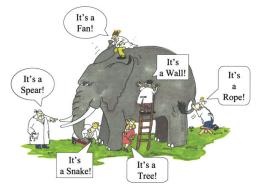
MITx: Statistics, Computation & Applications

Genomics and High-Dimensional Data Module Lecture 1: Visualization of Hig-Dimensional Data

3 different approaches

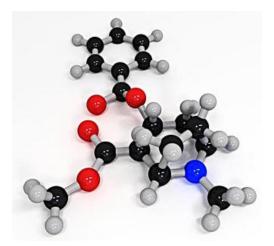
- Principle component analysis: projection that spreads data as much as possible
- Multidimensional scaling: projection that retains original distances as much as possible
- Stochastic neighbor embedding: non-linear embedding that tries to keep close-by points close



Caroline Uhler (MIT)

Principle Component Analysis

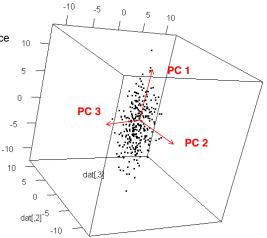
- Goal: Dimension reduction to a few dimensions
- Intuition: Find low-dimensional projection with largest spread



Definition 1: Maximize projection variance

Start with centered data $X \in \mathbb{R}^{n \times p}$

- PC 1 is direction of largest variance
- PC 2 is
 - perpendicular to PC 1
 - again largest variance
- PC 3 is
 - perpendicular to PC 1, PC 2
 - again largest variance
- etc.



Definition 2: Minimize projection residuals

- PC 1: Straight line with smallest orthogonal distance to all points
- PC 1 & PC 2: Plane with with smallest orthogonal distance to all points
- etc.

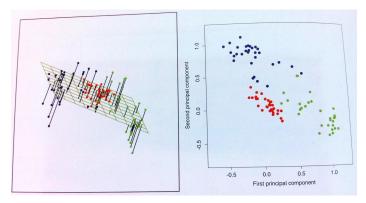


Figure from Elements of Statistical Learningby Hastie and Tibshirani

Caroline Uhler (MIT)

MITx: Statistics, Computation & Applications

- Covariance matrix (or correlation matrix) $R = \frac{1}{n}X^T X$ is symmetric and positive semidefinite
- Spectral Decomposition Theorem: Every real symmetric matrix R can be decomposed as

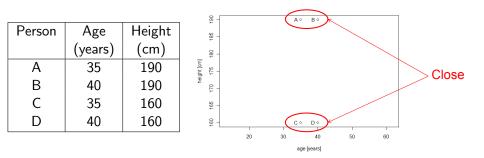
$$R = V \Lambda V^T$$
,

where Λ is diagonal and V is orthogonal

- Columns of V (= eigenvectors of R) are the PCs
- Diagonal entries of Λ (= eigenvalues of R) are variances along PCs

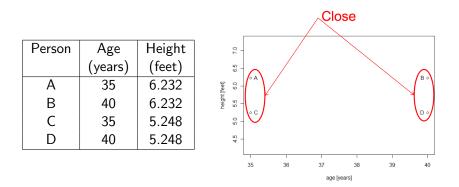
Covariance versus correlation - to scale or not to scale

- \bullet Using covariance will find the variable with largest spread as 1. PC
- Use correlation, if different units are compared



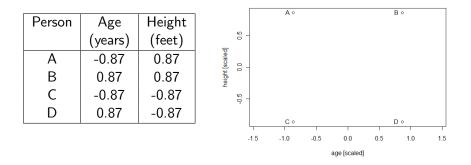
Covariance versus correlation - to scale or not to scale

- Using covariance will find the variable with largest spread as 1. PC
- Use correlation, if different units are compared



Covariance versus correlation - to scale or not to scale

- Using covariance will find the variable with largest spread as 1. PC
- Use correlation, if different units are compared



Distance and dissimilarity

• $D \in \mathbb{R}^{n \times n}$ is a distance matrix if

$$D_{ii} = 0, \quad D_{ij} \ge 0, \quad D_{ij} = D_{ji}, \quad D_{ij} \le D_{ik} + D_{jk} \quad \text{ for all } i, j, k$$

• Ex: Euclidean distance, Manhattan distance, maximum distance, ...

