathbf{y}^{\top}\mathbf{K}^{-1}\mathbf{y}}_{\text{data fit}} \underbrace{-\frac{1}{2}\log|\mathbf{K}|}_{\text{complexity penalty}} - \frac{n}{2}\log 2\pi$$

Data fit and complexity

lower plot: Rasmussen & Williams. Gaussian Processes for Machine Learning.

Data fit and complexity

lower plot: Rasmussen & Williams. Gaussian Processes for Machine Learning.

Marginal likelihood

Maximum likelihood: $\log p(y|X, \ell, \tau) = -\frac{1}{2}y^{\top}K^{-1}y - \frac{1}{2}\log|K| - \frac{n}{2}\log 2\pi$

Here, likelihood has 2 local maxima (2 "good" parameter settings (τ, ℓ)).

Source: Rasmussen & Williams. Gaussian Processes for Machine Learning.

Marginal likelihood

Maximum likelihood: $\log p(y|X, \ell, \tau) = -\frac{1}{2}y^{\top}K^{-1}y - \frac{1}{2}\log|K| - \frac{n}{2}\log 2\pi$

Here, likelihood has 2 local maxima (2 "good" parameter settings (τ, ℓ)).

Source: Rasmussen & Williams. Gaussian Processes for Machine Learning.

Marginal likelihood

Maximum likelihood: $\log p(y|X, \ell, \tau) = -\frac{1}{2}y^{\top}K^{-1}y - \frac{1}{2}\log|K| - \frac{n}{2}\log 2\pi$

Here, likelihood has 2 local maxima (2 "good" parameter settings (τ, ℓ)).

Source: Rasmussen & Williams. Gaussian Processes for Machine Learning.

- Gaussian Processes: Model selection
- Climate networks
- Nonlinear relationships
- Dipole discovery

Long-range climate correlations

Long-range climate correlations

• Idea: build a graph G = (V, E) to represent relationships!

- Idea: build a graph G = (V, E) to represent relationships!
- Construction: based on e.g. sea surface temp. or pressure (hPa)

- Idea: build a graph G = (V, E) to represent relationships!
- Construction: based on e.g. sea surface temp. or pressure (hPa)
 - nodes v_i : spatial grid points (2664), each has a time series.

- Idea: build a graph G = (V, E) to represent relationships!
- Construction: based on e.g. sea surface temp. or pressure (hPa)
 - nodes v_i : spatial grid points (2664), each has a time series. $y'_{mt}(i)$: pressure in month m, year t at location i

- Idea: build a graph G = (V, E) to represent relationships!
- Construction: based on e.g. sea surface temp. or pressure (hPa)
 - nodes v_i : spatial grid points (2664), each has a time series. $y'_{mt}(i)$: pressure in month m, year t at location i
 - edge (v_i, v_j) if time series y(i), y(j) are sufficiently correlated: |r(y(i), y(j))| > threshold - $\sqrt{\alpha \alpha}$?

.

- Idea: build a graph G = (V, E) to represent relationships!
- Construction: based on e.g. sea surface temp. or pressure (hPa)
 - nodes v_i : spatial grid points (2664), each has a time series. $y'_{mt}(i)$: pressure in month m, year t at location i
 - edge (v_i, v_j) if time series y(i), y(j) are sufficiently correlated: |r(y(i), y(j))| > threshold
 - preprocessing: remove seasonal variation

$$y_{mt}(i) = rac{y'_{mt}(i) - ar{y'}_{m}(i)}{s(y'_{m}(i))}$$

- Idea: build a graph G = (V, E) to represent relationships!
- Construction: based on e.g. sea surface temp. or pressure (hPa)
 - nodes v_i : spatial grid points (2664), each has a time series. $y'_{mt}(i)$: pressure in month m, year t at location i
 - edge (v_i, v_j) if time series y(i), y(j) are sufficiently correlated: |r(y(i), y(j))| > threshold
 - preprocessing: remove seasonal variation

$$y_{mt}(i) = rac{y'_{mt}(i) - ar{y'}_{m}(i)}{s(y'_{m}(i))}$$

• **Network analysis**: degree distribution, clustering coefficient, centrality

Climate network analysis (Tsonis et al)

fraction of total global area to which a geographical region is connected ("degree")

degree distributions: extratropical (30-65°N/S) and tropical (20°N-20°S) region

Climate network analysis (Tsonis et al)

fraction of total global area to which a geographical region is connected ("degree")

