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Overview

Gaussian Processes: Model selection

Climate networks

Degree distribution and connectivity

Nonlinear relationships

Dipole discovery
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Which kernel function?
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I could fit several models to my data – GPs with different kernels, kernels
with different parameters (bandwidth, noise variance τ2 etc) – which one
is the most suitable?
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Fitting covariance functions

many covariance functions have parameters θ, e.g. length scale `

1 estimate generalization error: cross validation
leave-one-out or k-fold

2 maximize log marginal likelihood of the data, p(y|X, θ) with respect
to θ (e.g. θ = `)
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1. Leave-one-out cross validation

Given data (x1, y1), . . . , (xN , yN):

For each i , remove (xi , yi ) from the data and fit a GP to the rest
(X−i , y−i ).

Predict µ∗|−i and σ∗|−i . These depend on θ!

What is the validation “loss”?

compute predictive probability

log p(yi |X, y−i , θ) = −1

2
log σ2

∗|−i −
(yi − µ∗|−i )2

2σ2
∗|−i

− 1

2
log 2π

choose parameters θ (e.g., bandwidth) that maximize log predictive
probability

N∑

i=1

log p(yi |X, y−i , θ).
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2. Maximize log marginal lielihood

trades off data fit and complexity

maximize log marginal likelihood of the data, p(y|X, θ) with respect
to θ (e.g. θ = `)

log p(y|X, θ) = − 1
2y
>K−1y︸ ︷︷ ︸

data fit

− 1
2 log |K|︸ ︷︷ ︸

complexity penalty

− n
2 log 2π
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Data fit and complexity
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lower plot: Rasmussen & Williams. Gaussian Processes for Machine Learning.
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Marginal likelihood

Maximum likelihood: log p(y |X , `, τ) = −1
2y
>K−1y − 1

2 log |K | − n
2 log 2π

Here, likelihood has 2 local maxima (2 “good” parameter settings (τ, `)).
Source: Rasmussen & Williams. Gaussian Processes for Machine Learning.
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Long-range climate correlations
382 17: Specific Statistical Concepts

q
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2

Figure 17.9: The associated correlation patterns
!̂VK j of tropical velocity potential anomalies
derived from MJO indices !z. Compare with the
composites shown in Figure 17.7. From [389].

Thus the patterns in Figure 17.9 provide the same
information as the composites in Figure 17.7.
The signal has a zonal wavenumber 1 structure
that propagates eastward around the world. The
oscillation is most energetic when the ‘wave
crest’ (or ‘valley’) is positioned over the Maritime
Continent.
A significant conclusion from the discussions

here and in [17.3.3] is that both techniques provide
useful information. The associated correlation
pattern technique is superior in the MJO case
since fewer parameters must be estimated from the
available data (specifically, two patterns instead of
eight patterns).

17.4 Teleconnections

17.4.1 Example: 500 hPa Geopotential Height.
A classical method for exploring the spatial struc-
ture of climate variability is to compute cross-
correlations between a variable at a fixed location
and the same or another variable elsewhere. The
resulting map of cross-correlation coefficients is
called a teleconnection pattern. When the same
variable is considered at two nearby locations, the
correlation will tend to be large and positive (com-
pare with the argument in [1.2.2]). Sometimes
variables at two well-separated locations are also
highly—often negatively—correlated.15
We demonstrate with DJF monthly mean

500 hPa geopotential height from an ensemble
of six 10-year GCM simulations. The SST
and sea-ice extent were specified from 1979–
88 observations so the simulated atmosphere
experienced realistic lower boundary variations
(see [444]).

15The most prominent example of such a teleconnection is
the Southern Oscillation discussed in [1.2.2].

Figure 17.10: Top: The correlation between
DJF monthly mean 500 hPa geopotential height
simulated by a GCM at (50◦N, 90◦W) and all
other points in the model’s grid.
Bottom: As top, except the reference point is
located at (2◦N, 90◦W).

The upper panel in Figure 17.10 shows
teleconnections for a fixed point located over Lake
Superior. The main feature is an arched wave
train that extends from the eastern Pacific, across
North America, and into the western Atlantic.
The decorrelation length scale, which is of the
order of 3000 km, compared well with that of the
observations (see, for example, Thiébaux [361],
Fraedrich et al. [127], and Figure 2.8). This length
scale is typical of that of teleconnection patterns
that can be computed for other locations in the
midlatitudes of both hemispheres.
In contrast, the lower panel of Figure 17.10

displays the teleconnection map that is obtained
for a reference point off the coast of Peru at
approximately 2◦N, 90◦W. Here we see that the
entire simulated tropical 500 hPa geopotential
height field varies more or less in unison on the
monthly time scale. Much the same pattern can be
obtained for virtually any reference point near the
equator.16 Also note the model’s relatively weak
rendition of the Pacific/North American pattern
(cf. [13.5.5] and Figure 13.7).
In the following we will present an approach

that is used to screen large data sets for such
teleconnections systematically. It was pioneered
16Tropical geopotential height variations are small, and

primarily reflect variations in the temperature of the lower
tropical troposphere.
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Climate networks

Idea: build a graph G = (V ,E ) to represent relationships!

Construction: based on e.g. sea surface temp. or pressure (hPa)

nodes vi : spatial grid points (2664), each has a time series.

y ′
mt(i) : pressure in month m, year t at location i

edge (vi , vj) if time series y(i), y(j) are sufficiently correlated:
|r(y(i), y(j))| > threshold

preprocessing: remove seasonal variation

ymt(i) =
y ′
mt(i)− ȳ ′

m(i)

s(y ′
m(i))

Network analysis: degree distribution, clustering coefficient,
centrality
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y ′
mt(i) : pressure in month m, year t at location i

edge (vi , vj) if time series y(i), y(j) are sufficiently correlated:
|r(y(i), y(j))| > threshold

preprocessing: remove seasonal variation

ymt(i) =
y ′
mt(i)− ȳ ′

m(i)

s(y ′
m(i))

Network analysis: degree distribution, clustering coefficient,
centrality

Stefanie Jegelka (and Caroline Uhler) 11 / 28



Climate network analysis (Tsonis et al)

arbitrary. The effect of a different correlation thresh-
old is discussed in Tsonis and Roebber (2003). In any 
case, one may in fact consider all pairs as being con-
nected and study the so-called weighted properties 
of the network, where each link is assigned a weight 
proportional to its corresponding correlation coef-
ficient (Onnela et al. 2003, 2004). For the scope of 
this paper, however, we will keep things simple and 
consider that a pair is connected if the correlation 
coefficient is above a threshold.

Once we have decided what constitutes a link, we 
are ready to look at the architecture of this network 
and how it relates to dynamics. Figure 6 provides first 
insight into this question. It shows the area-weighted 
number of total links (connections) at each geographic 
location. More accurately, it shows the fraction of the 
total global area to which a point is connected. This 
is a more appropriate way to show the architecture of 
the network because it is a continuous network defined 
on a sphere, rather than a discrete network on a two-
dimensional grid. Thus, if a node i is connected to 
N other nodes at λN latitudes, then its area-weighted 
connectivity C~i is defined as

  (1)

where ΔA is the grid area at the equator and φ is the 
longitude. Once we have the information displayed 

in Fig. 6 we can estimate C and L. According to the 
definition of connectivity [Eq. (1)], in order to find 
the clustering coefficient of node i, Ci, we consider a 
circular area on the sphere centered on i that is equal 
to C~i. Then, Ci is the fraction of this circular area that 
is connected (for a fully connected area, i.e., all pairs 
of nodes are connected, Ci = 1 for all i). The average 
Ci over all nodes provides the clustering coefficient 
of the network C. Note also that according to the 
definition of C~, the average C~i over all nodes gives 
the clustering coefficient Crandom. Concerning the 
estimation of L, rather than finding the number of 
connections in the shortest path between two points, 
we estimate the distance of this path on the sphere. 
For this network we find that L @ 9,600 km and C = 
0.56. For a random network with the same specifica-
tions (number of nodes, and average links per node), 
it is estimated that Lrandom @ 7,500 km and Crandom = 
0.19. These values indicate that indeed L≥Lrandom and 
C>Crandom (by a factor of 3), which will make this 
global network close to a small-world network. There 
is, however, more to this global network than what 
these values suggest.

Returning to Fig. 6, we observe that it displays 
two very interesting features. In the Tropics it ap-
pears that all nodes posses more or less the same 
number of connections, which is a characteristic 
of fully connected networks. In the extratropics it 

appears that certain nodes 
posses more connections 
than the rest, which is a 
characteristic of scale-free 
networks. In the Northern 
Hemisphere we clearly see 
the presence of regions 
where such supernodes 
ex ist (in China, North 
America, and the northeast 
Pacific Ocean). Similarly, 
severa l supernodes are 
visible in the Southern 
Hemisphere. These differ-
ences between the Trop-
ics and extratropics are 
clearly delineated in the 
corresponding degree dis-
tributions. Figure 7 shows, 
on a double-logarithmic 
plot, the distribution of 
nodes according to how 
many links they possess 
(i.e., pk against k). Given 
the definition of a link in 

FIG. 6. Total number of links (connections) at each geographic location. The 
uniformity observed in the Tropics indicates that each node possesses the 
same number of connections. This is not the case in the extratropics where 
certain nodes possess more links than the rest.
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fraction of total global area to which a geographical region is connected (“degree”)

our case, this figure indicates the fraction of the 
total area covered as a function of the connectivity 
C~. More specifically, Fig. 7a shows the distribution 
of nodes in the extratropical region of 30°–65°N 
and 30°–65°S, and Fig. 7b shows the corresponding 
distribution of nodes in the Tropics (20°N–20°S). 
The region from 20° to 30°N and from 20° to 30°S 
is a transition between the two regimes and was 
left out for a better delineation of the properties in 
the Tropics and extratropics. Figure 7a appears to 
exhibit a scaling regime similar to those observed in 
scale-free networks. In fact, the slope of this graph 
is around –2.0, in agreement with other scale-free 
networks (Barabasi and Albert 1999). In Fig. 7b 
no such regime is identifiable. The distribution is 
basically a narrow peak at about C~ = 0.5, indicating 
that most points possess the same large number 
of connections, a characteristic of regular, almost 
fully connected networks. Deviations from the 
power law (manifested as a peak at about C~ = 0.4 
in Fig. 7a) and uniformity (the four points below 
C~ = 0.1 in Fig. 7b) are due to the fact that the two 
subnetworks are interwoven; a node in one subnet-
work may be connected to a node or nodes in the 
other subnetwork. Note that very similar results are 
obtained if, instead of the 30°–65°N and 30°–65°S 
belts, the whole extratropical area (35°N–90° and 
35°S–90°) is considered. It thus appears that the 
overall network is a “fusion” of a fully connected 
tropical network and a scale-free extratropical net-
work. As is the case with all scale-free networks, 
the extratropical subnetwork is also a small-world 
network. Indeed, we find that for points in the ex-
tratropics, the clustering coefficient is much greater 
than that of a corresponding random network (by a 
factor of 9). The collective behavior of the individual 
dynamical systems in the complete network is not 
described by a single type, but it self-organizes into 
two coupled subnetworks—one regular, almost fully 
connected network, operating in the Tropics, and 
one scale-free/small-world network, operating in 
the higher latitudes. The extratropics are considered 
as one subsystem, even though they are physically 
separated. Whether or not we consider them as one 
or two subsystems does not modify the physical 
interpretation, which is that the equatorial network 
acts as an agent that connects the two hemispheres, 
thus allowing information to f low between them. 
This interpretation is consistent with the various 
suggested mechanisms for interhemispheric tele-
connections (Tomas and Webster 1994; Love 1985; 
Compo et al. 1999; Meehl et al. 1996; Carrera 2001), 
with the notion of subsystems in climate proposed in 

the late 1980s (Tsonis and Elsner 1989; Lorenz 1991), 
and with recent studies on synchronized chaos in 
the climate system (Duane et al. 1999).