• $D \in \mathbb{R}^{n \times n}$ is a dissimilarity matrix if

$$D_{ii} = 0, \quad D_{ij} \ge 0, \quad D_{ij} = D_{ji} \quad \text{ for all } i, j, k$$

• More flexible than distances, works e.g. for rankings

Multidimensional scaling (MDS)

Given a matrix $D \in \mathbb{R}^{n \times n}$, determine points $y_1, \ldots, y_n \in \mathbb{R}^q$ such that:

• Classical MDS: minimize $\sum_{i=1}^{n} \sum_{j=1}^{n} (D_{ij} - ||y_i - y_j||_2)^2$

assuming D is a Euclidean distance matrix

Multidimensional scaling (MDS)

Given a matrix $D \in \mathbb{R}^{n \times n}$, determine points $y_1, \ldots, y_n \in \mathbb{R}^q$ such that:

- Classical MDS: minimize $\sum_{i=1}^{n} \sum_{j=1}^{n} (D_{ij} ||y_i y_j||_2)^2$ assuming *D* is a Euclidean distance matrix
- Weighted MDS: minimize $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (D_{ij} ||y_i y_j||_2)^2$ assuming D is a distance matrix and w_{ij} are non-negative weights
 - solved iteratively using stress majorization

Multidimensional scaling (MDS)

Given a matrix $D \in \mathbb{R}^{n \times n}$, determine points $y_1, \ldots, y_n \in \mathbb{R}^q$ such that:

- Classical MDS: minimize $\sum_{i=1}^{n} \sum_{j=1}^{n} (D_{ij} ||y_i y_j||_2)^2$ assuming *D* is a Euclidean distance matrix
- Weighted MDS: minimize $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (D_{ij} ||y_i y_j||_2)^2$ assuming D is a distance matrix and w_{ij} are non-negative weights
 - solved iteratively using stress majorization
- Non-metric MDS: minimize $\sum_{i=1}^{n} \sum_{j=1}^{n} (\theta(D_{ij}) ||y_i y_j||_2)^2$ assuming D is a dissimilarity matrix
 - $\bullet\,$ also optimize over increasing function θ
 - finds low-dimensional embedding that respects ranking of dissimilarities
 - solved numerically (isotonic regression); very time-consuming

• First convert a distance matrix D, with $D_{ij} = ||x_i - x_j||_2$ into a positive semidefinite matrix XX^T , namely

$$XX^{T} = -\frac{1}{2}(I - \frac{1}{n}ee^{t})D^{2}(I - \frac{1}{n}ee^{t}), \text{ where } e \text{ is vector of ones}$$

• Note: $(XX^{T})_{ij} = -\frac{1}{2}(D_{ij}^{2} - D_{i}^{2} - D_{\cdot j}^{2} + D_{\cdot j}^{2})$ (doubly centered matrix)

1

• First convert a distance matrix D, with $D_{ij} = ||x_i - x_j||_2$ into a positive semidefinite matrix XX^{T} , namely

$$XX^{T} = -\frac{1}{2}(I - \frac{1}{n}ee^{t})D^{2}(I - \frac{1}{n}ee^{t}), \text{ where } e \text{ is vector of ones}$$

• Note: $(XX^{T})_{ij} = -\frac{1}{2}(D_{ij}^{2} - D_{i.}^{2} - D_{.j}^{2} + D_{..}^{2})$ (doubly centered matrix)
• min_{Y} $\sum_{i=1}^{n} \sum_{j=1}^{n} (D_{ij}^{2} - ||y_{i} - y_{j}||_{2}^{2})^{2}$ is equivalent to
min_trace $(XX^{T} - YY^{T})^{2}$

