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Environmental Data – Examples

Air Quality, Water Quality (pollutants)

Weather & climate (temperature, winds, moisture, precipitation,
extreme conditions, . . . )

Storms

Ocean dynamics

Vegetation (forests, algae, . . . )

Wildlife monitoring

Earthquake magnitudes

Why do we care? What are questions of interest?
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Environmental Data – Why do we care?

understand underlying processes, changes
(e.g. climate change: “statistics of weather over time”)

impacts on environment, health, economics, society

policies

forecast events, warnings (e.g. community seismic network, storms, . . . )

resource/energy management, e.g., water, renewable energies

use in planning, routing, backtracking, control (ships, airplanes, . . . )

Questions

relationships (correlations, association)

trends; forecasting

planning

quantifying uncertainty, adaptive sensing
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Environmental Data – What is special?
2 Chapter 1. Climate and Mathematics

Figure 1.1. Schematic view of the Earth’s climate system. Reprinted with permission from IPCC.

Looking at the cartoon, we see a climate system that is schematically made up of five
components: the atmosphere; the hydrosphere (oceans, lakes, and other bodies of water);
the cryosphere (snow and ice); the lithosphere (land surface); and the biosphere (all living
things). The components do not exist in isolation; they are interconnected and interact
at several levels, either directly or indirectly. The system as a whole is powered by so-
lar radiation and evolves under the influence of its own internal dynamics through ocean
currents and atmospheric circulation. In addition, there are external factors which drive
the system; these are called forcings and include both natural phenomena such as cyclical
changes in the Earth’s orbit around the Sun, volcanic eruptions, and variations in the solar
output, and human-induced (anthropogenic) factors like changes in atmospheric compo-
sition, land use, and so on. Let us agree that this is a complex system, and let us also agree
that it is not obvious how to approach it mathematically.

1.2 Modeling Earth’s Climate
As mathematicians, we are used to setting up models for physical phenomena, usually in
the form of equations. For example, we recognize the second-order differential equation

L ẍ(t )+ g sin x(t ) = 0

as a model for the motion of a physical pendulum under the influence of gravity. Every
symbol in the equation has its counterpart in the physical world: x(t ) stands for the angle
between the arm of the pendulum and its rest position (straight down) at the time t ; L is
the length of the pendulum arm; and g is gravitational acceleration. The mass of the bob
turns out to be unimportant and therefore does not appear in the equation. The model
is understood by all to be an approximation, and part of the modeling effort consists in
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Environmental Data – What is special?

spatial and temporal correlation

from https: // www. epa. gov/ outdoor-air-quality-data ,

http: // public. dep. state. ma. us/ MassAir/ Pages/ MapCurrent. aspx? &ht= 1& hi= 101
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Environmental Data – What is special?

1.6. Models from Data 9

posite ways when compared between regions. Thus, ENSO is characterized by a dipole
with centers over the western Pacific and over the central/eastern Pacific. These dipoles
interact, and there is strong evidence that their influence can extend over thousands of
kilometers, a phenomenon known as teleconnection. We emphasize that teleconnections
are initially purely observational phenomena. They may manifest themselves differently
in different dipole pairs and may require very different physical explanations. Many of
the structures are poorly understood, in the sense that not even conceptual models ex-
ist for them, although they contribute to global weather variability over time scales of
decades. Indeed, a better understanding of interdecadal climate variability is one of the
main current goals of the IPCC.

A systematic search for dipole structures and teleconnections is now possible. By ap-
plying data mining techniques to the vast amounts of data from satellite observations and
computer simulations and data that predate the satellite age, one can reconstruct recent
climate states.1 Figure 1.8 shows some results for sea-level pressure data for the period
1948–1967 generated from the NCEP/NCAR Reanalysis project [75]. The color codes
correspond to aggregates of various physical observations. Black lines correspond to tele-
connections, which have been identified from 20 years of processed (“reanalyzed”) data.
Some of these teleconnections are well known. Others may represent new climatological
phenomena, they may be consequences of known teleconnections, or they may just be
the result of spurious observations.

Figure 1.8. Dipoles in NCEP sea-level data for the period 1948–1967. The color background
shows the regions of high activity. The edges represent dipole connections between regions.

What can we infer from these empirical observations? Do these dipole structures rep-
resent oscillatory modes of the climate system? What are possible coupling mechanisms
that cause the teleconnections? Is it too far-fetched to think of the climate system as a
system of coupled oscillators?