Climate network analysis (Tsonis et al)

fraction of total global area to which a geographical region is connected ("degree")

Change of connectivity over time

- Gaussian Processes: Model selection
- Climate networks
- Nonlinear relationships
- Dipole discovery

Climate networks: Nonlinear relationships (Donges et al.)

• correlation \neq statistical dependence!

Climate networks: Nonlinear relationships (Donges et al.)

- correlation \neq statistical dependence!
- How could we capture nonlinear relations?
- correlation \neq statistical dependence!
- How could we capture nonlinear relations?
- alternative: mutual information $I(Y_1, Y_2) = H(Y_1) H(Y_1|Y_2)$

- correlation \neq statistical dependence!
- How could we capture nonlinear relations?
- alternative: mutual information $I(Y_1, Y_2) = H(Y_1) H(Y_1|Y_2)$
- zero only if Y_1, Y_2 are independent

- correlation \neq statistical dependence!
- How could we capture nonlinear relations?
- alternative: mutual information $I(Y_1, Y_2) = H(Y_1) H(Y_1|Y_2)$
- zero only if Y_1, Y_2 are independent
- edge between v_i, v_j if $I(Y_i, Y_j) \geq \tau$

$$H(Y) = \sum_{y \in \mathcal{Y}} p(y) \log \frac{1}{p(y)}$$

$$H(Y) = \sum_{y \in \mathcal{Y}} p(y) \log \frac{1}{p(y)} = -\sum_{y \in \mathcal{Y}} p(y) \log p(y)$$

$$H(Y) = \sum_{y \in \mathcal{Y}} p(y) \log \frac{1}{p(y)} = -\sum_{y \in \mathcal{Y}} p(y) \log p(y)$$

• if $p(y) = \frac{1}{m}$ for all $y \in \mathcal{Y}$: $H(Y) = -\sum_{y \in \mathcal{Y}} \frac{1}{m} \log \frac{1}{m}$
 $= -\log \frac{1}{m} = \log m$

$$H(Y) = \sum_{y \in \mathcal{Y}} p(y) \log \frac{1}{p(y)} = -\sum_{y \in \mathcal{Y}} p(y) \log p(y)$$

• if
$$p(y) = \frac{1}{m}$$
 for all $y \in \mathcal{Y}$: $H(Y) = \log m$.

• discrete random variable Y, values in $\mathcal{Y} = \{1, \dots, m\}$:

$$H(Y) = \sum_{y \in \mathcal{Y}} p(y) \log \frac{1}{p(y)} = -\sum_{y \in \mathcal{Y}} p(y) \log p(y)$$

• if $p(y) = \frac{1}{m}$ for all $y \in \mathcal{Y}$: $H(Y) = \log m$. • if p(1) = 1 and p(y) = 0 for all $y \neq 1$: $H(Y) \neq 0 + 0 = 0$

$$H(Y) = \sum_{y \in \mathcal{Y}} p(y) \log \frac{1}{p(y)} = -\sum_{y \in \mathcal{Y}} p(y) \log p(y)$$

$$H(Y) = \sum_{y \in \mathcal{Y}} p(y) \log \frac{1}{p(y)} = -\sum_{y \in \mathcal{Y}} p(y) \log p(y)$$

• if
$$p(y) = \frac{1}{m}$$
 for all $y \in \mathcal{Y}$: $H(Y) = \log m$.

• if
$$p(1) = 1$$
 and $p(y) = 0$ for all $y \neq 1$: $H(Y) = 0$.

