
Data Analysis:
Statistical Modeling and Computation in Applications

Spatial and Environmental Data:
Gaussian Processes

Stefanie Jegelka (and Caroline Uhler) 1 / 28



Sensing and correlations in space

KRAUSE, SINGH AND GUESTRIN
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(a) Comparison with disk model (Temperature)
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(b) Comparison with disk model (Precipitation)
Figure 10: RMS curves for placements of increasing size, optimized using the disk model, station-

ary and nonstationary GPs. Prediction for all placements is done using the empirical
covariance. Stationary GPs and nonstationary GPs estimated from 30 sensors (N30,
S30, for temperature data) or 40 sensors (N40, S40, for precipitation data).

(a) Placements of temperature sensors (b) Placements of rain sensors
Figure 11: Example sensor placements for temperature and precipitation data. Squares indicate

locations selected by mutual information, diamonds indicate those selected by entropy.
Notice how entropy places sensors closer to the border of the sensing field.

for the morning (between 8 am and 9 am) and noon (between 12 pm and 1 pm) in the Intel lab data.
Figure 12(a) and Figure 12(b) plot the log-likelihood of the test set observations with increasing
number of sensors for both models. Figure 12(e) presents the RMS error for a model estimated
for the entire day. We can see that mutual information in almost all cases outperforms entropy,
achieving better prediction accuracies with a smaller number of sensors.

Figure 12(f) presents the same results for the precipitation data set. Mutual information signifi-
cantly outperforms entropy as a selection criterion—often several sensors would have to be addi-
tionally placed for entropy to reach the same level of prediction accuracy as mutual information.
Figure 11(b) shows where both objective values would place sensors to measure precipitation. It
can be seen that entropy is again much more likely to place sensors around the border of the sensing
area than mutual information.
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High level idea

We determine a probabilistic model: multivariate Gaussian with
pre-specified covariance – decaying with distance.

We observe values y1, . . . , yN for some “locations” x1, . . . , xN .

We obtain a conditional distribution for the unobserved variables Y∗
(posterior): p(Y∗|y1, . . . , yN) Gaussian, shifted towards observations.

µ∗|1:N = µ∗ + σ>N∗Σ
−1
N (y1:N − µ1:N)

σ2∗|1:N = σ2∗ − σ>N∗Σ
−1
N σN∗.
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Correlations in space

model measurements Yi at locations xi as Gaussian, 1 ≤ i ≤ N

covariance is a function of locations: kernel function,

e.g. RBF (squared exponential) kernel:

cov(Yi ,Yj) = k(xi , xj) = exp
(
− ‖xi − xj‖2

2`2

)

covariance: ΣN =



cov(Y1,Y1) . . . cov(Y1,YN)

cov(Y2,Y1) . . .
...

...
. . .

...
cov(YN ,Y1) . . . cov(YN ,YN)




=




k(x1, x1) k(x1, x2) . . . k(x1, xN)

k(x2, x1) k(x2, x2)
...

...
...

...
. . .

...
k(xN , x1) . . . k(xN , xN)




Now we can get a prediction Ŷ∗ for any location x∗!
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Stefanie Jegelka (and Caroline Uhler) 5 / 28



Correlations in space

model measurements Yi at locations xi as Gaussian, 1 ≤ i ≤ N

covariance is a function of locations: kernel function,
e.g. RBF (squared exponential) kernel:

cov(Yi ,Yj) = k(xi , xj) = exp
(
− ‖xi − xj‖2

2`2

)

covariance: ΣN =



cov(Y1,Y1) . . . cov(Y1,YN)

cov(Y2,Y1) . . .
...

...
. . .

...
cov(YN ,Y1) . . . cov(YN ,YN)




=




k(x1, x1) k(x1, x2) . . . k(x1, xN)

k(x2, x1) k(x2, x2)
...

...
...

...
. . .