1This approach was already articulated by Sir Gilbert, who wrote in 1932: “I think that the relationships of
world weather are so complex that our only chance of explaining them is to accumulate the facts empirically;
we know that it was impossible to explain cyclones (lows) until data of the upper air conditions were available,
and there is a strong presumption that when we have data of pressure and temperature at 10 and 20 km, we shall
find a number of new relations that are of vital importance.”
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Stefanie Jegelka (and Caroline Uhler) 7 / 35



Environmental Data – What is special?

1.6. Models from Data 9

posite ways when compared between regions. Thus, ENSO is characterized by a dipole
with centers over the western Pacific and over the central/eastern Pacific. These dipoles
interact, and there is strong evidence that their influence can extend over thousands of
kilometers, a phenomenon known as teleconnection. We emphasize that teleconnections
are initially purely observational phenomena. They may manifest themselves differently
in different dipole pairs and may require very different physical explanations. Many of
the structures are poorly understood, in the sense that not even conceptual models ex-
ist for them, although they contribute to global weather variability over time scales of
decades. Indeed, a better understanding of interdecadal climate variability is one of the
main current goals of the IPCC.

A systematic search for dipole structures and teleconnections is now possible. By ap-
plying data mining techniques to the vast amounts of data from satellite observations and
computer simulations and data that predate the satellite age, one can reconstruct recent
climate states.1 Figure 1.8 shows some results for sea-level pressure data for the period
1948–1967 generated from the NCEP/NCAR Reanalysis project [75]. The color codes
correspond to aggregates of various physical observations. Black lines correspond to tele-
connections, which have been identified from 20 years of processed (“reanalyzed”) data.
Some of these teleconnections are well known. Others may represent new climatological
phenomena, they may be consequences of known teleconnections, or they may just be
the result of spurious observations.

Figure 1.8. Dipoles in NCEP sea-level data for the period 1948–1967. The color background
shows the regions of high activity. The edges represent dipole connections between regions.

What can we infer from these empirical observations? Do these dipole structures rep-
resent oscillatory modes of the climate system? What are possible coupling mechanisms
that cause the teleconnections? Is it too far-fetched to think of the climate system as a
system of coupled oscillators?

1This approach was already articulated by Sir Gilbert, who wrote in 1932: “I think that the relationships of
world weather are so complex that our only chance of explaining them is to accumulate the facts empirically;
we know that it was impossible to explain cyclones (lows) until data of the upper air conditions were available,
and there is a strong presumption that when we have data of pressure and temperature at 10 and 20 km, we shall
find a number of new relations that are of vital importance.”

D
ow

nl
oa

de
d 

10
/1

0/
16

 to
 1

8.
9.

61
.1

11
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

long-range spatial (anti-)correlations

Source: H. Kaper, H. Engler. Mathematics & Climate.

Stefanie Jegelka (and Caroline Uhler) 7 / 35



Environmental Data – What is special?

correlations in time

correlations in space (fields)

scientific models + statistics; simulations

methodological challenges for statistics

no controlled studies, only observational data
hypotheses from data
large data sets
heterogeneous data
proxy data
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Data for the problem set: flow in space & time
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Flow fields

V (x , t): flow at location x at time t
vector in 2d or 3d

velocity: vector length

V (x , t) at a fixed time t

What does variation in time mean?
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Working with flow fields

forward prediction

simulate (propagate) distributions, include variation in time

hindcasting
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8 March 2014: Malaysian Airlines Flight 370 (MH370) disappeared on its way from

Kuala Lumpur to Beijing.

source: Wikipedia
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Airplane pieces found in multiple locations.

image source: BBC
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full report:

http: // www. geomar. de/ fileadmin/ content/ service/ presse/ Pressemitteilungen/ 2016/ MH370_ Report_ May2016. pdf
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Sensing and correlations in space

KRAUSE, SINGH AND GUESTRIN
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(a) Comparison with disk model (Temperature)
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(b) Comparison with disk model (Precipitation)
Figure 10: RMS curves for placements of increasing size, optimized using the disk model, station-

ary and nonstationary GPs. Prediction for all placements is done using the empirical
covariance. Stationary GPs and nonstationary GPs estimated from 30 sensors (N30,
S30, for temperature data) or 40 sensors (N40, S40, for precipitation data).