• in general:
$$0 \le H(Y) \le \log m$$

 $H(Y)$
 0
 1
 1
 $P(Y=1)$

• discrete random variable Y, values in $\mathcal{Y} = \{1, \dots, m\}$:

$$H(Y) = \sum_{y \in \mathcal{Y}} p(y) \log \frac{1}{p(y)} = -\sum_{y \in \mathcal{Y}} p(y) \log p(y)$$

• if
$$p(y) = \frac{1}{m}$$
 for all $y \in \mathcal{Y}$: $H(Y) = \log m$.

• if
$$p(1) = 1$$
 and $p(y) = 0$ for all $y \neq 1$: $H(Y) = 0$.

• in general:
$$0 \le H(Y) \le \log m$$

• Joint entropy: 2 random variables Y, Z:

$$H(Y,Z) = -\sum_{\substack{y \in \mathcal{Y}, \\ z \in \mathcal{Z}}} p(y,z) \log p(y,z)$$

• discrete random variable Y, values in $\mathcal{Y} = \{1, \dots, m\}$:

$$H(Y) = \sum_{y \in \mathcal{Y}} p(y) \log \frac{1}{p(y)} = -\sum_{y \in \mathcal{Y}} p(y) \log p(y)$$

• if
$$p(y) = \frac{1}{m}$$
 for all $y \in \mathcal{Y}$: $H(Y) = \log m$.

• if
$$p(1) = 1$$
 and $p(y) = 0$ for all $y \neq 1$: $H(Y) = 0$.

• in general:
$$0 \le H(Y) \le \log m$$

• Joint entropy: 2 random variables Y, Z:

$$H(Y,Z) = -\sum_{\substack{y \in \mathcal{Y}, \\ z \in \mathcal{Z}}} p(y,z) \log p(y,z) \leq H(Y) + H(Z)$$

• discrete random variable Y, values in $\mathcal{Y} = \{1, \dots, m\}$:

$$H(Y) = \sum_{y \in \mathcal{Y}} p(y) \log \frac{1}{p(y)} = -\sum_{y \in \mathcal{Y}} p(y) \log p(y)$$

• if
$$p(y) = \frac{1}{m}$$
 for all $y \in \mathcal{Y}$: $H(Y) = \log m$.

• if
$$p(1) = 1$$
 and $p(y) = 0$ for all $y \neq 1$: $H(Y) = 0$.

• in general:
$$0 \le H(Y) \le \log m$$

• Joint entropy: 2 random variables Y, Z:

$$H(Y,Z) = -\sum_{\substack{y \in \mathcal{Y}, \\ z \in \mathcal{Z}}} p(y,z) \log p(y,z) \leq H(Y) + H(Z)$$

• Conditional entropy:

$$H(Y|Z) = H(Y,Z) - H(Z)$$

$$I(Y; Z) = H(Y) - H(Y|Z) = H(Z) - H(Z|Y)$$

$$I(Y; Z) = H(Y) - H(Y|Z) = H(Z) - H(Z|Y)$$

• also captures *nonlinear* relationships
$$I(Y; Z) = 0$$
 if and only if Y, Z are independent.

$$I(Y; Z) = H(Y) - H(Y|Z) = H(Z) - H(Z|Y)$$

- also captures *nonlinear* relationships I(Y; Z) = 0 if and only if Y, Z are independent.
- $I(Z; Y) = I(Y; Z) \ge 0$ because "information never hurts": $H(Y) \ge H(Y|Z)$

$$I(Y; Z) = H(Y) - H(Y|Z) = H(Z) - H(Z|Y)$$

- also captures *nonlinear* relationships I(Y; Z) = 0 if and only if Y, Z are independent.
- $I(Z; Y) = I(Y; Z) \ge 0$ because "information never hurts": $H(Y) \ge H(Y|Z)$
- Computation:

