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Find important nodes

o Centrality measure: A measure that captures importance of a
node's position in the network

@ There are many different centrality measures

o degree centrality (indegree / outdegree)

e “propagated” degree centrality (score that is proportional to the sum
of the score of all neighbors)

@ closeness centrality

e betweenness centrality
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Which centrality measure to use

Choice of centrality measure depends on application!

In a friendship network:

high degree centrality: most popular person

high eigenvector centrality: most popular person that is friends with
popular people

high closeness centrality: person that could best inform the group

high betweenness centrality: person whose removal could best break
the network apart

Small network in which distinct nodes maximize degree, eigenvector,
closeness and betweenness centralities?
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Degree centrality

@ For undirected graphs the degree k; of node i is the number of edges
connected to i, i.e. ki =) ; Aj

@ For directed graphs the indegree of node i is k}n = Zj Ajj and the
outdegree is kP =" Aj;

@ Simple, but intuitive: individuals with more connections have more
influence and more access to information.
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Degree centrality

@ For undirected graphs the degree k; of node i is the number of edges
connected to i, i.e. ki =) ; Aj

@ For directed graphs the indegree of node i is k}n = Zj Ajj and the
outdegree is kP =" Aj;

@ Simple, but intuitive: individuals with more connections have more
influence and more access to information.

@ Does not capture “cascade of effects”: importance better captured by
having connections to important nodes
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o Closeness centrality: Tracks how close a node is to any other node:



o Closeness centrality: Tracks how close a node is to any other node:
-1
1
G = > odi|
n—14—
JF

where dj; is the distance between nodes i and j




Closeness and betweenness centrality

o Closeness centrality: Tracks how close a node is to any other node:
-1
1
G=|-"3 Zd,-j :
JF

where dj; is the distance between nodes i and

e In disconnected networks: average over nodes in same component as i
. . . L 1 L
or use harmonic centrality: H; = =7 . ; P

>
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Closeness and betweenness centrality

o Closeness centrality: Tracks how close a node is to any other node:
-1

1
G = n_lzd,-j :
JF

where dj; is the distance between nodes i and

e In disconnected networks: average over nodes in same component as i

. . . L 1 L
or use harmonic centrality: H; = =7 . ;

dij

o Betweenness centrality: Measures the extent to which a node lies
on paths between other nodes:
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Closeness and betweenness centrality

o Closeness centrality: Tracks how close a node is to any other node:
-1
1
G=|-"3 Zd,-j :
JF

where dj; is the distance between nodes i and

e In disconnected networks: average over nodes in same component as i

. . . L 1 L
or use harmonic centrality: H; = =7 . ; P

o Betweenness centrality: Measures the extent to which a node lies
on paths between other nodes:

1 i
Bi:ﬁzhv

ot 8st

where nl, is number of shortest paths between s and t that pass
through 7, and gs; is total number of shortest paths between s and t
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@ gives each node a score that is proportional to the sum of the scores
of all its neighbors

@ need to know scores of all neighbors, which we don't know
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Eigenvector centrality

@ gives each node a score that is proportional to the sum of the scores
of all its neighbors

@ need to know scores of all neighbors, which we don't know
@ start with equal centrality: x,.(o) =1forallnodesi=1,...,n

@ update each centrality by the centrality of the neighbors:

m*Z/“uX Q/\O AO) Xz

e iterate this process:  x(k) = AkX(O) - P%m \/xn
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Eigenvector centrality

@ gives each node a score that is proportional to the sum of the scores
of all its neighbors

@ need to know scores of all neighbors, which we don't know
@ start with equal centrality: x,.(o) =1forallnodesi=1,...,n

@ update each centrality by the centrality of the neighbors:

=A@ A Ak
=1 X

)

e iterate this process:  x(k) = Akx(0)
——

@ if there exists m > 0 such that A™ > 0, then one can show that

k—
x(F) —O>O_a)\k Vs

where A\max is the largest eigenvalue and v > 0 the corresponding
eigenvector; a depends on choice of x(9) (Perron-Frobenius theorem)
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Eigenvector centrality

Interpretation: v; = t1- Y77, Ajv;
@ node is important if it has important neighbors
@ node is important if it has many neighbors

@ eigenvector corresponding to largest eigenvalue of A provides a
ranking of all nodes
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Eigenvector centrality