...
k(xN , x1) . . . k(xN , xN)




Now we can get a prediction Ŷ∗ for any location x∗!
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Prediction with Gaussian Processes (Kriging)

build kernel matrix KN of N observations

for any new point x∗: compute k>∗ = [k(x∗, x1), . . . k(x∗, xN)]
and predict

µ∗|1:N = µ∗ + k>∗ K
−1
N (y1:N − µ1:N)

σ2∗|1:N = σ2∗ − k∗
>K−1N k∗

Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Example
KRAUSE, SINGH AND GUESTRIN

(a) 54 node sensor network deployment
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Figure 1: (a) A deployment of a sensor network with 54 nodes at the Intel Berkeley Lab. Cor-
relations are often nonstationary as illustrated by (b) temperature data from the sensor
network deployment in Figure 1(a), showing the correlation between a sensor placed on
the blue square and other possible locations; (c) precipitation data from measurements
made across the Pacific Northwest, Figure 11(b).

The paper is organized as follows. In Section 2, we introduce Gaussian Processes. We reviewmutual
information criterion in Section 3, and describe our approximation algorithm to optimize mutual
information in Section 4. Section 5 presents several approaches towards making the optimization
more computationally efficient. In Section 6, we discuss how we can extend mutual information
to be robust against node failures and uncertainty in the model. Section 8 relates our approach to
other possible optimization criteria, and Section 7 describes related work. Section 9 presents our
experiments.

2. Gaussian Processes

In this section, we review Gaussian Processes, the probabilistic model for spatial phenomena that
forms the basis of our sensor placement algorithms.
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NEAR-OPTIMAL SENSOR PLACEMENTS IN GAUSSIAN PROCESSES
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Figure 2: Posterior mean and variance of the temperature GP estimated using all sensors: (a) Pre-
dicted temperature; (b) predicted variance.

2.1 Modeling Sensor Data Using the Multivariate Normal Distribution

Consider, for example, the sensor network we deployed as shown in Figure 1(a) that measures
a temperature field at 54 discrete locations. In order to predict the temperature at one of these
locations from the other sensor readings, we need the joint distribution over temperatures at the 54
locations. A simple, yet often effective (cf. Deshpande et al., 2004), approach is to assume that the
temperatures have a (multivariate) Gaussian joint distribution. Denoting the set of locations as V ,
in our sensor network example |V | = 54, we have a set of n= |V | corresponding random variables
XV with joint distribution:

P(XV = xV ) =
1

(2π)n/2|ΣV V |
e−

1
2 (xV −µV )TΣ−1V V (xV −µV ),

where µV is the mean vector and ΣV V is the covariance matrix. Interestingly, if we consider a subset,
A ⊆V , of our random variables, denoted by XA , then their joint distribution is also Gaussian.

2.2 Modeling Sensor Data Using Gaussian Processes

In our sensor network example, we are not just interested in temperatures at sensed locations, but
also at locations where no sensors were placed. In such cases, we can use regression techniques
to perform prediction (Golub and Van Loan, 1989; Hastie et al., 2003). Although linear regression
often gives excellent predictions, there is usually no notion of uncertainty about these predictions,
for example, for Figure 1(a), we are likely to have better temperature estimates at points near ex-
isting sensors, than in the two central areas that were not instrumented. A Gaussian process (GP)
is a natural generalization of linear regression that allows us to consider uncertainty about predic-
tions.

Intuitively, a GP generalizes multivariate Gaussians to an infinite number of random variables. In
analogy to the multivariate Gaussian above where the index set V was finite, we now have a (possi-
bly uncountably) infinite index set V . In our temperature example, V would be a subset of R2, and
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Figure 1: (a) A deployment of a sensor network with 54 nodes at the Intel Berkeley Lab. Cor-
relations are often nonstationary as illustrated by (b) temperature data from the sensor
network deployment in Figure 1(a), showing the correlation between a sensor placed on
the blue square and other possible locations; (c) precipitation data from measurements
made across the Pacific Northwest, Figure 11(b).

The paper is organized as follows. In Section 2, we introduce Gaussian Processes. We reviewmutual
information criterion in Section 3, and describe our approximation algorithm to optimize mutual
information in Section 4. Section 5 presents several approaches towards making the optimization
more computationally efficient. In Section 6, we discuss how we can extend mutual information
to be robust against node failures and uncertainty in the model. Section 8 relates our approach to
other possible optimization criteria, and Section 7 describes related work. Section 9 presents our
experiments.