An interesting observation in Fig. 6 is that super-
nodes may be associated with major teleconnection 
patterns. For example, the supernodes in North 
America and the northeast Pacific Ocean coincide 
with the well-known Pacific–North America (PNA) 
pattern (Wallace and Gutzler 1981). In the Southern 
Hemisphere we also see supernodes over the south-
ern tip of South America, Antarctica, and the south 
Indian Ocean that are consistent with some of the 
features of the Pacific–South America (PSA) pattern 
(Mo and Higgins 1998). Interestingly, no such super-
nodes are evident where the other major pattern, the 
North Atlantic Oscillation (NAO; Thompson and 
Wallace 1998; Pozo-Vazquez et al. 2001: Huang et al. 
1998), is found. This does not indicate that NAO is not 

FIG. 7. Degree distribution of (a) extratropical (30º–
65ºN, 30º–65ºS) and (b) tropical (20ºN–20ºS) grid 
points.

591MAY 2006AMERICAN METEOROLOGICAL SOCIETY |

our case, this figure indicates the fraction of the 
total area covered as a function of the connectivity 
C~. More specifically, Fig. 7a shows the distribution 
of nodes in the extratropical region of 30°–65°N 
and 30°–65°S, and Fig. 7b shows the corresponding 
distribution of nodes in the Tropics (20°N–20°S). 
The region from 20° to 30°N and from 20° to 30°S 
is a transition between the two regimes and was 
left out for a better delineation of the properties in 
the Tropics and extratropics. Figure 7a appears to 
exhibit a scaling regime similar to those observed in 
scale-free networks. In fact, the slope of this graph 
is around –2.0, in agreement with other scale-free 
networks (Barabasi and Albert 1999). In Fig. 7b 
no such regime is identifiable. The distribution is 
basically a narrow peak at about C~ = 0.5, indicating 
that most points possess the same large number 
of connections, a characteristic of regular, almost 
fully connected networks. Deviations from the 
power law (manifested as a peak at about C~ = 0.4 
in Fig. 7a) and uniformity (the four points below 
C~ = 0.1 in Fig. 7b) are due to the fact that the two 
subnetworks are interwoven; a node in one subnet-
work may be connected to a node or nodes in the 
other subnetwork. Note that very similar results are 
obtained if, instead of the 30°–65°N and 30°–65°S 
belts, the whole extratropical area (35°N–90° and 
35°S–90°) is considered. It thus appears that the 
overall network is a “fusion” of a fully connected 
tropical network and a scale-free extratropical net-
work. As is the case with all scale-free networks, 
the extratropical subnetwork is also a small-world 
network. Indeed, we find that for points in the ex-
tratropics, the clustering coefficient is much greater 
than that of a corresponding random network (by a 
factor of 9). The collective behavior of the individual 
dynamical systems in the complete network is not 
described by a single type, but it self-organizes into 
two coupled subnetworks—one regular, almost fully 
connected network, operating in the Tropics, and 
one scale-free/small-world network, operating in 
the higher latitudes. The extratropics are considered 
as one subsystem, even though they are physically 
separated. Whether or not we consider them as one 
or two subsystems does not modify the physical 
interpretation, which is that the equatorial network 
acts as an agent that connects the two hemispheres, 
thus allowing information to f low between them. 
This interpretation is consistent with the various 
suggested mechanisms for interhemispheric tele-
connections (Tomas and Webster 1994; Love 1985; 
Compo et al. 1999; Meehl et al. 1996; Carrera 2001), 
with the notion of subsystems in climate proposed in 

the late 1980s (Tsonis and Elsner 1989; Lorenz 1991), 
and with recent studies on synchronized chaos in 
the climate system (Duane et al. 1999).

An interesting observation in Fig. 6 is that super-
nodes may be associated with major teleconnection 
patterns. For example, the supernodes in North 
America and the northeast Pacific Ocean coincide 
with the well-known Pacific–North America (PNA) 
pattern (Wallace and Gutzler 1981). In the Southern 
Hemisphere we also see supernodes over the south-
ern tip of South America, Antarctica, and the south 
Indian Ocean that are consistent with some of the 
features of the Pacific–South America (PSA) pattern 
(Mo and Higgins 1998). Interestingly, no such super-
nodes are evident where the other major pattern, the 
North Atlantic Oscillation (NAO; Thompson and 
Wallace 1998; Pozo-Vazquez et al. 2001: Huang et al. 
1998), is found. This does not indicate that NAO is not 

FIG. 7. Degree distribution of (a) extratropical (30º–
65ºN, 30º–65ºS) and (b) tropical (20ºN–20ºS) grid 
points.
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Climate network analysis (Tsonis et al)

arbitrary. The effect of a different correlation thresh-
old is discussed in Tsonis and Roebber (2003). In any 
case, one may in fact consider all pairs as being con-
nected and study the so-called weighted properties 
of the network, where each link is assigned a weight 
proportional to its corresponding correlation coef-
ficient (Onnela et al. 2003, 2004). For the scope of 
this paper, however, we will keep things simple and 
consider that a pair is connected if the correlation 
coefficient is above a threshold.

Once we have decided what constitutes a link, we 
are ready to look at the architecture of this network 
and how it relates to dynamics. Figure 6 provides first 
insight into this question. It shows the area-weighted 
number of total links (connections) at each geographic 
location. More accurately, it shows the fraction of the 
total global area to which a point is connected. This 
is a more appropriate way to show the architecture of 
the network because it is a continuous network defined 
on a sphere, rather than a discrete network on a two-
dimensional grid. Thus, if a node i is connected to 
N other nodes at λN latitudes, then its area-weighted 
connectivity C~i is defined as

  (1)

where ΔA is the grid area at the equator and φ is the 
longitude. Once we have the information displayed 

in Fig. 6 we can estimate C and L. According to the 
definition of connectivity [Eq. (1)], in order to find 
the clustering coefficient of node i, Ci, we consider a 
circular area on the sphere centered on i that is equal 
to C~i. Then, Ci is the fraction of this circular area that 
is connected (for a fully connected area, i.e., all pairs 
of nodes are connected, Ci = 1 for all i). The average 
Ci over all nodes provides the clustering coefficient 
of the network C. Note also that according to the 
definition of C~, the average C~i over all nodes gives 
the clustering coefficient Crandom. Concerning the 
estimation of L, rather than finding the number of 
connections in the shortest path between two points, 
we estimate the distance of this path on the sphere. 
For this network we find that L @ 9,600 km and C = 
0.56. For a random network with the same specifica-
tions (number of nodes, and average links per node), 
it is estimated that Lrandom @ 7,500 km and Crandom = 
0.19. These values indicate that indeed L≥Lrandom and 
C>Crandom (by a factor of 3), which will make this 
global network close to a small-world network. There 
is, however, more to this global network than what 
these values suggest.

Returning to Fig. 6, we observe that it displays 
two very interesting features. In the Tropics it ap-
pears that all nodes posses more or less the same 
number of connections, which is a characteristic 
of fully connected networks. In the extratropics it 

appears that certain nodes 
posses more connections 
than the rest, which is a 
characteristic of scale-free 
networks. In the Northern 
Hemisphere we clearly see 
the presence of regions 
where such supernodes 
ex ist (in China, North 
America, and the northeast 
Pacific Ocean). Similarly, 
severa l supernodes are 
visible in the Southern 
Hemisphere. These differ-
ences between the Trop-
ics and extratropics are 
clearly delineated in the 
corresponding degree dis-
tributions. Figure 7 shows, 
on a double-logarithmic 
plot, the distribution of 
nodes according to how 
many links they possess 
(i.e., pk against k). Given 
the definition of a link in 

FIG. 6. Total number of links (connections) at each geographic location. The 
uniformity observed in the Tropics indicates that each node possesses the 
same number of connections. This is not the case in the extratropics where 
certain nodes possess more links than the rest.
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fraction of total global area to which a geographical region is connected (“degree”)
our case, this figure indicates the fraction of the 
total area covered as a function of the connectivity 
C~. More specifically, Fig. 7a shows the distribution 
of nodes in the extratropical region of 30°–65°N 
and 30°–65°S, and Fig. 7b shows the corresponding 
distribution of nodes in the Tropics (20°N–20°S). 
The region from 20° to 30°N and from 20° to 30°S 
is a transition between the two regimes and was 
left out for a better delineation of the properties in 
the Tropics and extratropics. Figure 7a appears to 
exhibit a scaling regime similar to those observed in 
scale-free networks. In fact, the slope of this graph 
is around –2.0, in agreement with other scale-free 
networks (Barabasi and Albert 1999). In Fig. 7b 
no such regime is identifiable. The distribution is 
basically a narrow peak at about C~ = 0.5, indicating 
that most points possess the same large number 
of connections, a characteristic of regular, almost 
fully connected networks. Deviations from the 
power law (manifested as a peak at about C~ = 0.4 
in Fig. 7a) and uniformity (the four points below 
C~ = 0.1 in Fig. 7b) are due to the fact that the two 
subnetworks are interwoven; a node in one subnet-
work may be connected to a node or nodes in the 
other subnetwork. Note that very similar results are 
obtained if, instead of the 30°–65°N and 30°–65°S 
belts, the whole extratropical area (35°N–90° and 
35°S–90°) is considered. It thus appears that the 
overall network is a “fusion” of a fully connected 
tropical network and a scale-free extratropical net-
work. As is the case with all scale-free networks, 
the extratropical subnetwork is also a small-world 
network. Indeed, we find that for points in the ex-
tratropics, the clustering coefficient is much greater 
than that of a corresponding random network (by a 
factor of 9). The collective behavior of the individual 
dynamical systems in the complete network is not 
described by a single type, but it self-organizes into 
two coupled subnetworks—one regular, almost fully 
connected network, operating in the Tropics, and 
one scale-free/small-world network, operating in 
the higher latitudes. The extratropics are considered 
as one subsystem, even though they are physically 
separated. Whether or not we consider them as one 
or two subsystems does not modify the physical 
interpretation, which is that the equatorial network 
acts as an agent that connects the two hemispheres, 
thus allowing information to f low between them. 
This interpretation is consistent with the various 
suggested mechanisms for interhemispheric tele-
connections (Tomas and Webster 1994; Love 1985; 
Compo et al. 1999; Meehl et al. 1996; Carrera 2001), 
with the notion of subsystems in climate proposed in 

the late 1980s (Tsonis and Elsner 1989; Lorenz 1991), 
and with recent studies on synchronized chaos in 
the climate system (Duane et al. 1999).