Interpretation: v; = t1- Y77, Ajv;
@ node is important if it has important neighbors
@ node is important if it has many neighbors

@ eigenvector corresponding to largest eigenvalue of A provides a
ranking of all nodes

What happens when G is directed?
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Eigenvector centrality

Interpretation: v; = t1- Y77, Ajv;
@ node is important if it has important neighbors
@ node is important if it has many neighbors

@ eigenvector corresponding to largest eigenvalue of A provides a
ranking of all nodes

What happens when G is directed?

o right eigenvector: v; = 5 —> i1 AjVj
e importance comes from nodes i/ points to

e Example: determining malfunctioning genes

o left eigenvector: w; = ﬁ ZJ’LI wiAji
max -

e importance comes from nodes pointing to i

e Example: ranking websites
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@ Can the eigenvector centrality be applied to any directed network?



@ Can the eigenvector centrality be applied to any directed network?

@ Any directed graph with a source / sink node gives zero eigenvector
centrality (since the zeros are propagated through)



Katz centrality

@ Can the eigenvector centrality be applied to any directed network?

@ Any directed graph with a source / sink node gives zero eigenvector
centrality (since the zeros are propagated through)

e Remedy: Give every node some fixed (but small) centrality for free:
n
(k+1) (k)
X; =« ; A,-jxj + ﬁ,’

or equivalently,
xU1) = qAx(F) 4 I6;
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Katz centrality

@ Can the eigenvector centrality be applied to any directed network?

@ Any directed graph with a source / sink node gives zero eigenvector
centrality (since the zeros are propagated through)

e Remedy: Give every node some fixed (but small) centrality for free:

xl-(kH) =« Z A,-J-Xj(k) + Bi
j=1

or equivalently,
xU1) = qAx(F) 4 I6;

e If o is chosen in the interval (0,1/Anax(A)), then one can show that

k—
NOE=: 39

where v = (I — @A) >0 (for example: for DAGs it holds that
Amax = 0, hence no cdnstraints on «; take eg. a=1)
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@ Drawback of Katz centrality: A node of high centrality pointing to
many nodes gives them all high centrality.



Page rank
@ Drawback of Katz centrality: A node of high centrality pointing to
many nodes gives them all high centrality.

@ Remedy: Scale by the degree of a node:

(k)
(k+1
j ZAU kout +BJ’

or equivalently,

x6) = DT Ax(K) 4 8, where D = diag(kP™, ..., ko)
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Page rank
@ Drawback of Katz centrality: A node of high centrality pointing to
many nodes gives them all high centrality.

@ Remedy: Scale by the degree of a node:

(k)
(k+1
j ZAU kout +BJ’

or equivalently,

x6) = DT Ax(K) 4 8, where D = diag(kP™, ..., ko)

e If a is chosen in the interval (0, 1/Amax(D71A)), then one can show
that

k—
ko,

X(
where v = (I — aDA)713 >0
< - -
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@ Example: Paper can be important because



@ Example: Paper can be important because
e it contains important information itself (authority)
e it points to important papers (hub)



Hubs and authorities

@ Example: Paper can be important because
e it contains important information itself (authority)

e it points to important papers (hub)

e Approach: Define 2 centrality measures x (hub, is high if it points to
many authorities) and y (authority, is high if many hubs point to it)

,Hl) « ZA,J Y; , i.e., x(k+1) = aAy(k)

VY A, de.  yW = pATX®

0 ?)
L\P\v—\v K= /\/\

(& F\\L\V\ = (P v) \/M\ g\ Rala 2 Ay

\
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Hubs and authorities

@ Example: Paper can be important because
e it contains important information itself (authority)

e it points to important papers (hub)

e Approach: Define 2 centrality measures x (hub, is high if it points to
many authorities) and y (authority, is high if many hubs point to it)

XD — ZA,J Y; , i.e., x(k+1) = aAy(k)

I

VY A, de.  yW = pATX®

/‘
_ P NA)
o Choosing a8 = 1/Amax(AAT), “then
xR K2, and y(k) g

such that AATv = Avand ATAw = Aw  (in fact w = ATv)
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e Chapters 6 - 10 (but mostly Chapter 7) in
——
M. E. J. Newman. Networks: An Introduction. 2010.
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