Genomics and High-Dimensional Data Module

Lecture 1: Visualization of Hig-Dimensional Data



@ Principle component analysis: projection that spreads data as much
as possible

@ Multidimensional scaling: projection that retains original distances as
much as possible

@ Stochastic neighbor embedding: non-linear embedding that tries to
keep close-by points close

It'sa
Fan!
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Principle Component Analysis

@ Goal: Dimension reduction to a few dimensions

@ Intuition: Find low-dimensional projection with largest spread
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Definition 1: Maximize projection variance

Start with centered data X € R"*P

* PC 1 is direction of largest variance
* PC2is

- perpendicular to PC 1

- again largest variance

10

0
e PC3is
- perpendicular to PC 1, PC 2 5
- again largest variance 10
* etc.
10
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Definition 2: Minimize projection residuals

e PC 1: Straight line with smallest orthogonal distance to all points

e PC 1 & PC 2: Plane with with smallest orthogonal distance to all

points

@ etc.

Second principal component
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First principal component

Figure from Elements of Statistical Learningby Hastie and Tibshirani
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Definition 3: Spectral decomposition

o Covariance matrix (or correlation matrix) R = 1 X7 X is symmetric

~n
and positive semidefinite

e Spectral Decomposition Theorem: Every real symmetric matrix R

can be decomposed as
R=VAVT,

where A is diagonal and V is orthogonal
e Columns of V (= eigenvectors of R) are the PCs

@ Diagonal entries of A (= eigenvalues of R) are variances along PCs
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Covariance versus correlation - to scale or not to scale

@ Using covariance will find the variable with largest spread as 1. PC

@ Use correlation, if different units are compared

Person Age Height
(years) | (cm)

35 190

height (o]
160 165 170 175 180 185 190

A Close
B 40 190
C 35 160 m/
D 40 160 = o
2 e w e

age [years]
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Covariance versus correlation - to scale or not to scale

@ Using covariance will find the variable with largest spread as 1. PC

@ Use correlation, if different units are compared

Close
Person Age Height e
(years) | (feet) 2
A 35 6.232 T 2
B 40 | 6.232 i3
C 35 5.248 2
D 40 5.248 o

Caroline Uhler (MIT)

T T T T T
35 36 37 38 39 40

age [years]
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Covariance versus correlation - to scale or not to scale

@ Using covariance will find the variable with largest spread as 1. PC

@ Use correlation, if different units are compared

Person Age Height
(years) | (feet)

A -0.87 0.87

B 0.87 0.87

C -0.87 | -0.87
D 0.87 -0.87
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height [scaled]
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0.0
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age [scaled]
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@ D € R™"Mis a distance matrix if

D; =0, D,'j >0, D,'j = Dj,', D,'j < Dj + Djk for all /,j, k

e Ex: Euclidean distance, Manhattan distance, maximum distance, ...

@ D € R™" is a dissimilarity matrix if

D,',' = 0, D,'J' > 0, D,'j = Dj,' for all i,j, k

e More flexible than distances, works e.g. for rankings



Given a matrix D € R""  determine points yi,...,y, € R9 such that:

o Classical MDS:  minimize 77, >0 (D — |yi — yjl2)?

assuming D is a Euclidean distance matrix



Multidimensional scaling (MDS)

Given a matrix D € R""  determine points yi,...,y, € R9 such that:

o Classical MDS:  minimize Y271 3771 (Dj — llyi — yjl2)?

assuming D is a Euclidean distance matrix

o Weighted MDS: minimize .7 ; Z ' wii (D — lyi — yil2)?
assuming D is a distance matrix and w;; are non-negative weights

e solved iteratively using stress majorization
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Multidimensional scaling (MDS)

Given a matrix D € R""  determine points yi,...,y, € R9 such that:

o Classical MDS:  minimize Y271 3771 (Dj — llyi — yjl2)?

assuming D is a Euclidean distance matrix

o Weighted MDS:  minimize 377 577 ) wy(Dj — [yi — yil2)?
assuming D is a distance matrix and w;; are non-negative weights

e solved iteratively using stress majorization

n n

o Non-metric MDS:  minimize 37\, > 71 (0(Dy) — |yi — yil2)?
assuming D is a dissimilarity matrix
e also optimize over increasing function 6
e finds low-dimensional embedding that respects ranking of dissimilarities

e solved numerically (isotonic regression); very time-consuming
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@ First convert a distance matrix D, with Dj; = |x; — xj|2 into a
positive semidefinite matrix XX T, namely