2. Gaussian Processes

In this section, we review Gaussian Processes, the probabilistic model for spatial phenomena that
forms the basis of our sensor placement algorithms.
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Figure 2: Posterior mean and variance of the temperature GP estimated using all sensors: (a) Pre-
dicted temperature; (b) predicted variance.

2.1 Modeling Sensor Data Using the Multivariate Normal Distribution

Consider, for example, the sensor network we deployed as shown in Figure 1(a) that measures
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in our sensor network example |V | = 54, we have a set of n= |V | corresponding random variables
XV with joint distribution:

P(XV = xV ) =
1

(2π)n/2|ΣV V |
e−

1
2 (xV −µV )TΣ−1V V (xV −µV ),

where µV is the mean vector and ΣV V is the covariance matrix. Interestingly, if we consider a subset,
A ⊆V , of our random variables, denoted by XA , then their joint distribution is also Gaussian.

2.2 Modeling Sensor Data Using Gaussian Processes

In our sensor network example, we are not just interested in temperatures at sensed locations, but
also at locations where no sensors were placed. In such cases, we can use regression techniques
to perform prediction (Golub and Van Loan, 1989; Hastie et al., 2003). Although linear regression
often gives excellent predictions, there is usually no notion of uncertainty about these predictions,
for example, for Figure 1(a), we are likely to have better temperature estimates at points near ex-
isting sensors, than in the two central areas that were not instrumented. A Gaussian process (GP)
is a natural generalization of linear regression that allows us to consider uncertainty about predic-
tions.

Intuitively, a GP generalizes multivariate Gaussians to an infinite number of random variables. In
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ŷ∗ = f̂ (x∗) = µ∗︸︷︷︸
assume = 0

+k>∗ K
−1
N y1:N

=
N∑

i=1

w∗i yi

linear combination of N observed values

= k>NK−1N y1:N

=
N∑

i=1

k(x∗, xi )αi

linear combination of N nonlinear features

same αi s for all predictions

Stefanie Jegelka (and Caroline Uhler) 8 / 28



Alternative viewpoints of prediction
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RBF kernel: Effect of kernel bandwidth on the prediction
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Sharpness of the covariance function

Example: k(x , x ′) = exp(−
(
‖x−x ′‖

`

)γ
)

(Gamma-exponential kernel)
What happens as we vary γ?

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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Figure 4.2: Panel (a) covariance functions, and (b) random functions drawn from
Gaussian processes with the �-exponential covariance function eq. (4.18), for di↵erent
values of �, with ` = 1. The sample functions are only di↵erentiable when � = 2 (the
SE case). The sample functions on the right were obtained using a discretization of
the x-axis of 2000 equally-spaced points.

is MS continuous but not MS di↵erentiable. In D = 1 this is the covariance
function of the Ornstein-Uhlenbeck (OU) process. The OU process [UhlenbeckOrnstein-Uhlenbeck

process and Ornstein, 1930] was introduced as a mathematical model of the velocity
of a particle undergoing Brownian motion. More generally in D = 1 setting
⌫ + 1/2 = p for integer p gives rise to a particular form of a continuous-time
AR(p) Gaussian process; for further details see section B.2.1. The form of the
Matérn covariance function and samples drawn from it for ⌫ = 1/2, ⌫ = 2 and
⌫ !1 are illustrated in Figure 4.1.

The �-exponential Covariance Function

The �-exponential family of covariance functions, which includes both the ex-�-exponential

ponential and squared exponential, is given by

k(r) = exp
�
� (r/`)�

�
for 0 < �  2. (4.18)

Although this function has a similar number of parameters to the Matérn class,
it is (as Stein [1999] notes) in a sense less flexible. This is because the corre-
sponding process is not MS di↵erentiable except when � = 2 (when it is in-
finitely MS di↵erentiable). The covariance function and random samples from
the process are shown in Figure 4.2. A proof of the positive definiteness of this
covariance function can be found in Schoenberg [1938].