An interesting observation in Fig. 6 is that super-
nodes may be associated with major teleconnection 
patterns. For example, the supernodes in North 
America and the northeast Pacific Ocean coincide 
with the well-known Pacific–North America (PNA) 
pattern (Wallace and Gutzler 1981). In the Southern 
Hemisphere we also see supernodes over the south-
ern tip of South America, Antarctica, and the south 
Indian Ocean that are consistent with some of the 
features of the Pacific–South America (PSA) pattern 
(Mo and Higgins 1998). Interestingly, no such super-
nodes are evident where the other major pattern, the 
North Atlantic Oscillation (NAO; Thompson and 
Wallace 1998; Pozo-Vazquez et al. 2001: Huang et al. 
1998), is found. This does not indicate that NAO is not 

FIG. 7. Degree distribution of (a) extratropical (30º–
65ºN, 30º–65ºS) and (b) tropical (20ºN–20ºS) grid 
points.
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our case, this figure indicates the fraction of the 
total area covered as a function of the connectivity 
C~. More specifically, Fig. 7a shows the distribution 
of nodes in the extratropical region of 30°–65°N 
and 30°–65°S, and Fig. 7b shows the corresponding 
distribution of nodes in the Tropics (20°N–20°S). 
The region from 20° to 30°N and from 20° to 30°S 
is a transition between the two regimes and was 
left out for a better delineation of the properties in 
the Tropics and extratropics. Figure 7a appears to 
exhibit a scaling regime similar to those observed in 
scale-free networks. In fact, the slope of this graph 
is around –2.0, in agreement with other scale-free 
networks (Barabasi and Albert 1999). In Fig. 7b 
no such regime is identifiable. The distribution is 
basically a narrow peak at about C~ = 0.5, indicating 
that most points possess the same large number 
of connections, a characteristic of regular, almost 
fully connected networks. Deviations from the 
power law (manifested as a peak at about C~ = 0.4 
in Fig. 7a) and uniformity (the four points below 
C~ = 0.1 in Fig. 7b) are due to the fact that the two 
subnetworks are interwoven; a node in one subnet-
work may be connected to a node or nodes in the 
other subnetwork. Note that very similar results are 
obtained if, instead of the 30°–65°N and 30°–65°S 
belts, the whole extratropical area (35°N–90° and 
35°S–90°) is considered. It thus appears that the 
overall network is a “fusion” of a fully connected 
tropical network and a scale-free extratropical net-
work. As is the case with all scale-free networks, 
the extratropical subnetwork is also a small-world 
network. Indeed, we find that for points in the ex-
tratropics, the clustering coefficient is much greater 
than that of a corresponding random network (by a 
factor of 9). The collective behavior of the individual 
dynamical systems in the complete network is not 
described by a single type, but it self-organizes into 
two coupled subnetworks—one regular, almost fully 
connected network, operating in the Tropics, and 
one scale-free/small-world network, operating in 
the higher latitudes. The extratropics are considered 
as one subsystem, even though they are physically 
separated. Whether or not we consider them as one 
or two subsystems does not modify the physical 
interpretation, which is that the equatorial network 
acts as an agent that connects the two hemispheres, 
thus allowing information to f low between them. 
This interpretation is consistent with the various 
suggested mechanisms for interhemispheric tele-
connections (Tomas and Webster 1994; Love 1985; 
Compo et al. 1999; Meehl et al. 1996; Carrera 2001), 
with the notion of subsystems in climate proposed in 

the late 1980s (Tsonis and Elsner 1989; Lorenz 1991), 
and with recent studies on synchronized chaos in 
the climate system (Duane et al. 1999).

An interesting observation in Fig. 6 is that super-
nodes may be associated with major teleconnection 
patterns. For example, the supernodes in North 
America and the northeast Pacific Ocean coincide 
with the well-known Pacific–North America (PNA) 
pattern (Wallace and Gutzler 1981). In the Southern 
Hemisphere we also see supernodes over the south-
ern tip of South America, Antarctica, and the south 
Indian Ocean that are consistent with some of the 
features of the Pacific–South America (PSA) pattern 
(Mo and Higgins 1998). Interestingly, no such super-
nodes are evident where the other major pattern, the 
North Atlantic Oscillation (NAO; Thompson and 
Wallace 1998; Pozo-Vazquez et al. 2001: Huang et al. 
1998), is found. This does not indicate that NAO is not 

FIG. 7. Degree distribution of (a) extratropical (30º–
65ºN, 30º–65ºS) and (b) tropical (20ºN–20ºS) grid 
points.
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Climate network analysis (Tsonis et al)

arbitrary. The effect of a different correlation thresh-
old is discussed in Tsonis and Roebber (2003). In any 
case, one may in fact consider all pairs as being con-
nected and study the so-called weighted properties 
of the network, where each link is assigned a weight 
proportional to its corresponding correlation coef-
ficient (Onnela et al. 2003, 2004). For the scope of 
this paper, however, we will keep things simple and 
consider that a pair is connected if the correlation 
coefficient is above a threshold.

Once we have decided what constitutes a link, we 
are ready to look at the architecture of this network 
and how it relates to dynamics. Figure 6 provides first 
insight into this question. It shows the area-weighted 
number of total links (connections) at each geographic 
location. More accurately, it shows the fraction of the 
total global area to which a point is connected. This 
is a more appropriate way to show the architecture of 
the network because it is a continuous network defined 
on a sphere, rather than a discrete network on a two-
dimensional grid. Thus, if a node i is connected to 
N other nodes at λN latitudes, then its area-weighted 
connectivity C~i is defined as

  (1)

where ΔA is the grid area at the equator and φ is the 
longitude. Once we have the information displayed 

in Fig. 6 we can estimate C and L. According to the 
definition of connectivity [Eq. (1)], in order to find 
the clustering coefficient of node i, Ci, we consider a 
circular area on the sphere centered on i that is equal 
to C~i. Then, Ci is the fraction of this circular area that 
is connected (for a fully connected area, i.e., all pairs 
of nodes are connected, Ci = 1 for all i). The average 
Ci over all nodes provides the clustering coefficient 
of the network C. Note also that according to the 
definition of C~, the average C~i over all nodes gives 
the clustering coefficient Crandom. Concerning the 
estimation of L, rather than finding the number of 
connections in the shortest path between two points, 
we estimate the distance of this path on the sphere. 
For this network we find that L @ 9,600 km and C = 
0.56. For a random network with the same specifica-
tions (number of nodes, and average links per node), 
it is estimated that Lrandom @ 7,500 km and Crandom = 
0.19. These values indicate that indeed L≥Lrandom and 
C>Crandom (by a factor of 3), which will make this 
global network close to a small-world network. There 
is, however, more to this global network than what 
these values suggest.

Returning to Fig. 6, we observe that it displays 
two very interesting features. In the Tropics it ap-
pears that all nodes posses more or less the same 
number of connections, which is a characteristic 
of fully connected networks. In the extratropics it 

appears that certain nodes 
posses more connections 
than the rest, which is a 
characteristic of scale-free 
networks. In the Northern 
Hemisphere we clearly see 
the presence of regions 
where such supernodes 
ex ist (in China, North 
America, and the northeast 
Pacific Ocean). Similarly, 
severa l supernodes are 
visible in the Southern 
Hemisphere. These differ-
ences between the Trop-
ics and extratropics are 
clearly delineated in the 
corresponding degree dis-
tributions. Figure 7 shows, 
on a double-logarithmic 
plot, the distribution of 
nodes according to how 
many links they possess 
(i.e., pk against k). Given 
the definition of a link in 

FIG. 6. Total number of links (connections) at each geographic location. The 
uniformity observed in the Tropics indicates that each node possesses the 
same number of connections. This is not the case in the extratropics where 
certain nodes possess more links than the rest.
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fraction of total global area to which a geographical region is connected (“degree”)
our case, this figure indicates the fraction of the 
total area covered as a function of the connectivity 
C~. More specifically, Fig. 7a shows the distribution 
of nodes in the extratropical region of 30°–65°N 
and 30°–65°S, and Fig. 7b shows the corresponding 
distribution of nodes in the Tropics (20°N–20°S). 
The region from 20° to 30°N and from 20° to 30°S 
is a transition between the two regimes and was 
left out for a better delineation of the properties in 
the Tropics and extratropics. Figure 7a appears to 
exhibit a scaling regime similar to those observed in 
scale-free networks. In fact, the slope of this graph 
is around –2.0, in agreement with other scale-free 
networks (Barabasi and Albert 1999). In Fig. 7b 
no such regime is identifiable. The distribution is 
basically a narrow peak at about C~ = 0.5, indicating 
that most points possess the same large number 
of connections, a characteristic of regular, almost 
fully connected networks. Deviations from the 
power law (manifested as a peak at about C~ = 0.4 
in Fig. 7a) and uniformity (the four points below 
C~ = 0.1 in Fig. 7b) are due to the fact that the two 
subnetworks are interwoven; a node in one subnet-
work may be connected to a node or nodes in the 
other subnetwork. Note that very similar results are 
obtained if, instead of the 30°–65°N and 30°–65°S 
belts, the whole extratropical area (35°N–90° and 
35°S–90°) is considered. It thus appears that the 
overall network is a “fusion” of a fully connected 
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work. As is the case with all scale-free networks, 
the extratropical subnetwork is also a small-world 
network. Indeed, we find that for points in the ex-
tratropics, the clustering coefficient is much greater 
than that of a corresponding random network (by a 
factor of 9). The collective behavior of the individual 
dynamical systems in the complete network is not 
described by a single type, but it self-organizes into 
two coupled subnetworks—one regular, almost fully 
connected network, operating in the Tropics, and 
one scale-free/small-world network, operating in 
the higher latitudes. The extratropics are considered 
as one subsystem, even though they are physically 
separated. Whether or not we consider them as one 
or two subsystems does not modify the physical 
interpretation, which is that the equatorial network 
acts as an agent that connects the two hemispheres, 
thus allowing information to f low between them. 
This interpretation is consistent with the various 
suggested mechanisms for interhemispheric tele-
connections (Tomas and Webster 1994; Love 1985; 
Compo et al. 1999; Meehl et al. 1996; Carrera 2001), 
with the notion of subsystems in climate proposed in 
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and with recent studies on synchronized chaos in 
the climate system (Duane et al. 1999).

An interesting observation in Fig. 6 is that super-
nodes may be associated with major teleconnection 
patterns. For example, the supernodes in North 
America and the northeast Pacific Ocean coincide 
with the well-known Pacific–North America (PNA) 
pattern (Wallace and Gutzler 1981). In the Southern 
Hemisphere we also see supernodes over the south-
ern tip of South America, Antarctica, and the south 
Indian Ocean that are consistent with some of the 
features of the Pacific–South America (PSA) pattern 
(Mo and Higgins 1998). Interestingly, no such super-
nodes are evident where the other major pattern, the 
North Atlantic Oscillation (NAO; Thompson and 
Wallace 1998; Pozo-Vazquez et al. 2001: Huang et al. 
1998), is found. This does not indicate that NAO is not 
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Change of connectivity over time

change in the global property of the system, how does 
this affect the dynamics of the global network? To 
answer this question C and L for the two periods were 
estimated. It was found that C is about 5% smaller and 
L is about 4% smaller in the second period. This result 
will indicate that during the warming of the planet 
the network has acquired more long-range and less 
small-range connections. This is clearly shown in Fig. 
10, which shows the distribution of connections ac-
cording to their distance (as calculated on the sphere). 
The solid line represents the distribution in the first 
period and the dashed line represents the distribu-
tion in the second period. This figure shows that the 
frequency of the long-range connections (>6,000 km) 
has increased, whereas the frequency of the shorter-
range connections (<6,000 km) has decreased. The 
differences between the two distributions may not 
appear to be impressive, but with hundreds of thou-
sands of connections involved, these differences are, 
according to the Kolmogorov–Smirnov test, statisti-
cally significant at the 99% confidence level (see also 
Tsonis 2004). Even though this is only one example, 
this result suggests that monitoring the properties 
of such networks may provide an additional tool to 
identify or verify climate changes.