1 1 1
XX = _E(I - ;eet)Dz(l - ;eet), where e is vector of ones

o Note: (XXT); = —%(Dg - D? - Dg- + D?) (doubly centered matrix)



Classical MDS

@ First convert a distance matrix D, with Dj; = |x; — x;|2 into a
positive semidefinite matrix XXT namely

1
| — =

1 1
XxT = —5( eet)D2(/ — feet), where e is vector of ones
n n

e Note: (XXT); = —%(D% —D? - Di- + D?) (doubly centered matrix)
n

o miny Y11 Y7 1(D; — llyi — yjl3)? is equivalent to

m\jn trace(XX " — YYT)?
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Classical MDS

@ First convert a distance matrix D, with Dj; = |x; — x;|2 into a
positive semidefinite matrix XXT namely

1 1
| — —ee')D?(I — —ee'), where e is vector of ones
n n

1
XXT = -2
5
e Note: (XXT); = —%(D% —D? - Di- + D?) (doubly centered matrix)
o miny Y11 Y7 1(D; — llyi — yjl3)? is equivalent to

m\in trace(XX " — YYT)?

o Eigenvalue decomposition: XXT = VAV, where columns of V are
eigenvectors of XX T, A is diagonal containing eigenvalues of XX
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Classical MDS

@ First convert a distance matrix D, with Dj; = |x; — x;|2 into a
positive semidefinite matrix XXT namely

1
| — =

1 1
XxT = —5( eet)D2(/ — feet), where e is vector of ones
n

e Note: (XXT); = —%(D% —D? - Di- + D?) (doubly centered matrix)
o miny Y11 Y7 1(D; — llyi — yjl3)? is equivalent to
m\in trace(XX " — YYT)?

o Eigenvalue decomposition: XXT = VAV, where columns of V are
eigenvectors of XX T, A is diagonal containing eigenvalues of XX

@ Best rank g approximation of XX T is given by choosing g largest
eigenvalues and corresponding eigenvectors, i.e. YYT = ViA1 V], or

equivalently, Y = Vll\}/2
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Classical MDS

@ First convert a distance matrix D, with Dj; = |x; — x;|2 into a
positive semidefinite matrix XXT namely

1
| — =

1 1
XxT = —5( eet)D2(/ — feet), where e is vector of ones
n n

e Note: (XXT); = —%(D% —D? - Di- + D?) (doubly centered matrix)

e miny >, J'-’Zl(Dg — lyi — y;13)? is equivalent to

m\jn trace(XX " — YYT)?

o Eigenvalue decomposition: XXT = VAV, where columns of V are
eigenvectors of XX T, A is diagonal containing eigenvalues of XX

@ Best rank g approximation of XX T is given by choosing g largest
eigenvalues and corresponding eigenvectors, i.e. YYT = ViA1 V], or

equivalently, Y = Vll\}/2

@ Classical MDS is PCA on B = XX T; classical PCA operates on XTX
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MDS example: Distances between US cities

BOS CHI DC DEN LA MIA NY ' SEA SF
BOS 0 963 429 1,949 2,979 1,504 206 2,976 3,095
CHI 963 0 671 996 2,054 1,329/ 802 2,013 2,142
DC 429 671 0 1,616 2,631/ 1,075 233 2,684 2,799
DEN| 1,949 996 1,616 0 1,059 2,037 1,771 1,307 1,235
LA 2,979 2,054 2,631 1,059 0 2,687 2,786/ 1,131 379
MIA | 1,504 1,329 1,075 2,037 2,687 0 1,308/ 3,273 3,063
NY 206 802 233 1,771 2,786 1,308 0| 2,815 2,934
SEA | 2,976 2,013| 2,684 1,307 1,131 3,273 2,815 0 808
SF 3,095 2,142 2,799 1,235 379 3,053 2,934 808 0
o
SEA
05 )
NY  BOS
o
° DC
DEN CHI °
P
° ]
2
o
E
O 05 LA
o
10 MIA
o
2 0 :
Dimension 1
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Stochastic neighbor embedding (SNE)

@ probabilistic approach to place objects from high-dimensional space
into low-dimensional space so as to preserve the identity of neighbors

