Spatial and Environmental Data:
Introduction, Local Correlations



@ Environmental data

@ Modeling flows

@ Short-range spatial correlations
e intuition
e 2 variables
e multiple variables
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Environmental Data — Examples

Air Quality, Water Quality (pollutants)

Weather & climate (temperature, winds, moisture, precipitation,
extreme conditions, ... )

Storms

Ocean dynamics

Vegetation (forests, algae, ...)
Wildlife monitoring

Earthquake magnitudes

Why do we care? What are questions of interest?
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@ policies

o forecast events, Warnings (e.g. community seismic network, storms, ...)
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Environmental Data — Why do we care?

@ understand underlying processes, changes

(e.g. climate change: “statistics of weather over time”)

impacts on environment, health, economics, society
policies

forecast events, warnings (eg. community seismic network, storms, ...)

resource/energy management, e.g., water, renewable energies

use in planning, routing, backtracking, control (ships, airplanes, ...)

Questions
e relationships (correlations, association)
@ trends; forecasting
@ planning

@ quantifying uncertainty, adaptive sensing
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Environmental Data — What is special?
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Image source: H. Kaper, H. Engler. Mathematics & Climate.

5/35



Environmental Data — What is special?

Changes in the Atmosphere: Changes in the
Composition, Circulation Hydrological Cycle
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underlying physical processes; scientific models

Image source: H. Kaper, H. Engler. Mathematics & Climate.
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https://www.epa.gov/outdoor-air-quality-data
http://public.dep.state.ma.us/MassAir/Pages/MapCurrent.aspx?&ht=1&hi=101
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spatial and temporal correlation

from https: //www. epa. gov/ outdoor-air-quality-data,
http: //public. dep. state. ma. us/MassAir/Pages/MapCurrent. aspz?&ht=18hi=101
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Environmental Data — What is special?

Figure 1.8. Dipoles in NCEP sea-level data for the period 1948-1967. The color background
shows the regions of high activity. The edges represent dipole connections between regions.
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Environmental Data — What is special?
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Figure 1.8. Dipoles in NCEP sea-level data for the period 1948-1967. The color background
shows the regions of high activity. The edges represent dipole connections between regions.

long-range spatial (anti-)correlations

Source: H. Kaper, H. Engler. Mathematics & Climate.
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Environmental Data — What is special?

correlations in time
correlations in space (fields)

scientific models + statistics; simulations

methodological challenges for statistics

no controlled studies, only observational data
hypotheses from data

large data sets

heterogeneous data

proxy data
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@ Environmental data

@ Modeling flows

@ Short-range spatial correlations
e intuition
e 2 variables
e multiple variables
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Data for the problem set: flow in space & time

Stefanie Jegelka (and Caroline Uhler)

50

45

40

35

30

10 /35



e V(x,t): flow at location x at time t
vector in 2d or 3d
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e V(x,t): flow at location x at time t
vector in 2d or 3d

@ velocity: vector length

VA A A
1 2 1
7 S S

V(x,t) at a fixed time t
What does variation in time mean?



o forward prediction
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o forward prediction
simulate (propagate) distributions, include variation in time
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o forward prediction
simulate (propagate) distributions, include variation in time
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8 March 2014: Malaysian Airlines Flight 370 (MH370) disappeared on its way from
Kuala Lumpur to Beijing.

o
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Contact with Flight 370 is lost:
It disappears from secondary
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Airplane pieces found in multiple locations.
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image source: BBC
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Simulated trajectories from combined CMEMS surface currents and ECMWF Stokes drift:
objects were released in July 2015 around La Reunion and traced backwards in time
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full report:

http: //www. geomar. de/ fileadmin/ content/ service/presse/Pressemitteilungen/ 2016/ MH370_ Report_May2016. pdf
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Subsampling of trajectories:
consider only trajectories passing the 7th arc area in the timeframe 8-9 March 2014
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http: //www. geomar. de/ fileadmin/ content/ service/presse/Pressemitteilungen/ 2016/ MH370_ Report_May2016. pdf
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@ Environmental data

@ Modeling flows

@ Short-range spatial correlations
e intuition
e 2 variables
e multiple variables



@ Measure & model correlations in space?

e Estimate temperature / rainfall / gold in other locations?
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Sensing and correlations in space
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@ Measure & model correlations in space?
e Estimate temperature / rainfall / gold in other locations?
@ Intuition: correlation is a function of distance
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Intuition: correlated (Gaussian) random variables
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Intuition: 50 Gaussian random variables
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Multivariate Gaussian distribution
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Multivariate Gaussian distribution

Y NGE) P = o o0 (- 30— - )

Y = cov(yi,y;)
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@ Environmental data

@ Modeling flows

@ Short-range spatial correlations
e intuition
e 2 variables
e multiple variables



@ Yj, Yg Gaussian random variables. We observe Yg = yg.
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Prediction: conditional probabilities

@ Y4, Yg Gaussian random variables. We observe Yg = yg.
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@ Yj, Yg Gaussian random variables. We observe Yg = yg.
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Prediction: conditional probabilities

@ Y4, Yg Gaussian random variables. We observe Yg = yg.
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@ Assume Y1,..., Yy, Y, are jointly Gaussian with ;=0 and

onx = [cov(Ys, Y1), ..., cov(Ys, Yn)]
Y
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@ Assume Y1,..., Yy, Y, are jointly Gaussian with ;=0 and
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@ Assume Y1,..., Yy, Y, are jointly Gaussian with ;=0 and
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Conditioning on multiple variables / partial observation

@ Assume Y1,..., Yy, Y, are jointly Gaussian with ;=0 and

D o onx = [cov(Ys, Y1), ..., cov( Yy, Yn)]
Y= N 02 = var(Y.)

@ Observe y1,...,yn. Conditioning yields a Gaussian p(Yi|y1,...yn)
with parameters
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@ prediction: mean/mode y, = Hol1:N = M T+ U,—l\/—*zx/l)/LN
(for = 10)

@ variance shrinks as we observe more data: qu_N < o?



o prediction: mean/mode Vi = fi,1.n = s + U,E*lelylz,v
(for p=0)
@ variance shrinks as we observe more data: ‘73|1:N < o?

@ example of Bayesian Inference.
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o prediction: mean/mode Vi = fi,1.n = s + U,E*lelylz,v
(for p=0)
@ variance shrinks as we observe more data: ‘73|1:N < o?

@ example of Bayesian Inference.

@ Just need the covariance ...



prediction: mean/mode Vi = piy1.y = fix + U,E*lelylz,v
(for p=0)

variance shrinks as we observe more data: ‘73|1-N < o?

example of Bayesian Inference.

Just need the covariance . ..

Idea: covariance is a function of distance!



@ Specifics of environmental data: spatio-temporal dependencies,
physical models, simulations

@ Modeling flows via discretization

@ Modeling short-range spatial correlations with Gaussians
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