Rational Quadratic Covariance Function

The rational quadratic (RQ) covariance functionrational quadratic

kRQ(r) =
⇣
1 +

r2

2↵`2

⌘�↵

(4.19)
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Influence of the covariance function: polynomial kernels
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Periodic kernel

Kernel by David MacKay:

k(x , x ′) = exp

(
−2 sin2(π(x − x ′)/p)
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Figure 1: Comparison of GPs with a Gaussian and
b periodic kernels to model a periodic signal. Red
crosses denote the training targets yi and the blue line
the true latent function. The shaded areas represent
the ±2� bound of the marginal predictive distribu-
tion of the GP models. Outside the training data, the
GP with the Gaussian kernel falls back to the prior,
whereas the GP with the periodic kernel tracks the
signal with high confidence.

3 Long-Term Forecasting

In order to predict long-term state evolutions
p(x1), p(x2), . . . we iteratively concatenate one-step
predictions. For a deterministic input xt, the GP
predictive distribution p(xt+1|xt) is given in (3)–(4),
where xt plays the role of the test input x⇤ and xt+1

plays the role of f(x⇤).2 In the case of long-term
predictions, however, the inputs xt are typically not
given deterministically but by a probability distribu-
tion p(xt), which we assume to be Gaussian. The pre-
dictive distribution

p(xt+1) =

ZZ
p(xt+1|xt)p(xt)dxtdf (7)

requires to integrate out both xt ⇠ p(xt) and the
function f ⇠ GP, which is analytically intractable for
nonlinear kernels k. Therefore, approximations of the
predictive distribution p(xt+1) are required. We fo-
cus on Gaussian approximations by means of moment
matching (Quiñonero-Candela et al., 2003), where
we compute the mean and the variance of p(xt+1)
analytically. Therefore, the predictive distributions
p(x1), p(x2), . . . can be computed in closed form by
repeated application of this Gaussian approximation.

In the following, we will derive the high-level steps
for moment matching and identify the integrals, which
cannot be computed in closed form when we use a pe-
riodic kernel. Subsequently, we will detail our double-
approximation scheme to sidestep this di�culty to al-
low long-term forecasting with periodic Gaussian pro-
cesses.

2To keep notation uncluttered, we tacitly ignore the
Gaussian likelihood arising from the noise ".

3.1 Moment Matching with Gaussian
Processes

For moment matching with GPs, we compute the pre-
dictive mean and variance of p(xt+1) in (7). We as-
sume that p(xt) = N (xt|µt,⌃t) and that f ⇠ GP.

The exact predictive mean µt+1 is obtained by apply-
ing the law of iterated expectations and given by

µt+1 = Ext
[Ef [xt+1|xt]] = Ext

[m(xt)] , (8)

where m(xt) is the (posterior) mean function of the
GP evaluated at xt. By plugging in (3) for the pre-
dicted mean, we obtain

µt+1 = �>
Z

k(X, xt)N (xt|µt,⌃t)dxt , (9)

where � = (K + �2
"I)�1y and X, y are the training

inputs and targets, respectively.

Similarly, the predictive variance is given as

⌃t+1 = Ext
[Vf [xt+1|xt]] +Vxt

[Ef [xt+1|xt]]

= Ext
[�2(xt+1)] + Ext

[m(xt)m(xt)
>]

� µt+1µ
>
t+1 ,

(10)

where �2(xt) is the predictive GP variance at xt,
see (4). The last term in (10) is the predictive mean
µt+1, which is computed in (8). By plugging in the
GP mean and variance from (3) and (4), respectively,
the first two terms in (10) are given as

Ext
[�2(xt)] =

Z
k(xt, xt)p(xt)dxt

�
Z

k(xt, X)(K + �2
"I)�1k(X, xt)p(xt)dxt (11)

and

Ext [m(xt)m(xt)
>] =

Z
m(xt)m(xt)

>p(xt)dxt

= �>
Z

k(X, xt)k(xt, X)p(xt)dxt� . (12)

The integrals in (9), (11), and (12) depend on the
choice of the kernel k. For polynomial kernels or
Gaussian kernels these integrals can be computed an-
alytically (Quiñonero-Candela et al., 2003; Deisenroth
et al., 2012). However, for the periodic kernel in (6),
they cannot be computed in closed form, rendering the
problem of analytic moment matching for long-term
forecasting of periodic GPs intractable.