@ center a Gaussian on each object in high-dimensional space
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Stochastic neighbor embedding (SNE)

@ probabilistic approach to place objects from high-dimensional space
into low-dimensional space so as to preserve the identity of neighbors

@ center a Gaussian on each object in high-dimensional space

o find embedding so that resulting high-dimensional distribution is
approximated well by resulting low-dimensional distribution
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Stochastic neighbor embedding (SNE)

@ probabilistic approach to place objects from high-dimensional space
into low-dimensional space so as to preserve the identity of neighbors

@ center a Gaussian on each object in high-dimensional space

o find embedding so that resulting high-dimensional distribution is
approximated well by resulting low-dimensional distribution

@ determine low-dimensional distribution by minimizing Kullback-Leibler
divergence
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Stochastic neighbor embedding (SNE)

@ probabilistic approach to place objects from high-dimensional space
into low-dimensional space so as to preserve the identity of neighbors

@ center a Gaussian on each object in high-dimensional space

o find embedding so that resulting high-dimensional distribution is
approximated well by resulting low-dimensional distribution

@ determine low-dimensional distribution by minimizing Kullback-Leibler
divergence

@ allows ambiguous objects like “bank”, to be close to “river” and
“finance” without forcing all outdoor concepts to be located close to
corporate concepts
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(Symmetric) SNE

@ given dissimilarity matrix D, for each object i compute probability of

picking j as neighbor:
exp(—Dg)

pij =
’ Zk# eXP(_Dze)

@ in low-dimensional space, for each point y; compute probability of
picking y; as neighbor:

exp(—[yi — yjl3)
Zk;ﬁe exp(—[yx — yel3)
@ Minimize the KL-divergence

KL(P(IQ) = Y py og Py
i#j

qij =

Caroline Uhler (MIT) MITx: Statistics, Computation & Applications Lecture 8 13 /18



(Symmetric) SNE

given dissimilarity matrix D, for each object i compute probability of

picking j as neighbor:
exp(—Dg)

pij =
’ Zk# eXP(_Dze)

in low-dimensional space, for each point y; compute probability of
picking y; as neighbor:

exp(—[yi — yjl3)
Zk;ﬁé exp(—[yx — yel3)
Minimize the KL-divergence

KL(P(IQ) = Y py og Py
i#j

qij =

by modeling p;; by g;j = pjj + x you gain less than you lose by
choosing gj; = pjj — x
keeps nearby objects nearby and separated objects relatively far
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@ SNE (non-convex) is optimized using gradient descent from an initial
configuration



@ SNE (non-convex) is optimized using gradient descent from an initial
configuration

@ problem with many embedding methods: points often get crowded in
the middle



tSNE

@ SNE (non-convex) is optimized using gradient descent from an initial
configuration

@ problem with many embedding methods: points often get crowded in
the middle

@ t-SNE reduces this by using t-distribution with 1 degree of freedom

for y's:
(1+lyi — yl5)~*

qij = -
’ Dozl + yi = yil3)

@ reduces crowding: moderate distance in high-dim. space can be
faithfully modeled by much larger distance in low-dim. space
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Example: Digit recognition

@ ~ 1800 hand-written digits (i.e., n ~ 180 for each class label)

@ cach (centered) digit was put in a 8 x 8-grid (i.e., d = 64)

@ measure grey value in each part of the grid, i.e. 64 grey values

A selection from the 64-dimensional digits dataset
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jection of the digits (time 0.01s)

0j
o

Principal Components prt
4
44
|




Example: Digit recognition

Principal Components prcﬂ:ﬂjgction of the digits (time 0.01s) MDS embeddlngpf the dlglts (time 3.23s)
T4 1a

e"ll i ‘ 1 [
afhﬁg 3@2%&@

For code and figures see

http:scikit-learn.orgstableauto_examplesmanifoldplot_lle_digits.html
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MDS embedding.pf the digits (time 3.23s) the digits (time 5.70s)

t-SNE embedding o




Example: Digit recognition

MDS embeddlng_pf the d\glts (time 3.23s) t-SNE embedding %the digits (time 5.70s)

1
, 1

@ tSNE seems to find meaningful clusters

@ But: This is the result of a non-convex optimization problem, which
depends immensely on the starting configuration

@ Axes of tSNE have NO meaning
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