Furthermore, mapping atmospheric fields into 
networks appears to bring out properties of the gen-
eral circulation. Thus, it may provide an alternative 
approach to study atmospheric phenomena and dy-
namics. Moreover, just because in the case of 500-hPa 
teleconnections the network approach brings out that 
which has been found by the linear approaches (such 
as EOF analysis), it does not mean that it will always 
produce what the linear approaches produce. For 
example, scale-free phenomena are associated with 

nonlinear dynamics. As such, linear approaches, such 
as EOF analysis, cannot bring out this property. The 
fact that our network approach recovers the scale-free 
characteristic is a strong indication that it will not 
always produce the same result as a linear approach, 
and that in fact it may produce novel insights. The 
following presents another example where linear 
approaches would not yield certain properties. The 
current standard for understanding nonlocal inter-
actions in the atmosphere is linear inverse modeling 
(e.g., Winkler et al. 2001). In plain terms, linear 
inverse modeling is similar to a least squares fit link-
ing the values of certain dynamical quantities at one 
time (e.g., a subset of empirical orthogonal functions) 
with their values at some future time. In practice, this 
involves making the assumption that the dynamics 
are sufficiently approximated by a linear, stable, 
stochastic dynamical system, and then the propagator 
for that system is calculated from data at some fixed 
time lag. It is not clear that such linear approaches 
are necessarily optimal, however, and specifically, 
whether they distort the network structure of the 
atmosphere. For an example of such distortion, con-
sider a one-dimensional discrete dynamical system, 
similar to that introduced by Lorenz and Emanuel 
(1998), that is chaotic and mimics zonal wave propa-
gation in the atmosphere. The relevant time scale in 
this system is the error-doubling time, which we take 
as one model day. This model has 40 nodes, and is 
modified to possess a long-range spatial correlation 
by allowing nodes 20 and 40 to force each other. Given 

FIG. 9. Same as Fig. 8, but for the streamfunction.

FIG. 10. The relative frequency distribution of the con-
nections according to their distance for the periods of 
1951–77 (solid line) and 1978–2004 (dashed line). This 
result indicates that during periods of warming, the 
network acquires more long-range connections and 
less small-range connections.
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Climate networks: Nonlinear relationships (Donges et al.)

correlation 6= statistical dependence!

How could we capture nonlinear relations?

alternative: mutual information I (Y1,Y2) = H(Y1)− H(Y1|Y2)

zero only if Y1,Y2 are independent

edge between vi , vj if I (Yi ,Yj) ≥ τ
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Quantifying uncertainty: (discrete) entropy

discrete random variable Y , values in Y = {1, . . .m}:

H(Y ) =
∑

y∈Y
p(y) log

1

p(y)
= −

∑

y∈Y
p(y) log p(y)

if p(y) = 1
m for all y ∈ Y:

H(Y ) = logm.

if p(1) = 1 and p(y) = 0 for all y 6= 1:

H(Y ) = 0.

in general: 0 ≤ H(Y ) ≤ logm

Joint entropy: 2 random variables Y ,Z :

H(Y ,Z ) = −
∑

y∈Y,
z∈Z

p(y , z) log p(y , z)

≤ H(Y ) + H(Z )

Conditional entropy:

H(Y |Z ) = H(Y ,Z )− H(Z )
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Mutual Information

reduction in uncertainty: how much does Z tell about Y ?

I (Y ;Z ) = H(Y )− H(Y |Z )

= H(Z )− H(Z |Y )

= H(Y ) + H(Z )− H(Y ,Z )

also captures nonlinear relationships
I (Y ;Z ) = 0 if and only if Y ,Z are independent.

I (Z ;Y ) = I (Y ;Z ) ≥ 0 because
“information never hurts”: H(Y ) ≥ H(Y |Z )

Computation:

I (Y ;Z ) =
∑

y ,z

p(y , z) log
p(y , z)

p(y)p(z)
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Climate networks: Nonlinear relationships (Donges et al.)

correlation 6= statistical dependence!

alternative: mutual information I (Y1,Y2) = H(Y1)− H(Y1|Y2)

edge between vi , vj if I (Yi ,Yj) ≥ τ

J. F. Donges et al.
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Fig. 1: (Colour on-line) a) BC for the NCEP/NCAR reanalysis
SAT MI network, and b) for the HadCM3 SAT network.
Both networks are constructed at edge density ρ= 0.005 using
MI. c) A schematic map of global surface ocean currents,
after [16]. Note that some features of the backbone in a) and
b) correspond closely to ocean surface currents shown in c),
e.g., the Alaska, Peru and Canary currents.

These observations can be understood considering the
strong coupling between sea surface temperature (SST)
and SAT over the ocean via heat flux. Temperature anom-
alies in SST are advected by the surface ocean currents
and transfered to the SAT field via heat flux coupling.
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Therefore, ocean currents provide a physical mechanism
for the transport of energy together with dynamical infor-
mation on localized linear structures over large distances.
However, no clear traces of the strong western boundary
currents (WBCs) such as the Gulf Stream or the Kuroshio
are visible in the backbone structure (fig. 1(b)). This might
be due to the fact, that WBCs are much narrower than the
eastern boundary currents discussed above [15], so that
the effect of WBCs is not resolved by the grid underly-
ing the HadCM3 climate network (see table 1). Note that
using higher-resolution reanalysis data (fig. 1(a)) and SAT
data taken from the AOGCM ECHAM5 [12], we find that
our method does indeed detect WBCs. Here it should be
pointed out again that we are analyzing the SAT field,
hence purely atmospheric effects, e.g., planetary waves,
also contribute to the BC field and might explain some of
its wave-like features, particularly over land.
Backbone structures are not seen in fields of the comple-

mentary random walk betweenness [17] which measures
diffusive flow in a network. This further supports our
argument that shortest path betweenness (BC) measures
convective energy flow in a spatially extended network and
is consistent with extremalization principles of physics,
e.g., the Hamiltonian principle, interpreted within a graph
theoretical framework.
To exclude the possibility that the observed backbone

structures over the ocean might be simply due to local
anomalies in the SST-SAT gradient caused by surface
currents, we have calculated the gradient field from the
model run that we used to construct the HadCM3 climate
network, and found that the SST-SAT gradient and BC
are not correlated (fig. 3). Furthermore, the backbone
is neither seen in fields of degree nor closeness central-
ity [8,14], while BC statistically shows some correlation
with these centrality measures (fig. 4). Nevertheless there
is a notable tendency of high BC vertices to have a small
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However, no clear traces of the strong western boundary
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are visible in the backbone structure (fig. 1(b)). This might
be due to the fact, that WBCs are much narrower than the
eastern boundary currents discussed above [15], so that
the effect of WBCs is not resolved by the grid underly-
ing the HadCM3 climate network (see table 1). Note that
using higher-resolution reanalysis data (fig. 1(a)) and SAT
data taken from the AOGCM ECHAM5 [12], we find that
our method does indeed detect WBCs. Here it should be
pointed out again that we are analyzing the SAT field,
hence purely atmospheric effects, e.g., planetary waves,
also contribute to the BC field and might explain some of
its wave-like features, particularly over land.
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are visible in the backbone structure (fig. 1(b)). This might
be due to the fact, that WBCs are much narrower than the
eastern boundary currents discussed above [15], so that
the effect of WBCs is not resolved by the grid underly-
ing the HadCM3 climate network (see table 1). Note that
using higher-resolution reanalysis data (fig. 1(a)) and SAT
data taken from the AOGCM ECHAM5 [12], we find that
our method does indeed detect WBCs. Here it should be
pointed out again that we are analyzing the SAT field,
hence purely atmospheric effects, e.g., planetary waves,
also contribute to the BC field and might explain some of
its wave-like features, particularly over land.
Backbone structures are not seen in fields of the comple-

mentary random walk betweenness [17] which measures
diffusive flow in a network. This further supports our
argument that shortest path betweenness (BC) measures
convective energy flow in a spatially extended network and
is consistent with extremalization principles of physics,
e.g., the Hamiltonian principle, interpreted within a graph
theoretical framework.
To exclude the possibility that the observed backbone

structures over the ocean might be simply due to local
anomalies in the SST-SAT gradient caused by surface
currents, we have calculated the gradient field from the
model run that we used to construct the HadCM3 climate
network, and found that the SST-SAT gradient and BC
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the effect of WBCs is not resolved by the grid underly-
ing the HadCM3 climate network (see table 1). Note that
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data taken from the AOGCM ECHAM5 [12], we find that
our method does indeed detect WBCs. Here it should be
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Dipoles, Oscillations, Teleconnections

Table 1: List of major pressure based climate indices.

Dipole Climate Variable Description

North Atlantic Oscillation (NAO)
Sea Level Pressure, Air
Temperature

Characterized by the pressure anomalies at
Ponta Delgada and Akyureyri at Iceland.

Southern Oscillation Index (SOI)
Sea Level Pressure, Air
Temperature and Precipi-
tation

Defined by pressure anomalies in Tahiti and
Darwin, Australia

Pacific/North American Index (PNA) Sea Level Pressure
Anomalies at the North Pacific Ocean and
the North America

Antarctic Oscillation (AAO) Sea Level Pressure
The first leading mode of the EOF analysis
of pressure anomalies from 20�S poleward

Arctic Oscillation (AO) Sea Level Pressure
The first leading mode of the EOF analysis
of pressure anomalies from 20�N poleward

Western Pacific (WP) Sea Level Pressure

Low frequency variability over the North
Pacific with one center located over the
Kamchatka Peninsula and another broad
center of opposite sign covering portions of
southeastern Asia and the low latitudes of
the extreme western North Pacific

Tahiti and Darwin, Australia and captures fluctua-
tions in pressure around the tropical Indo-Pacific re-
gion that correspond to the El Niño Southern Oscilla-
tion (ENSO) climate phenomenon [13]. A high value
of SOI indicates higher pressure anomalies in the east-
ern tropical Pacific around Tahiti and lower pressure
anomalies around Indonesia and northern Australia,
while a low value of SOI is associated with the reverse
conditions. Figure 2 shows the time series of pressure
anomalies at Tahiti (measured at 17.5 S, 150W) and
Darwin (measured at 12.5S, 130E).
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Figure 2: Pressure anomaly time series for the South-
ern Oscillation

As mentioned, climate indices, including dipoles,
are of great importance in understanding climate
variability. Table 1 lists some dipoles that are well
known to climate researchers. These dipoles have
been discovered by observation, e.g., SOI and NAO,
or by EOF analysis [12], e.g., AO. However, all these
discoveries have required considerable research and
insight on the part of the domain experts involved.
Because of the amount of e↵ort involved and the
possibility of missing indices, an automated approach
to climate index discovery could be quite useful.

One of the first attempts in this direction was
Steinbach et al [8, 9, 10]. The approach used a shared
nearest neighbor (SNN) [2] clustering approach to
find climate indices. More specifically, it built a
graph of all locations on a latitude-longitude grid
based on the positive pairwise correlations between
the anomaly time series of temperature or pressure at
these locations and then found clusters in this graph.
The centroids of these clusters or the di↵erences
between two centroids were then used as candidate
climate indices. Many of the resulting candidate
indices showed a high correlation with known climate
indices and were similar in their level of impact on
land climate variables such as temperature.