To address this issue, we propose a re-parametrization
of the periodic kernel in (6), which allows for an ana-
lytic approximate solution to the integrals in (9), (12),
and (11). In particular, we propose a double approxi-
mation to analytically compute these integrals by ex-
ploiting the fact that these expressions can be solved
analytically for the Gaussian kernel.

305

Plot uses a come advanced variation of this kernel.
Image source: Ghassemi & Deisenroth, Analytic Long-Term Forecasting with Periodic Gaussian Processes. AISTATS 2014.
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Building more covariance functions

A sum of kernel functions is a kernel function:

k(x , x ′) = k1(x , x ′) + k2(x , x ′).

e.g. klinear + kperiodic

A product of kernel functions is a kernel function:

k(x , x ′) = k1(x , x ′) · k2(x , x ′)

klinear · kperiodic
kRBF · kperiodic
splitting coordinates:
k
(
(x1, x2, t), (x ′1, x

′
2, t
′)
)

= kspace((x1, x2), (x ′1, x
′
2)) · ktime(t, t

′)

Images: Kernel cookbook, https: // www. cs. toronto. edu/ ~ duvenaud/ cookbook/
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Overview

Prediction and the kernel function

Gaussian Processes and the kernel function

Effect of the kernel function

Effect of measurement noise and nonstationarity
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Summary: covariance functions

covariance function expresses our assumptions on smoothness / shape
of f

k(x , x ′) needs to be

symmetric
positive semidefinite

more examples of valid covariance functions:

many other examples: Chapter 4 in Rasmussen & Williams
any function such that k(x , x ′) is an inner product

stationary: k(x , x ′) is a function of x − x ′

isotropic: k(x , x ′) is a function of ‖x − x ′‖
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Nonstationary kernels

Example: k(x , x ′) = exp(−‖ log(0.1 + x)− log(0.1 + x ′)‖2)
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Nonstationary kernels

Example: k(x , x ′) = exp(−‖ log(0.1 + x)− log(0.1 + x ′)‖2)

0 5 10

2

3

4

5

6

0 5 10

2

3

4

5

6

covariance matrix

50 100 150 200

50

100

150

200

0 5 10

distance

0

0.2

0.4

0.6

0.8

1

c
o

v
a

ri
a

n
c
e

0 5 10

2

3

4

5

6

0 5 10

2

3

4

5

6

Stefanie Jegelka (and Caroline Uhler) 21 / 28



Noisy observations

observed points: yi = f (xi ) + εi , εi ∼ N (0, τ2)
noise independent across locations

how does noise affect variance / covariance?

new covariance matrix of observed yi , . . . , yN : KN+τ2I
add τ 2 on diagonal

predicted mean and variance (m(x) = 0):

µ∗|1:N = 0 + k>∗ (KN + τ2I )−1y1:N

σ2∗|1:N = k(x∗, x∗)− k>∗ (KN + τ2I )−1k∗
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Influence of noise τ and kernel bandwidth (RBF kernel)
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Influence of noise

Examples: k(x , x ′) = 〈x , x ′〉 k(x , x ′) = (〈x , x ′〉+ 1)2

(linear kernel) (quadratic kernel)
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General comments on Gaussian Processes

flexible, nonlinear regression method

kernel determines what kind of function we fit

applicable far beyond spatial models – many settings of nonlinear
regression (including time series)

predicted variance: uncertainty. Can help guide sensor placement,
measurement selection, “Bayesian Optimization”

(e.g.: Krause, Singh, Guestrin. Near-Optimal Sensor Placements in Gaussian Processes:

Theory, Efficient Algorithms and Empirical Studies. JMLR, 2008.)
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Remaining Question: Which kernel?
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Summary

Prediction with Gaussian Processes: closed form to obtain Gaussian
distribution for each function value

Kernel function playes a key role in implementing our assumptions on
shape and smoothness

Measurement noise: larger variance, dampens influence of data

Final question: how select the kernel?
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