$$I(Y;Z) = H(Y) - H(Y|Z) = H(Z) - H(Z|Y) = H(Y) + H(Z) - H(Y,Z)$$

- also captures *nonlinear* relationships I(Y; Z) = 0 if and only if Y, Z are independent.
- $I(Z; Y) = I(Y; Z) \ge 0$ because "information never hurts": $H(Y) \ge H(Y|Z)$
- Computation:

$$I(Y;Z) = H(Y) - H(Y|Z) = H(Z) - H(Z|Y) = H(Y) + H(Z) - H(Y,Z)$$

- also captures *nonlinear* relationships I(Y; Z) = 0 if and only if Y, Z are independent.
- $I(Z; Y) = I(Y; Z) \ge 0$ because "information never hurts": $H(Y) \ge H(Y|Z)$
- Computation:

$$I(Y; Z) = \sum_{y,z} p(y,z) \log \frac{p(y,z)}{p(y)p(z)} \quad \text{indervadant}$$

- correlation \neq statistical dependence!
- alternative: mutual information $I(Y_1, Y_2) = H(Y_1) H(Y_1|Y_2)$
- edge between v_i, v_j if $I(Y_i, Y_j) \geq \tau$

- correlation \neq statistical dependence!
- alternative: mutual information $I(Y_1, Y_2) = H(Y_1) H(Y_1|Y_2)$
- edge between v_i, v_j if $I(Y_i, Y_j) \geq \tau$

Betw. centrally (v)= Z fraction of shortest U, W Grobes between Units

- correlation \neq statistical dependence!
- alternative: mutual information $I(Y_1, Y_2) = H(Y_1) H(Y_1|Y_2)$
- edge between v_i, v_j if $I(Y_i, Y_j) \geq \tau$

Betweenness centrality "backbone" follows ocean surface currents!

• Mutual information vs correlation: nonlinear, but harder to estimate

- Mutual information vs correlation: nonlinear, but harder to estimate
- Check effect of your modeling choices (e.g., threshold for edges)

- Mutual information vs correlation: nonlinear, but harder to estimate
- Check effect of your modeling choices (e.g., threshold for edges)
- Significance testing

- Mutual information vs correlation: nonlinear, but harder to estimate
- Check effect of your modeling choices (e.g., threshold for edges)
- Significance testing
 - null hypothesis: network is a random graph with given degree sequence

• . . .

- Mutual information vs correlation: nonlinear, but harder to estimate
- Check effect of your modeling choices (e.g., threshold for edges)
- Significance testing
 - null hypothesis: network is a random graph with given degree sequence
 - scramble time series
 - ...

- Gaussian Processes: Model selection
- Climate networks
- Nonlinear relationships
- Dipole discovery

Dipoles, Oscillations, Teleconnections

Dipoles, Oscillations, Teleconnections

Southern Oscillation 1 DEC 97 08 JAN 00 Tahiti Darwin, Australia Monthy mean subtracted anomaly (hPa) 3 2 -1 -2 -3 Figure 16.1. SST anomalies (°C) observed under El Niño conditions (December, 1997; left) 1993 98 Years 94 95 96 97 99 00 01 02 03 and La Niña conditions (January, 2000; right). Reprinted courtesy of NASA/JPL-Caltech.

Dipoles, Oscillations, Teleconnections

- global effects on temperature, rain
- El Niño: warm water in east Pacific, floods in Peru, dry in Australia/Indonesia
- La Niña: opposite
- Impact on economy, health, world events

Image sources: Kaper, H. Engler. Mathematics & Climate. Kawale et al, SDM 2011.

Dipole discovery (Kawale et al.)

• Can we discover dipoles automatically?

Dipole discovery (Kawale et al.)

- Can we discover dipoles automatically?
- First: explore pairwise correlations

Dipole discovery (Kawale et al.)

- Can we discover dipoles automatically?
- First: explore pairwise correlations

Dipole discovery (Kawale et al.)

- Can we discover dipoles automatically?
- First: explore pairwise correlations

• treat positive & negative correlations differently

Dipole discovery (Kawale et al.)