Tsonis et al. [14] pioneered the use of complex
networks to study climate systems. The authors con-
structed networks using nodes on a 5�x 5�grid on the
globe, where the edges of the network were defined
in terms of the (absolute) correlation values between
the anomaly time series of climate variables (SST,
SLP) of all the pairs of nodes. From this complete
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194 Chapter 16. El Niño–Southern Oscillation

America decreases, and the supply of nutrient-rich thermocline water is cut off. Rainfall
follows the warm water eastward, with associated flooding in Peru and drought in Indone-
sia and Australia. The eastward displacement of the atmospheric heat source overlaying
the warmest water results in large changes in the global atmospheric circulation, which
in turn force changes in weather in regions far removed from the tropical Pacific. This is
the phenomenon of teleconnection mentioned in Chapter 1. Recent studies suggest that
El Niño affected pre-Columbian cultures and that a strong El Niño effect between 1789
and 1793 caused poor crop yields in Europe which, according to some sources, in turn
helped touch off the French Revolution [31].

The rise in SST and drastic decline in fish catch during an El Niño episode was well
known to Peruvian fishermen. Since the episodes occur primarily around Christmas, the
event was named after the Christ Child. Historically, El Niño events occur about every
three to seven years and alternate with the opposite phases of below-average temperatures
in the eastern tropical Pacific (La Niña). Figure 16.1 shows the SST anomalies under El
Niño and La Niña conditions, and Figure 16.2 shows the time series of the SST anomalies
in the eastern tropical Pacific since 1875.

Figure 16.1. SST anomalies (oC) observed under El Niño conditions (December, 1997; left)
and La Niña conditions (January, 2000; right). Reprinted courtesy of NASA/JPL-Caltech.

ENSO, the combination of these oceanic and atmospheric patterns, actually involves
two feedback mechanisms, a positive one which affects the ocean-atmosphere system over
the eastern tropical Pacific and leads up to an El Niño event, and a negative one which
turns a warm phase into a cold phase and leads to the termination of the event. Since the
nature of this negative feedback mechanism is not well understood, several conceptual
models have been proposed to describe ENSO. Here we discuss two such models. The
first is a simple harmonic oscillator model which is referred to as the recharge-oscillator
model [45, 46]. It emphasizes the role of a discharge of equatorial heat as the primary
agent for negative feedback. The other is a more complicated model, referred to as the
delayed-oscillator model [4, 5, 99, 106, 115], which emphasizes the role of reflected Kelvin
waves at the western boundary of the Pacific as the primary agent for negative feed-
back.
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global effects on temperature, rain

El Niño: warm water in east Pacific, floods in Peru, dry in
Australia/Indonesia

La Niña: opposite

Impact on economy, health, world events

Image sources: Kaper, H. Engler. Mathematics & Climate. Kawale et al, SDM 2011.
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tion (ENSO) climate phenomenon [13]. A high value
of SOI indicates higher pressure anomalies in the east-
ern tropical Pacific around Tahiti and lower pressure
anomalies around Indonesia and northern Australia,
while a low value of SOI is associated with the reverse
conditions. Figure 2 shows the time series of pressure
anomalies at Tahiti (measured at 17.5 S, 150W) and
Darwin (measured at 12.5S, 130E).
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Figure 2: Pressure anomaly time series for the South-
ern Oscillation

As mentioned, climate indices, including dipoles,
are of great importance in understanding climate
variability. Table 1 lists some dipoles that are well
known to climate researchers. These dipoles have
been discovered by observation, e.g., SOI and NAO,
or by EOF analysis [12], e.g., AO. However, all these
discoveries have required considerable research and
insight on the part of the domain experts involved.
Because of the amount of e↵ort involved and the
possibility of missing indices, an automated approach
to climate index discovery could be quite useful.

One of the first attempts in this direction was
Steinbach et al [8, 9, 10]. The approach used a shared
nearest neighbor (SNN) [2] clustering approach to
find climate indices. More specifically, it built a
graph of all locations on a latitude-longitude grid
based on the positive pairwise correlations between
the anomaly time series of temperature or pressure at
these locations and then found clusters in this graph.
The centroids of these clusters or the di↵erences
between two centroids were then used as candidate
climate indices. Many of the resulting candidate
indices showed a high correlation with known climate
indices and were similar in their level of impact on
land climate variables such as temperature.

Tsonis et al. [14] pioneered the use of complex
networks to study climate systems. The authors con-
structed networks using nodes on a 5�x 5�grid on the
globe, where the edges of the network were defined
in terms of the (absolute) correlation values between
the anomaly time series of climate variables (SST,
SLP) of all the pairs of nodes. From this complete
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194 Chapter 16. El Niño–Southern Oscillation

America decreases, and the supply of nutrient-rich thermocline water is cut off. Rainfall
follows the warm water eastward, with associated flooding in Peru and drought in Indone-
sia and Australia. The eastward displacement of the atmospheric heat source overlaying
the warmest water results in large changes in the global atmospheric circulation, which
in turn force changes in weather in regions far removed from the tropical Pacific. This is
the phenomenon of teleconnection mentioned in Chapter 1. Recent studies suggest that
El Niño affected pre-Columbian cultures and that a strong El Niño effect between 1789
and 1793 caused poor crop yields in Europe which, according to some sources, in turn
helped touch off the French Revolution [31].

The rise in SST and drastic decline in fish catch during an El Niño episode was well
known to Peruvian fishermen. Since the episodes occur primarily around Christmas, the
event was named after the Christ Child. Historically, El Niño events occur about every
three to seven years and alternate with the opposite phases of below-average temperatures
in the eastern tropical Pacific (La Niña). Figure 16.1 shows the SST anomalies under El
Niño and La Niña conditions, and Figure 16.2 shows the time series of the SST anomalies
in the eastern tropical Pacific since 1875.

Figure 16.1. SST anomalies (oC) observed under El Niño conditions (December, 1997; left)
and La Niña conditions (January, 2000; right). Reprinted courtesy of NASA/JPL-Caltech.

ENSO, the combination of these oceanic and atmospheric patterns, actually involves
two feedback mechanisms, a positive one which affects the ocean-atmosphere system over
the eastern tropical Pacific and leads up to an El Niño event, and a negative one which
turns a warm phase into a cold phase and leads to the termination of the event. Since the
nature of this negative feedback mechanism is not well understood, several conceptual
models have been proposed to describe ENSO. Here we discuss two such models. The
first is a simple harmonic oscillator model which is referred to as the recharge-oscillator
model [45, 46]. It emphasizes the role of a discharge of equatorial heat as the primary
agent for negative feedback. The other is a more complicated model, referred to as the
delayed-oscillator model [4, 5, 99, 106, 115], which emphasizes the role of reflected Kelvin
waves at the western boundary of the Pacific as the primary agent for negative feed-
back.
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Dipoles, Oscillations, Teleconnections

Table 1: List of major pressure based climate indices.

Dipole Climate Variable Description

North Atlantic Oscillation (NAO)
Sea Level Pressure, Air
Temperature

Characterized by the pressure anomalies at
Ponta Delgada and Akyureyri at Iceland.

Southern Oscillation Index (SOI)
Sea Level Pressure, Air
Temperature and Precipi-
tation

Defined by pressure anomalies in Tahiti and
Darwin, Australia

Pacific/North American Index (PNA) Sea Level Pressure
Anomalies at the North Pacific Ocean and
the North America

Antarctic Oscillation (AAO) Sea Level Pressure
The first leading mode of the EOF analysis
of pressure anomalies from 20�S poleward

Arctic Oscillation (AO) Sea Level Pressure
The first leading mode of the EOF analysis
of pressure anomalies from 20�N poleward

Western Pacific (WP) Sea Level Pressure

Low frequency variability over the North
Pacific with one center located over the
Kamchatka Peninsula and another broad
center of opposite sign covering portions of
southeastern Asia and the low latitudes of
the extreme western North Pacific

Tahiti and Darwin, Australia and captures fluctua-
tions in pressure around the tropical Indo-Pacific re-
gion that correspond to the El Niño Southern Oscilla-
tion (ENSO) climate phenomenon [13]. A high value
of SOI indicates higher pressure anomalies in the east-
ern tropical Pacific around Tahiti and lower pressure
anomalies around Indonesia and northern Australia,
while a low value of SOI is associated with the reverse
conditions. Figure 2 shows the time series of pressure
anomalies at Tahiti (measured at 17.5 S, 150W) and
Darwin (measured at 12.5S, 130E).
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Figure 2: Pressure anomaly time series for the South-
ern Oscillation

As mentioned, climate indices, including dipoles,
are of great importance in understanding climate
variability. Table 1 lists some dipoles that are well
known to climate researchers. These dipoles have
been discovered by observation, e.g., SOI and NAO,
or by EOF analysis [12], e.g., AO. However, all these
discoveries have required considerable research and
insight on the part of the domain experts involved.
Because of the amount of e↵ort involved and the
possibility of missing indices, an automated approach
to climate index discovery could be quite useful.

One of the first attempts in this direction was
Steinbach et al [8, 9, 10]. The approach used a shared
nearest neighbor (SNN) [2] clustering approach to
find climate indices. More specifically, it built a
graph of all locations on a latitude-longitude grid
based on the positive pairwise correlations between
the anomaly time series of temperature or pressure at
these locations and then found clusters in this graph.
The centroids of these clusters or the di↵erences
between two centroids were then used as candidate
climate indices. Many of the resulting candidate
indices showed a high correlation with known climate
indices and were similar in their level of impact on
land climate variables such as temperature.

Tsonis et al. [14] pioneered the use of complex
networks to study climate systems. The authors con-
structed networks using nodes on a 5�x 5�grid on the
globe, where the edges of the network were defined
in terms of the (absolute) correlation values between
the anomaly time series of climate variables (SST,
SLP) of all the pairs of nodes. From this complete
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America decreases, and the supply of nutrient-rich thermocline water is cut off. Rainfall
follows the warm water eastward, with associated flooding in Peru and drought in Indone-
sia and Australia. The eastward displacement of the atmospheric heat source overlaying
the warmest water results in large changes in the global atmospheric circulation, which
in turn force changes in weather in regions far removed from the tropical Pacific. This is
the phenomenon of teleconnection mentioned in Chapter 1. Recent studies suggest that
El Niño affected pre-Columbian cultures and that a strong El Niño effect between 1789
and 1793 caused poor crop yields in Europe which, according to some sources, in turn
helped touch off the French Revolution [31].

The rise in SST and drastic decline in fish catch during an El Niño episode was well
known to Peruvian fishermen. Since the episodes occur primarily around Christmas, the
event was named after the Christ Child. Historically, El Niño events occur about every
three to seven years and alternate with the opposite phases of below-average temperatures
in the eastern tropical Pacific (La Niña). Figure 16.1 shows the SST anomalies under El
Niño and La Niña conditions, and Figure 16.2 shows the time series of the SST anomalies
in the eastern tropical Pacific since 1875.

Figure 16.1. SST anomalies (oC) observed under El Niño conditions (December, 1997; left)
and La Niña conditions (January, 2000; right). Reprinted courtesy of NASA/JPL-Caltech.

ENSO, the combination of these oceanic and atmospheric patterns, actually involves
two feedback mechanisms, a positive one which affects the ocean-atmosphere system over
the eastern tropical Pacific and leads up to an El Niño event, and a negative one which
turns a warm phase into a cold phase and leads to the termination of the event. Since the
nature of this negative feedback mechanism is not well understood, several conceptual
models have been proposed to describe ENSO. Here we discuss two such models. The
first is a simple harmonic oscillator model which is referred to as the recharge-oscillator
model [45, 46]. It emphasizes the role of a discharge of equatorial heat as the primary
agent for negative feedback. The other is a more complicated model, referred to as the
delayed-oscillator model [4, 5, 99, 106, 115], which emphasizes the role of reflected Kelvin
waves at the western boundary of the Pacific as the primary agent for negative feed-
back.
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Dipole discovery (Kawale et al.)

