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Find important nodes

Centrality measure: A measure that captures importance of a
node’s position in the network

There are many different centrality measures

degree centrality (indegree / outdegree)

“propagated” degree centrality (score that is proportional to the sum
of the score of all neighbors)

closeness centrality

betweenness centrality
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Which centrality measure to use

Choice of centrality measure depends on application!

In a friendship network:

high degree centrality: most popular person

high eigenvector centrality: most popular person that is friends with
popular people

high closeness centrality: person that could best inform the group

high betweenness centrality: person whose removal could best break
the network apart

Small network in which distinct nodes maximize degree, eigenvector,
closeness and betweenness centralities?
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Degree centrality

For undirected graphs the degree ki of node i is the number of edges
connected to i , i.e. ki =

∑
j Aij

For directed graphs the indegree of node i is k ini =
∑

j Aij and the

outdegree is kouti =
∑

j Aji

Simple, but intuitive: individuals with more connections have more
influence and more access to information.

Does not capture “cascade of effects”: importance better captured by
having connections to important nodes
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Closeness and betweenness centrality

Closeness centrality: Tracks how close a node is to any other node:

Ci =

 1

n − 1

∑
j 6=i

dij

−1 ,
where dij is the distance between nodes i and j

In disconnected networks: average over nodes in same component as i
or use harmonic centrality: Hi = 1

n−1
∑

j 6=i
1
dij

Betweenness centrality: Measures the extent to which a node lies
on paths between other nodes:

Bi =
1

n2

∑
s,t

nist
gst
,

where nist is number of shortest paths between s and t that pass
through i , and gst is total number of shortest paths between s and t
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Eigenvector centrality

gives each node a score that is proportional to the sum of the scores
of all its neighbors

need to know scores of all neighbors, which we don’t know

start with equal centrality: x
(0)
i = 1 for all nodes i = 1, . . . , n

update each centrality by the centrality of the neighbors:

x
(1)
i =

n∑
j=1

Aijx
(0)
j

iterate this process: x (k) = Akx (0)

if there exists m > 0 such that Am > 0, then one can show that

x (k)
k→∞−→ αλkmaxv ,

where λmax is the largest eigenvalue and v ≥ 0 the corresponding
eigenvector; α depends on choice of x (0) (Perron-Frobenius theorem)
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Eigenvector centrality

Interpretation: vi = 1
λmax

∑n
j=1 Aijvj

node is important if it has important neighbors

node is important if it has many neighbors

eigenvector corresponding to largest eigenvalue of A provides a
ranking of all nodes

What happens when G is directed?

right eigenvector: vi = 1
λmax

∑n
j=1 Aijvj

importance comes from nodes i points to

Example: determining malfunctioning genes

left eigenvector: wi = 1
λmax

∑n
j=1 wjAji

importance comes from nodes pointing to i

Example: ranking websites
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Katz centrality

Can the eigenvector centrality be applied to any directed network?

Any directed graph with a source / sink node gives zero eigenvector
centrality (since the zeros are propagated through)

Remedy: Give every node some fixed (but small) centrality for free:

x
(k+1)
i = α

n∑
j=1

Aijx
(k)
j + βi

or equivalently,
x (k+1) = αAx (k) + β

If α is chosen in the interval (0, 1/λmax(A)), then one can show that

x (k)
k→∞−→ v ,

where v = (I − αA)−1β ≥ 0 (for example: for DAGs it holds that
λmax = 0, hence no constraints on α; take e.g. α = 1)
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Page rank

Drawback of Katz centrality: A node of high centrality pointing to
many nodes gives them all high centrality.

Remedy: Scale by the degree of a node:

x
(k+1)
j = α

n∑
i=1

Aij
x
(k)
i

kouti

+ βj ,

or equivalently,

x (k+1) = αD−1Ax (k) + β, where D = diag(kout1 , . . . , koutn )

If α is chosen in the interval (0, 1/λmax(D−1A)), then one can show
that

x (k)
k→∞−→ v ,

where v = (I − αD−1A)−1β ≥ 0
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Hubs and authorities

Example: Paper can be important because

it contains important information itself (authority)

it points to important papers (hub)

Approach: Define 2 centrality measures x (hub, is high if it points to
many authorities) and y (authority, is high if many hubs point to it)

x
(k+1)
i = α

n∑
j=1

Aij y
(k)
j , i.e., x (k+1) = αAy (k)

y
(k)
i = β

n∑
j=1

Aji x
(k)
j , i.e., y (k) = βAT x (k)

Choosing αβ = 1/λmax(AAT ), then

x (k)
k→∞−→ v and y (k)

k→∞−→ w

such that AAT v = λv and ATAw = λw (in fact w = AT v)
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Chapters 6 - 10 (but mostly Chapter 7) in

M. E. J. Newman. Networks: An Introduction. 2010.
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