Y

First convert a distance matrix D, with D_{ij} = ||x_i − x_j||₂ into a positive semidefinite matrix XX^T, namely

$$XX^T = -\frac{1}{2}(I - \frac{1}{n}ee^t)D^2(I - \frac{1}{n}ee^t),$$
 where e is vector of ones

• Note: $(XX^{T})_{ij} = -\frac{1}{2}(D_{ij}^{2} - D_{i.}^{2} - D_{.j}^{2} + D_{..}^{2})$ (doubly centered matrix)

• min_Y
$$\sum_{i=1}^{n} \sum_{j=1}^{n} (D_{ij}^2 - \|y_i - y_j\|_2^2)^2$$
 is equivalent to
min $\operatorname{trace}(XX^T - YY^T)^2$

• Eigenvalue decomposition: $XX^T = V\Lambda V^T$, where columns of V are eigenvectors of XX^T , Λ is diagonal containing eigenvalues of XX^T

• First convert a distance matrix D, with $D_{ij} = ||x_i - x_j||_2$ into a positive semidefinite matrix XX^T , namely

$$XX^{T} = -\frac{1}{2}(I - \frac{1}{n}ee^{t})D^{2}(I - \frac{1}{n}ee^{t}), \text{ where } e \text{ is vector of ones}$$

• Note: $(XX^{T})_{ij} = -\frac{1}{2}(D_{ij}^{2} - D_{i.}^{2} - D_{.j}^{2} + D_{..}^{2})$ (doubly centered matrix)

• min_Y
$$\sum_{i=1}^{n} \sum_{j=1}^{n} (D_{ij}^2 - \|y_i - y_j\|_2^2)^2$$
 is equivalent to
min $\operatorname{trace}(XX^T - YY^T)^2$

- Eigenvalue decomposition: $XX^T = V\Lambda V^T$, where columns of V are eigenvectors of XX^T , Λ is diagonal containing eigenvalues of XX^T
- Best rank q approximation of XX^T is given by choosing q largest eigenvalues and corresponding eigenvectors, i.e. $YY^T = V_1\Lambda_1V_1^T$, or equivalently, $Y = V_1\Lambda_1^{1/2}$

• First convert a distance matrix D, with $D_{ii} = ||x_i - x_i||_2$ into a positive semidefinite matrix XX^{T} , namely

$$XX^{T} = -\frac{1}{2}(I - \frac{1}{n}ee^{t})D^{2}(I - \frac{1}{n}ee^{t}), \text{ where } e \text{ is vector of ones}$$

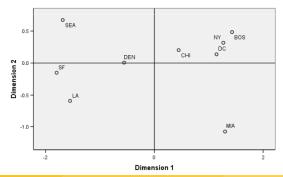
• Note: $(XX^T)_{ij} = -\frac{1}{2}(D_{ii}^2 - D_{i.}^2 - D_{..}^2 + D_{..}^2)$ (doubly centered matrix)

• min_Y
$$\sum_{i=1}^{n} \sum_{j=1}^{n} (D_{ij}^2 - \|y_i - y_j\|_2^2)^2$$
 is equivalent to
min $\operatorname{trace}(XX^T - YY^T)^2$

- Eigenvalue decomposition: $XX^T = V\Lambda V^T$, where columns of V are eigenvectors of XX^{T} , Λ is diagonal containing eigenvalues of XX^{T}
- Best rank q approximation of XX^T is given by choosing q largest eigenvalues and corresponding eigenvectors, i.e. $YY^T = V_1 \Lambda_1 V_1^T$, or equivalently, $Y = V_1 \Lambda_1^{1/2}$
- Classical MDS is PCA on $B = XX^{T}$; classical PCA operates on $X^{T}X$ Caroline Uhler (MIT) Lecture 8 10 / 18