Can we discover dipoles automatically?

First: explore pairwise correlations

nals. In order to handle this problem, we preprocess
the raw data by removing the monthly means in or-
der to obtain anomaly values for each month. The
data normalization for every location is performed as
follows:

µm =
1

end � start + 1

endX

y=start

xy(m), 8m2{1..12}

xy(m) = xy(m) � µm, 8y2{1948..2009}

In this formula, start and end represent the start
and end years to consider for the mean and define the
base for computing the mean for subtraction (in our
case 1948 and 2009). µm is the mean of the month
m and xy(m) represents the value of pressure for the
month m and year y.Once we remove the monthly
means, the resulting values are the anomaly time
series for that location.

3.3 Edge Weight Estimation After we get
the anomaly values for every node, the networks
are constructed by looking at the similarity values
between the anomaly timeseries of two nodes. We
compute the similarity between two nodes by taking
the Pearson correlation between the two time series
at the nodes. Pearson correlation is a linear measure
of similarity and is expressed as follows:

rxy =

Pn
i=1(xi � x̄)(yi � ȳ)

(n � 1)sxsy

where x̄ and ȳ are the mean of the two series X and
Y, and sx and sy are the standard deviations of the
two series.

We do not want to consider all the edges in the
complete graph formed to be a part of the network for
analysis as there are about 100 million edges in our
case and most of them are uninteresting. Thus, the
correlation threshold plays an important role in defin-
ing the network and must be chosen appropriately.
Fig 3 shows the distribution of the correlations in the
pressure network. Due to autocorrelation in space,
the positive correlation goes as high as 1. However
the negative correlation between any two nodes does
not go as high. If we threshold the graph using a sin-
gle absolute value (for e.g. 0.5) we will be using a very
harsh filter for negative correlations but a weak filter
for positive correlations that allows many spurious
values to pass through. Fig 4 shows the distribution
of edges which are greater than 5000km away. Note
that most of the high positive correlation edges have
disappeared and the distribution of the positive and
negative correlation is now quite similar. In particu-
lar, the distribution of negatively connected edges is

quite similar in both Fig. 3 and 4. This gives cre-
dence to our assumption that most of the very high
positive correlation comes from nearby links. This
also makes it harder to prune edges due to positive
correlation since the pruning threshold needs to be
cognizant of the physical distance between the nodes.
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edges < 5000 km

We formally define the network or the graph to
be an ordered pair G = (V, E) where V = {1,2.. N} is
the set of nodes on the globe grid and E is the set of
undirected edges (i, j) such that the rij is significant
or above the threshold, which is di↵erent for negative
and positive correlations. We construct networks for
the pressure variable using a 20 year long window and
slide the window by 5 years at a time so as to get 9
separate networks spanning 20 years each for our 62
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nals. In order to handle this problem, we preprocess
the raw data by removing the monthly means in or-
der to obtain anomaly values for each month. The
data normalization for every location is performed as
follows:

µm =
1

end � start + 1

endX

y=start

xy(m), 8m2{1..12}

xy(m) = xy(m) � µm, 8y2{1948..2009}

In this formula, start and end represent the start
and end years to consider for the mean and define the
base for computing the mean for subtraction (in our
case 1948 and 2009). µm is the mean of the month
m and xy(m) represents the value of pressure for the
month m and year y.Once we remove the monthly
means, the resulting values are the anomaly time
series for that location.

3.3 Edge Weight Estimation After we get
the anomaly values for every node, the networks
are constructed by looking at the similarity values
between the anomaly timeseries of two nodes. We
compute the similarity between two nodes by taking
the Pearson correlation between the two time series
at the nodes. Pearson correlation is a linear measure
of similarity and is expressed as follows:

rxy =

Pn
i=1(xi � x̄)(yi � ȳ)

(n � 1)sxsy

where x̄ and ȳ are the mean of the two series X and
Y, and sx and sy are the standard deviations of the
two series.

We do not want to consider all the edges in the
complete graph formed to be a part of the network for
analysis as there are about 100 million edges in our
case and most of them are uninteresting. Thus, the
correlation threshold plays an important role in defin-
ing the network and must be chosen appropriately.
Fig 3 shows the distribution of the correlations in the
pressure network. Due to autocorrelation in space,
the positive correlation goes as high as 1. However
the negative correlation between any two nodes does
not go as high. If we threshold the graph using a sin-
gle absolute value (for e.g. 0.5) we will be using a very
harsh filter for negative correlations but a weak filter
for positive correlations that allows many spurious
values to pass through. Fig 4 shows the distribution
of edges which are greater than 5000km away. Note
that most of the high positive correlation edges have
disappeared and the distribution of the positive and
negative correlation is now quite similar. In particu-
lar, the distribution of negatively connected edges is

quite similar in both Fig. 3 and 4. This gives cre-
dence to our assumption that most of the very high
positive correlation comes from nearby links. This
also makes it harder to prune edges due to positive
correlation since the pruning threshold needs to be
cognizant of the physical distance between the nodes.
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We formally define the network or the graph to
be an ordered pair G = (V, E) where V = {1,2.. N} is
the set of nodes on the globe grid and E is the set of
undirected edges (i, j) such that the rij is significant
or above the threshold, which is di↵erent for negative
and positive correlations. We construct networks for
the pressure variable using a 20 year long window and
slide the window by 5 years at a time so as to get 9
separate networks spanning 20 years each for our 62
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Dipole discovery (Kawale et al.)

Can we discover dipoles automatically?

First: explore pairwise correlations

nals. In order to handle this problem, we preprocess
the raw data by removing the monthly means in or-
der to obtain anomaly values for each month. The
data normalization for every location is performed as
follows:

µm =
1

end � start + 1

endX

y=start

xy(m), 8m2{1..12}

xy(m) = xy(m) � µm, 8y2{1948..2009}

In this formula, start and end represent the start
and end years to consider for the mean and define the
base for computing the mean for subtraction (in our
case 1948 and 2009). µm is the mean of the month
m and xy(m) represents the value of pressure for the
month m and year y.Once we remove the monthly
means, the resulting values are the anomaly time
series for that location.

3.3 Edge Weight Estimation After we get
the anomaly values for every node, the networks
are constructed by looking at the similarity values
between the anomaly timeseries of two nodes. We
compute the similarity between two nodes by taking
the Pearson correlation between the two time series
at the nodes. Pearson correlation is a linear measure
of similarity and is expressed as follows:

rxy =

Pn
i=1(xi � x̄)(yi � ȳ)

(n � 1)sxsy

where x̄ and ȳ are the mean of the two series X and
Y, and sx and sy are the standard deviations of the
two series.

We do not want to consider all the edges in the
complete graph formed to be a part of the network for
analysis as there are about 100 million edges in our
case and most of them are uninteresting. Thus, the
correlation threshold plays an important role in defin-
ing the network and must be chosen appropriately.
Fig 3 shows the distribution of the correlations in the
pressure network. Due to autocorrelation in space,
the positive correlation goes as high as 1. However
the negative correlation between any two nodes does
not go as high. If we threshold the graph using a sin-
gle absolute value (for e.g. 0.5) we will be using a very
harsh filter for negative correlations but a weak filter
for positive correlations that allows many spurious
values to pass through. Fig 4 shows the distribution
of edges which are greater than 5000km away. Note
that most of the high positive correlation edges have
disappeared and the distribution of the positive and
negative correlation is now quite similar. In particu-
lar, the distribution of negatively connected edges is

quite similar in both Fig. 3 and 4. This gives cre-
dence to our assumption that most of the very high
positive correlation comes from nearby links. This
also makes it harder to prune edges due to positive
correlation since the pruning threshold needs to be
cognizant of the physical distance between the nodes.
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We formally define the network or the graph to
be an ordered pair G = (V, E) where V = {1,2.. N} is
the set of nodes on the globe grid and E is the set of
undirected edges (i, j) such that the rij is significant
or above the threshold, which is di↵erent for negative
and positive correlations. We construct networks for
the pressure variable using a 20 year long window and
slide the window by 5 years at a time so as to get 9
separate networks spanning 20 years each for our 62
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nals. In order to handle this problem, we preprocess
the raw data by removing the monthly means in or-
der to obtain anomaly values for each month. The
data normalization for every location is performed as
follows:

µm =
1

end � start + 1

endX

y=start

xy(m), 8m2{1..12}

xy(m) = xy(m) � µm, 8y2{1948..2009}

In this formula, start and end represent the start
and end years to consider for the mean and define the
base for computing the mean for subtraction (in our
case 1948 and 2009). µm is the mean of the month
m and xy(m) represents the value of pressure for the
month m and year y.Once we remove the monthly
means, the resulting values are the anomaly time
series for that location.

3.3 Edge Weight Estimation After we get
the anomaly values for every node, the networks
are constructed by looking at the similarity values
between the anomaly timeseries of two nodes. We
compute the similarity between two nodes by taking
the Pearson correlation between the two time series
at the nodes. Pearson correlation is a linear measure
of similarity and is expressed as follows:

rxy =

Pn
i=1(xi � x̄)(yi � ȳ)

(n � 1)sxsy

where x̄ and ȳ are the mean of the two series X and
Y, and sx and sy are the standard deviations of the
two series.

We do not want to consider all the edges in the
complete graph formed to be a part of the network for
analysis as there are about 100 million edges in our
case and most of them are uninteresting. Thus, the
correlation threshold plays an important role in defin-
ing the network and must be chosen appropriately.
Fig 3 shows the distribution of the correlations in the
pressure network. Due to autocorrelation in space,
the positive correlation goes as high as 1. However
the negative correlation between any two nodes does
not go as high. If we threshold the graph using a sin-
gle absolute value (for e.g. 0.5) we will be using a very
harsh filter for negative correlations but a weak filter
for positive correlations that allows many spurious
values to pass through. Fig 4 shows the distribution
of edges which are greater than 5000km away. Note
that most of the high positive correlation edges have
disappeared and the distribution of the positive and
negative correlation is now quite similar. In particu-
lar, the distribution of negatively connected edges is

quite similar in both Fig. 3 and 4. This gives cre-
dence to our assumption that most of the very high
positive correlation comes from nearby links. This
also makes it harder to prune edges due to positive
correlation since the pruning threshold needs to be
cognizant of the physical distance between the nodes.
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We formally define the network or the graph to
be an ordered pair G = (V, E) where V = {1,2.. N} is
the set of nodes on the globe grid and E is the set of
undirected edges (i, j) such that the rij is significant
or above the threshold, which is di↵erent for negative
and positive correlations. We construct networks for
the pressure variable using a 20 year long window and
slide the window by 5 years at a time so as to get 9
separate networks spanning 20 years each for our 62
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Dipole discovery (Kawale et al.)

Can we discover dipoles automatically?

First: explore pairwise correlations

nals. In order to handle this problem, we preprocess
the raw data by removing the monthly means in or-
der to obtain anomaly values for each month. The
data normalization for every location is performed as
follows:

µm =
1

end � start + 1

endX

y=start

xy(m), 8m2{1..12}

xy(m) = xy(m) � µm, 8y2{1948..2009}

In this formula, start and end represent the start
and end years to consider for the mean and define the
base for computing the mean for subtraction (in our
case 1948 and 2009). µm is the mean of the month
m and xy(m) represents the value of pressure for the
month m and year y.Once we remove the monthly
means, the resulting values are the anomaly time
series for that location.