(a) Placements of temperature sensors (b) Placements of rain sensors
Figure 11: Example sensor placements for temperature and precipitation data. Squares indicate

locations selected by mutual information, diamonds indicate those selected by entropy.
Notice how entropy places sensors closer to the border of the sensing field.

for the morning (between 8 am and 9 am) and noon (between 12 pm and 1 pm) in the Intel lab data.
Figure 12(a) and Figure 12(b) plot the log-likelihood of the test set observations with increasing
number of sensors for both models. Figure 12(e) presents the RMS error for a model estimated
for the entire day. We can see that mutual information in almost all cases outperforms entropy,
achieving better prediction accuracies with a smaller number of sensors.

Figure 12(f) presents the same results for the precipitation data set. Mutual information signifi-
cantly outperforms entropy as a selection criterion—often several sensors would have to be addi-
tionally placed for entropy to reach the same level of prediction accuracy as mutual information.
Figure 11(b) shows where both objective values would place sensors to measure precipitation. It
can be seen that entropy is again much more likely to place sensors around the border of the sensing
area than mutual information.

268

Measure & model correlations in space?

Estimate temperature / rainfall / gold in other locations?

Intuition: correlation is a function of distance
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Where we are headed

Gaussian Process Regression
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-2 -1 0 1 2

y(
x)

x

Figure: Examples include WiFi localization, C14 callibration curve.
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A simple start

Stefanie Jegelka (and Caroline Uhler) 20 / 35

mitx
Pencil



Intuition: correlated (Gaussian) random variables

weaker correlation
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Intuition: correlated (Gaussian) random variables

strong correlation
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Intuition: 50 Gaussian random variables
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Multivariate Gaussian distribution

y ∼ N (µ,Σ) p(y) =
1

(2π)−d/2|Σ|1/2
exp

(
− 1

2(y − µ)>Σ−1(y − µ)
)

Σij = cov(yi , yj)
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Covariance for 2 variables: intuition

Prediction of f2 from f1

-1

0

1

-1 0 1

f 1

f2

1 0.96587

0.96587 1

I The single contour of the Gaussian density represents the
joint distribution, p( f1, f2).

I We observe that f1 = �0.313.
I Conditional density: p( f2| f1 = �0.313).

Illustrations: Neil Lawrence
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Covariance for 2 variables: intuition

Prediction of f5 from f1

-1

0

1

-1 0 1

f 1

f5

1 0.57375

0.57375 1

I The single contour of the Gaussian density represents the
joint distribution, p( f1, f5).

I We observe that f1 = �0.313.
I Conditional density: p( f5| f1 = �0.313).

Illustrations: Neil Lawrence
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Overview

Environmental data

Modeling flows

Short-range spatial correlations

intuition
2 variables
multiple variables
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Prediction: conditional probabilities

YA,YB Gaussian random variables. We observe YB = yB .[
YA

YB

]
∼ N

([
µA
µB

]
,

[
σ2A σAB
σAB σ2B

])

Conditioning: p(YA|YB = yB) is also Gaussian with mean and
variance

µA|B = µA +
σAB
σ2B

(yB − µB)

σ2A|B = σ2A − σABσ−2B σAB .
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Conditioning on multiple variables / partial observation

Assume Y1, . . . ,YN ,Y∗ are jointly Gaussian with µ = 0 and

σN∗ = [ cov(Y∗,Y1), . . . , cov(Y∗,YN) ]
σ2∗ = var(Y∗)

Observe y1, . . . , yN . Conditioning yields a Gaussian p(Y∗|y1, . . . yN)
with parameters

µA|B = µA +
σAB
σ2B

(yB − µB) ⇒ µ∗|1:N = µ∗ + σ>N∗Σ
−1
N (y1:N − µ1:N)

σ2A|B = σ2A − σABσ−2B σAB ⇒ σ2∗|1:N = σ2∗ − σ>N∗Σ
−1
N σN∗.
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Comments

prediction: mean/mode ŷ∗ = µ∗|1:N = µ∗ + σ>N∗Σ
−1
N y1:N

(for µ = 0)

variance shrinks as we observe more data: σ2∗|1:N ≤ σ
2
∗

example of Bayesian Inference.

Just need the covariance . . .

Idea: covariance is a function of distance!
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Summary

Specifics of environmental data: spatio-temporal dependencies,
physical models, simulations

Modeling flows via discretization

Modeling short-range spatial correlations with Gaussians
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