- Can we discover dipoles automatically?
- First: explore pairwise correlations

• treat positive & negative correlations differently

Dipole discovery (Kawale et al.)

- Can we discover dipoles automatically?
- First: explore pairwise correlations

- treat positive & negative correlations differently
- reduction of search space: consistency in space

Given: time series of pressure data (monthly mean) for 1948-2011.

• Preprocessing: smooth each time series by averaging over 3-month-windows; remove seasonality (as for climate networks) Given: time series of pressure data (monthly mean) for 1948-2011.

- Preprocessing: smooth each time series by averaging over 3-month-windows; remove seasonality (as for climate networks)
- Divide data into 9 periods of 20 years each, shifted by 5 years

Given: time series of pressure data (monthly mean) for 1948-2011.

- Preprocessing: smooth each time series by averaging over 3-month-windows; remove seasonality (as for climate networks)
- Divide data into 9 periods of 20 years each, shifted by 5 years
- Build a network via correlations, but different thresholds for positive (0.85) and negative (0.4) correlations

Criteria for dipole:

Criteria for dipole:

• two coherent regions in space

Criteria for dipole:

- two coherent regions in space
- negatively correlated

Criteria for dipole:

- two coherent regions in space
- negatively correlated
- far apart (long-range)

Criteria for dipole:

- two coherent regions in space
- negatively correlated
- far apart (long-range)

Dipole search:

• Pick strongest negative edge (a, b).

Criteria for dipole:

- two coherent regions in space
- negatively correlated
- far apart (long-range)

Dipole search:

• Pick strongest negative edge (a, b).

Pick k most positive local neighbors of a and b each (gives neighborhoods P_a, P_b)

Criteria for dipole:

- two coherent regions in space
- negatively correlated
- far apart (long-range)

- Pick strongest negative edge (a, b).
- Pick k most positive local neighbors of a and b each (gives neighborhoods P_a, P_b)
- Pick k farthest negative neighbors of a and b each (gives neighborhoods N_a, N_b)

Criteria for dipole:

- two coherent regions in space
- negatively correlated
- far apart (long-range)

- Pick strongest negative edge (a, b).
- Pick k most positive local neighbors of a and b each (gives neighborhoods P_a, P_b)
- Pick k farthest negative neighbors of a and b each (gives neighborhoods N_a, N_b)
- **(**) Use $P_a \cap N_b$ and $P_b \cap N_a$ as dipole pair, if large enough.

Automatic Dipole Discovery: Results

Automatic Dipole Discovery: Results

Different phases of the Southern Oscillation (SOI), from pressure data

- Modeling short-range interactions: Gaussian Processes
 - Interpretation, prediction, experimental design
- Modeling & studying long-range interactions: network analysis (climate networks) on spatial grid
 - Edges via correlation or mutual information
 - Apply network analysis and time series tools from previous modules

- Entropy, mutual information: T.M. Cover, J.A. Thomas. Elements of Information Theory. Chapter 2.1–2.4.
- Climate networks: A.A. Tsonis, K. L. Swanson, and P. J. Roebber. What do networks have to do with climate?. Bulletin of the American Meteorological Society 87.5 (2006): 585–595.
- **Dipole Discovery:** J. Kawale, M. Steinbach, V. Kumar. *Discovering dynamic dipoles in climate data*. In SDM, 2011.

- C. E. Rasmussen & C. K. I. Williams. Gaussian Processes for Machine Learning, 2006.
- A.A. Tsonis, K. L. Swanson, and P. J. Roebber. *What do networks have to do with climate?*. Bulletin of the American Meteorological Society 87.5 (2006): 585–595.
- J. F. Donges, Y. Zou, N. Marwan, J. Kurths. The backbone of the climate network. EPL (Europhysics Letters), 87(4), 48007, 2009
- H. Von Storch and F. Zwiers. *Statistical analysis in climate research*. Cambridge Univ Pr, 2002
- J. Kawale, M. Steinbach, V. Kumar. *Discovering dynamic dipoles in climate data*. In SDM, 2011.