3.3 Edge Weight Estimation After we get
the anomaly values for every node, the networks
are constructed by looking at the similarity values
between the anomaly timeseries of two nodes. We
compute the similarity between two nodes by taking
the Pearson correlation between the two time series
at the nodes. Pearson correlation is a linear measure
of similarity and is expressed as follows:

rxy =

Pn
i=1(xi � x̄)(yi � ȳ)

(n � 1)sxsy

where x̄ and ȳ are the mean of the two series X and
Y, and sx and sy are the standard deviations of the
two series.

We do not want to consider all the edges in the
complete graph formed to be a part of the network for
analysis as there are about 100 million edges in our
case and most of them are uninteresting. Thus, the
correlation threshold plays an important role in defin-
ing the network and must be chosen appropriately.
Fig 3 shows the distribution of the correlations in the
pressure network. Due to autocorrelation in space,
the positive correlation goes as high as 1. However
the negative correlation between any two nodes does
not go as high. If we threshold the graph using a sin-
gle absolute value (for e.g. 0.5) we will be using a very
harsh filter for negative correlations but a weak filter
for positive correlations that allows many spurious
values to pass through. Fig 4 shows the distribution
of edges which are greater than 5000km away. Note
that most of the high positive correlation edges have
disappeared and the distribution of the positive and
negative correlation is now quite similar. In particu-
lar, the distribution of negatively connected edges is

quite similar in both Fig. 3 and 4. This gives cre-
dence to our assumption that most of the very high
positive correlation comes from nearby links. This
also makes it harder to prune edges due to positive
correlation since the pruning threshold needs to be
cognizant of the physical distance between the nodes.

−1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 106

Fr
eq

ue
nc

y

Correlation

Figure 3: Distribution of correlation

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7

8
x 10

6

Correlation

F
re

qu
en

cy

Figure 4: Distribution of correlation after filtering
edges < 5000 km

We formally define the network or the graph to
be an ordered pair G = (V, E) where V = {1,2.. N} is
the set of nodes on the globe grid and E is the set of
undirected edges (i, j) such that the rij is significant
or above the threshold, which is di↵erent for negative
and positive correlations. We construct networks for
the pressure variable using a 20 year long window and
slide the window by 5 years at a time so as to get 9
separate networks spanning 20 years each for our 62
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nals. In order to handle this problem, we preprocess
the raw data by removing the monthly means in or-
der to obtain anomaly values for each month. The
data normalization for every location is performed as
follows:

µm =
1

end � start + 1

endX

y=start

xy(m), 8m2{1..12}

xy(m) = xy(m) � µm, 8y2{1948..2009}

In this formula, start and end represent the start
and end years to consider for the mean and define the
base for computing the mean for subtraction (in our
case 1948 and 2009). µm is the mean of the month
m and xy(m) represents the value of pressure for the
month m and year y.Once we remove the monthly
means, the resulting values are the anomaly time
series for that location.

3.3 Edge Weight Estimation After we get
the anomaly values for every node, the networks
are constructed by looking at the similarity values
between the anomaly timeseries of two nodes. We
compute the similarity between two nodes by taking
the Pearson correlation between the two time series
at the nodes. Pearson correlation is a linear measure
of similarity and is expressed as follows:

rxy =

Pn
i=1(xi � x̄)(yi � ȳ)

(n � 1)sxsy

where x̄ and ȳ are the mean of the two series X and
Y, and sx and sy are the standard deviations of the
two series.

We do not want to consider all the edges in the
complete graph formed to be a part of the network for
analysis as there are about 100 million edges in our
case and most of them are uninteresting. Thus, the
correlation threshold plays an important role in defin-
ing the network and must be chosen appropriately.
Fig 3 shows the distribution of the correlations in the
pressure network. Due to autocorrelation in space,
the positive correlation goes as high as 1. However
the negative correlation between any two nodes does
not go as high. If we threshold the graph using a sin-
gle absolute value (for e.g. 0.5) we will be using a very
harsh filter for negative correlations but a weak filter
for positive correlations that allows many spurious
values to pass through. Fig 4 shows the distribution
of edges which are greater than 5000km away. Note
that most of the high positive correlation edges have
disappeared and the distribution of the positive and
negative correlation is now quite similar. In particu-
lar, the distribution of negatively connected edges is

quite similar in both Fig. 3 and 4. This gives cre-
dence to our assumption that most of the very high
positive correlation comes from nearby links. This
also makes it harder to prune edges due to positive
correlation since the pruning threshold needs to be
cognizant of the physical distance between the nodes.
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We formally define the network or the graph to
be an ordered pair G = (V, E) where V = {1,2.. N} is
the set of nodes on the globe grid and E is the set of
undirected edges (i, j) such that the rij is significant
or above the threshold, which is di↵erent for negative
and positive correlations. We construct networks for
the pressure variable using a 20 year long window and
slide the window by 5 years at a time so as to get 9
separate networks spanning 20 years each for our 62
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Dipole discovery (Kawale et al.)

Can we discover dipoles automatically?

First: explore pairwise correlations

nals. In order to handle this problem, we preprocess
the raw data by removing the monthly means in or-
der to obtain anomaly values for each month. The
data normalization for every location is performed as
follows:

µm =
1

end � start + 1

endX

y=start

xy(m), 8m2{1..12}

xy(m) = xy(m) � µm, 8y2{1948..2009}

In this formula, start and end represent the start
and end years to consider for the mean and define the
base for computing the mean for subtraction (in our
case 1948 and 2009). µm is the mean of the month
m and xy(m) represents the value of pressure for the
month m and year y.Once we remove the monthly
means, the resulting values are the anomaly time
series for that location.

3.3 Edge Weight Estimation After we get
the anomaly values for every node, the networks
are constructed by looking at the similarity values
between the anomaly timeseries of two nodes. We
compute the similarity between two nodes by taking
the Pearson correlation between the two time series
at the nodes. Pearson correlation is a linear measure
of similarity and is expressed as follows:

rxy =

Pn
i=1(xi � x̄)(yi � ȳ)

(n � 1)sxsy

where x̄ and ȳ are the mean of the two series X and
Y, and sx and sy are the standard deviations of the
two series.

We do not want to consider all the edges in the
complete graph formed to be a part of the network for
analysis as there are about 100 million edges in our
case and most of them are uninteresting. Thus, the
correlation threshold plays an important role in defin-
ing the network and must be chosen appropriately.
Fig 3 shows the distribution of the correlations in the
pressure network. Due to autocorrelation in space,
the positive correlation goes as high as 1. However
the negative correlation between any two nodes does
not go as high. If we threshold the graph using a sin-
gle absolute value (for e.g. 0.5) we will be using a very
harsh filter for negative correlations but a weak filter
for positive correlations that allows many spurious
values to pass through. Fig 4 shows the distribution
of edges which are greater than 5000km away. Note
that most of the high positive correlation edges have
disappeared and the distribution of the positive and
negative correlation is now quite similar. In particu-
lar, the distribution of negatively connected edges is

quite similar in both Fig. 3 and 4. This gives cre-
dence to our assumption that most of the very high
positive correlation comes from nearby links. This
also makes it harder to prune edges due to positive
correlation since the pruning threshold needs to be
cognizant of the physical distance between the nodes.
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We formally define the network or the graph to
be an ordered pair G = (V, E) where V = {1,2.. N} is
the set of nodes on the globe grid and E is the set of
undirected edges (i, j) such that the rij is significant
or above the threshold, which is di↵erent for negative
and positive correlations. We construct networks for
the pressure variable using a 20 year long window and
slide the window by 5 years at a time so as to get 9
separate networks spanning 20 years each for our 62
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nals. In order to handle this problem, we preprocess
the raw data by removing the monthly means in or-
der to obtain anomaly values for each month. The
data normalization for every location is performed as
follows:

µm =
1

end � start + 1

endX

y=start

xy(m), 8m2{1..12}

xy(m) = xy(m) � µm, 8y2{1948..2009}

In this formula, start and end represent the start
and end years to consider for the mean and define the
base for computing the mean for subtraction (in our
case 1948 and 2009). µm is the mean of the month
m and xy(m) represents the value of pressure for the
month m and year y.Once we remove the monthly
means, the resulting values are the anomaly time
series for that location.

3.3 Edge Weight Estimation After we get
the anomaly values for every node, the networks
are constructed by looking at the similarity values
between the anomaly timeseries of two nodes. We
compute the similarity between two nodes by taking
the Pearson correlation between the two time series
at the nodes. Pearson correlation is a linear measure
of similarity and is expressed as follows:

rxy =

Pn
i=1(xi � x̄)(yi � ȳ)

(n � 1)sxsy

where x̄ and ȳ are the mean of the two series X and
Y, and sx and sy are the standard deviations of the
two series.

We do not want to consider all the edges in the
complete graph formed to be a part of the network for
analysis as there are about 100 million edges in our
case and most of them are uninteresting. Thus, the
correlation threshold plays an important role in defin-
ing the network and must be chosen appropriately.
Fig 3 shows the distribution of the correlations in the
pressure network. Due to autocorrelation in space,
the positive correlation goes as high as 1. However
the negative correlation between any two nodes does
not go as high. If we threshold the graph using a sin-
gle absolute value (for e.g. 0.5) we will be using a very
harsh filter for negative correlations but a weak filter
for positive correlations that allows many spurious
values to pass through. Fig 4 shows the distribution
of edges which are greater than 5000km away. Note
that most of the high positive correlation edges have
disappeared and the distribution of the positive and
negative correlation is now quite similar. In particu-
lar, the distribution of negatively connected edges is

quite similar in both Fig. 3 and 4. This gives cre-
dence to our assumption that most of the very high
positive correlation comes from nearby links. This
also makes it harder to prune edges due to positive
correlation since the pruning threshold needs to be
cognizant of the physical distance between the nodes.
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We formally define the network or the graph to
be an ordered pair G = (V, E) where V = {1,2.. N} is
the set of nodes on the globe grid and E is the set of
undirected edges (i, j) such that the rij is significant
or above the threshold, which is di↵erent for negative
and positive correlations. We construct networks for
the pressure variable using a 20 year long window and
slide the window by 5 years at a time so as to get 9
separate networks spanning 20 years each for our 62
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Dipole discovery (Kawale et al.)

Can we discover dipoles automatically?

First: explore pairwise correlations

nals. In order to handle this problem, we preprocess
the raw data by removing the monthly means in or-
der to obtain anomaly values for each month. The
data normalization for every location is performed as
follows:

µm =
1

end � start + 1

endX

y=start

xy(m), 8m2{1..12}

xy(m) = xy(m) � µm, 8y2{1948..2009}

In this formula, start and end represent the start
and end years to consider for the mean and define the
base for computing the mean for subtraction (in our
case 1948 and 2009). µm is the mean of the month
m and xy(m) represents the value of pressure for the
month m and year y.Once we remove the monthly
means, the resulting values are the anomaly time
series for that location.

3.3 Edge Weight Estimation After we get
the anomaly values for every node, the networks
are constructed by looking at the similarity values
between the anomaly timeseries of two nodes. We
compute the similarity between two nodes by taking
the Pearson correlation between the two time series
at the nodes. Pearson correlation is a linear measure
of similarity and is expressed as follows:

rxy =

Pn
i=1(xi � x̄)(yi � ȳ)

(n � 1)sxsy

where x̄ and ȳ are the mean of the two series X and
Y, and sx and sy are the standard deviations of the
two series.

We do not want to consider all the edges in the
complete graph formed to be a part of the network for
analysis as there are about 100 million edges in our
case and most of them are uninteresting. Thus, the
correlation threshold plays an important role in defin-
ing the network and must be chosen appropriately.
Fig 3 shows the distribution of the correlations in the
pressure network. Due to autocorrelation in space,
the positive correlation goes as high as 1. However
the negative correlation between any two nodes does
not go as high. If we threshold the graph using a sin-
gle absolute value (for e.g. 0.5) we will be using a very
harsh filter for negative correlations but a weak filter
for positive correlations that allows many spurious
values to pass through. Fig 4 shows the distribution
of edges which are greater than 5000km away. Note
that most of the high positive correlation edges have
disappeared and the distribution of the positive and
negative correlation is now quite similar. In particu-
lar, the distribution of negatively connected edges is

quite similar in both Fig. 3 and 4. This gives cre-
dence to our assumption that most of the very high
positive correlation comes from nearby links. This
also makes it harder to prune edges due to positive
correlation since the pruning threshold needs to be
cognizant of the physical distance between the nodes.
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We formally define the network or the graph to
be an ordered pair G = (V, E) where V = {1,2.. N} is
the set of nodes on the globe grid and E is the set of
undirected edges (i, j) such that the rij is significant
or above the threshold, which is di↵erent for negative
and positive correlations. We construct networks for
the pressure variable using a 20 year long window and
slide the window by 5 years at a time so as to get 9
separate networks spanning 20 years each for our 62
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nals. In order to handle this problem, we preprocess
the raw data by removing the monthly means in or-
der to obtain anomaly values for each month. The
data normalization for every location is performed as
follows:

µm =
1

end � start + 1

endX

y=start

xy(m), 8m2{1..12}

xy(m) = xy(m) � µm, 8y2{1948..2009}

In this formula, start and end represent the start
and end years to consider for the mean and define the
base for computing the mean for subtraction (in our
case 1948 and 2009). µm is the mean of the month
m and xy(m) represents the value of pressure for the
month m and year y.Once we remove the monthly
means, the resulting values are the anomaly time
series for that location.

3.3 Edge Weight Estimation After we get
the anomaly values for every node, the networks
are constructed by looking at the similarity values
between the anomaly timeseries of two nodes. We
compute the similarity between two nodes by taking
the Pearson correlation between the two time series
at the nodes. Pearson correlation is a linear measure
of similarity and is expressed as follows:

rxy =

Pn
i=1(xi � x̄)(yi � ȳ)

(n � 1)sxsy

where x̄ and ȳ are the mean of the two series X and
Y, and sx and sy are the standard deviations of the
two series.

We do not want to consider all the edges in the
complete graph formed to be a part of the network for
analysis as there are about 100 million edges in our
case and most of them are uninteresting. Thus, the
correlation threshold plays an important role in defin-
ing the network and must be chosen appropriately.
Fig 3 shows the distribution of the correlations in the
pressure network. Due to autocorrelation in space,
the positive correlation goes as high as 1. However
the negative correlation between any two nodes does
not go as high. If we threshold the graph using a sin-
gle absolute value (for e.g. 0.5) we will be using a very
harsh filter for negative correlations but a weak filter
for positive correlations that allows many spurious
values to pass through. Fig 4 shows the distribution
of edges which are greater than 5000km away. Note
that most of the high positive correlation edges have
disappeared and the distribution of the positive and
negative correlation is now quite similar. In particu-
lar, the distribution of negatively connected edges is

quite similar in both Fig. 3 and 4. This gives cre-
dence to our assumption that most of the very high
positive correlation comes from nearby links. This
also makes it harder to prune edges due to positive
correlation since the pruning threshold needs to be
cognizant of the physical distance between the nodes.
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We formally define the network or the graph to
be an ordered pair G = (V, E) where V = {1,2.. N} is
the set of nodes on the globe grid and E is the set of
undirected edges (i, j) such that the rij is significant
or above the threshold, which is di↵erent for negative
and positive correlations. We construct networks for
the pressure variable using a 20 year long window and
slide the window by 5 years at a time so as to get 9
separate networks spanning 20 years each for our 62
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Dipole discovery (Kawale et al.)

Can we discover dipoles automatically?

First: explore pairwise correlations

nals. In order to handle this problem, we preprocess
the raw data by removing the monthly means in or-
der to obtain anomaly values for each month. The
data normalization for every location is performed as
follows:

µm =
1

end � start + 1

endX

y=start

xy(m), 8m2{1..12}

xy(m) = xy(m) � µm, 8y2{1948..2009}

In this formula, start and end represent the start
and end years to consider for the mean and define the
base for computing the mean for subtraction (in our
case 1948 and 2009). µm is the mean of the month
m and xy(m) represents the value of pressure for the
month m and year y.Once we remove the monthly
means, the resulting values are the anomaly time
series for that location.

3.3 Edge Weight Estimation After we get
the anomaly values for every node, the networks
are constructed by looking at the similarity values
between the anomaly timeseries of two nodes. We
compute the similarity between two nodes by taking
the Pearson correlation between the two time series
at the nodes. Pearson correlation is a linear measure
of similarity and is expressed as follows:

rxy =

Pn
i=1(xi � x̄)(yi � ȳ)

(n � 1)sxsy

where x̄ and ȳ are the mean of the two series X and
Y, and sx and sy are the standard deviations of the
two series.

We do not want to consider all the edges in the
complete graph formed to be a part of the network for
analysis as there are about 100 million edges in our
case and most of them are uninteresting. Thus, the
correlation threshold plays an important role in defin-
ing the network and must be chosen appropriately.
Fig 3 shows the distribution of the correlations in the
pressure network. Due to autocorrelation in space,
the positive correlation goes as high as 1. However
the negative correlation between any two nodes does
not go as high. If we threshold the graph using a sin-
gle absolute value (for e.g. 0.5) we will be using a very
harsh filter for negative correlations but a weak filter
for positive correlations that allows many spurious
values to pass through. Fig 4 shows the distribution
of edges which are greater than 5000km away. Note
that most of the high positive correlation edges have
disappeared and the distribution of the positive and
negative correlation is now quite similar. In particu-
lar, the distribution of negatively connected edges is

quite similar in both Fig. 3 and 4. This gives cre-
dence to our assumption that most of the very high
positive correlation comes from nearby links. This
also makes it harder to prune edges due to positive
correlation since the pruning threshold needs to be
cognizant of the physical distance between the nodes.
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We formally define the network or the graph to
be an ordered pair G = (V, E) where V = {1,2.. N} is
the set of nodes on the globe grid and E is the set of
undirected edges (i, j) such that the rij is significant
or above the threshold, which is di↵erent for negative
and positive correlations. We construct networks for
the pressure variable using a 20 year long window and
slide the window by 5 years at a time so as to get 9
separate networks spanning 20 years each for our 62
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nals. In order to handle this problem, we preprocess
the raw data by removing the monthly means in or-
der to obtain anomaly values for each month. The
data normalization for every location is performed as
follows:

µm =
1

end � start + 1

endX

y=start

xy(m), 8m2{1..12}

xy(m) = xy(m) � µm, 8y2{1948..2009}

In this formula, start and end represent the start
and end years to consider for the mean and define the
base for computing the mean for subtraction (in our
case 1948 and 2009). µm is the mean of the month
m and xy(m) represents the value of pressure for the
month m and year y.Once we remove the monthly
means, the resulting values are the anomaly time
series for that location.
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the anomaly values for every node, the networks
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between the anomaly timeseries of two nodes. We
compute the similarity between two nodes by taking
the Pearson correlation between the two time series
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rxy =

Pn
i=1(xi � x̄)(yi � ȳ)

(n � 1)sxsy

where x̄ and ȳ are the mean of the two series X and
Y, and sx and sy are the standard deviations of the
two series.
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values to pass through. Fig 4 shows the distribution
of edges which are greater than 5000km away. Note
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disappeared and the distribution of the positive and
negative correlation is now quite similar. In particu-
lar, the distribution of negatively connected edges is
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treat positive & negative correlations differently

reduction of search space: consistency in space
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Procedure (roughly): (1)

Given: time series of pressure data (monthly mean) for 1948-2011.

Preprocessing: smooth each time series by averaging over
3-month-windows; remove seasonality (as for climate networks)

Divide data into 9 periods of 20 years each, shifted by 5 years

Build a network via correlations, but different thresholds for positive
(0.85) and negative (0.4) correlations
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Procedure (roughly): (2)

Criteria for dipole:

two coherent regions in space

negatively correlated

far apart (long-range)

Dipole search:

1 Pick strongest negative edge (a, b).

2 Pick k most positive local neighbors of a and b each (gives
neighborhoods Pa,Pb)

3 Pick k farthest negative neighbors of a and b each (gives
neighborhoods Na,Nb)

4 Use Pa ∩ Nb and Pb ∩ Na as dipole pair, if large enough.
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Figure 5: Di↵erent phases of NAO seen in pressure data

Figure 6: Di↵erent phases of SOI seen in pressure data

in the NAO region. The North Atlantic Oscilla-
tion is seen very clearly in all the 9 networks of
20 year periods.

• Arctic Oscillation: The Arctic Oscillation is
the pressure anomaly around the North pole
and is defined on the basis of the first leading
component of an EOF analysis using the region
north of 20N latitude. It does not have a pair of
physical locations associated with it. However
using our method we are able to find it in all the
9 networks with a very high correlation.

• Antarctic Oscillation: The Antarctic Oscilla-
tion measures the anomaly of pressure around
the Antarctic region. This oscillation is the ana-
log of the Arctic oscillation in the southern hemi-
sphere and is also defined by EOF analysis of
locations south of 20S. We see the Antarctic Os-
cillation in all the climate networks. However
the climate indices data from the Climate Pre-
diction Center is defined from 1979 onwards[19].
Hence we can only compare its correlation with
known climate indices for the last two networks.

• Western Pacific Index: The Western Pacific in-
dex is north south dipole around the western Pa-
cific with one end located over the Kamachatka
peninsula and the other end in southeastern Asia
and the subtropical north Pacific.

6 Experimental Evaluation

In order to evaluate the goodness of the dipole regions
generated, we look at three things -

1. Strength of the negative correlation between
the two regions of the dipole. Higher negative
correlation implies a stronger dipole.

2. Correlation with known dipole indices. This
highlights the ability to reproduce known
dipoles.

3. Impact of the dipole indices on land by comput-
ing an area weighted correlation of land temper-
ature anomalies with the dipole indices. This
highlights the ability of data driven dipoles to
potentially outperform known dipoles.

6.1 Negative Correlation within regions of
Dipole From the definition of the dipole, the two
regions forming a dipole should be negatively corre-
lated with each other. To compute the strength of
the negative correlation across the two regions, we
look at three values -

1. The mean value of the correlation between all the
locations pairs across two regions constituting
the dipoles. We call this value mean of all pairs.

2. The best correlation in the two regions of the
dipole represented by the most negative edge in
the two regions. We call this value the best pair.

3. Compute the mean of the anomalies of all the
locations at each region and then take the corre-
lation between them. We call this pair of means.

Table 2 shows the three correlation values of the
dipole regions discovered by our algorithms. The
table reports the mean values for all the 9 networks.
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Summary

Modeling short-range interactions: Gaussian Processes

Interpretation, prediction, experimental design

Modeling & studying long-range interactions: network analysis
(climate networks) on spatial grid

Edges via correlation or mutual information
Apply network analysis and time series tools from previous modules
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