MDS example: Distances between US cities

	BOS	CHI	DC	DEN	LA	MIA	NY	SEA	SF
BOS	0	963	429	1,949	2,979	1,504	206	2,976	3,095
CHI	963	0	671	996	2,054	1,329	802	2,013	2,142
DC	429	671	0	1,616	2,631	1,075	233	2,684	2,799
DEN	1,949	996	1,616	0	1,059	2,037	1,771	1,307	1,235
LA								1,131	
MIA	1,504	1,329	1,075	2,037	2,687	0	1,308	3,273	3,053
NY	206	802	233	1,771	2,786	1,308	0	2,815	2,934
SEA	2,976	2,013	2,684	1,307	1,131	3,273	2,815	0	808
SF	3,095	2,142	2,799	1,235	379	3,053	2,934	808	0



Caroline Uhler (MIT)

MITx: Statistics, Computation & Applications

- probabilistic approach to place objects from high-dimensional space into low-dimensional space so as to preserve the identity of neighbors
- center a Gaussian on each object in high-dimensional space

- probabilistic approach to place objects from high-dimensional space into low-dimensional space so as to preserve the identity of neighbors
- center a Gaussian on each object in high-dimensional space
- find embedding so that resulting high-dimensional distribution is approximated well by resulting low-dimensional distribution

- probabilistic approach to place objects from high-dimensional space into low-dimensional space so as to preserve the identity of neighbors
- center a Gaussian on each object in high-dimensional space
- find embedding so that resulting high-dimensional distribution is approximated well by resulting low-dimensional distribution
- determine low-dimensional distribution by minimizing Kullback-Leibler divergence

- probabilistic approach to place objects from high-dimensional space into low-dimensional space so as to preserve the identity of neighbors
- center a Gaussian on each object in high-dimensional space
- find embedding so that resulting high-dimensional distribution is approximated well by resulting low-dimensional distribution
- determine low-dimensional distribution by minimizing Kullback-Leibler divergence
- allows ambiguous objects like "bank", to be close to "river" and "finance" without forcing all outdoor concepts to be located close to corporate concepts

(Symmetric) SNE

 given dissimilarity matrix D, for each object i compute probability of picking j as neighbor:

$$p_{ij} = rac{\exp(-D_{ij}^2)}{\sum_{k
eq \ell} \exp(-D_{k\ell}^2)}$$

 in low-dimensional space, for each point y_i compute probability of picking y_i as neighbor:

$$q_{ij} = \frac{\exp(-\|y_i - y_j\|_2^2)}{\sum_{k \neq \ell} \exp(-\|y_k - y_\ell\|_2^2)}$$

• Minimize the KL-divergence

$$ext{KL}(P||Q) = \sum_{i
eq j} p_{ij} \log rac{p_{ij}}{q_{ij}}$$

(Symmetric) SNE

 given dissimilarity matrix D, for each object i compute probability of picking j as neighbor:

$$p_{ij} = rac{\exp(-D_{ij}^2)}{\sum_{k
eq \ell} \exp(-D_{k\ell}^2)}$$

 in low-dimensional space, for each point y_i compute probability of picking y_i as neighbor:

$$q_{ij} = \frac{\exp(-\|y_i - y_j\|_2^2)}{\sum_{k \neq \ell} \exp(-\|y_k - y_\ell\|_2^2)}$$

• Minimize the KL-divergence

$$ext{KL}(P||Q) = \sum_{i
eq j} p_{ij} \log rac{p_{ij}}{q_{ij}}$$

- by modeling p_{ij} by $q_{ij} = p_{ij} + x$ you gain less than you lose by choosing $q_{ij} = p_{ij} x$
- keeps nearby objects nearby and separated objects relatively far

• SNE (non-convex) is optimized using gradient descent from an initial configuration

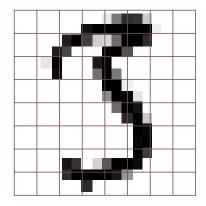
- SNE (non-convex) is optimized using gradient descent from an initial configuration
- problem with many embedding methods: points often get crowded in the middle

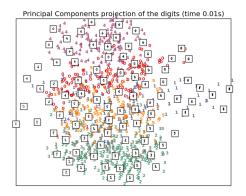
- SNE (non-convex) is optimized using gradient descent from an initial configuration
- problem with many embedding methods: points often get crowded in the middle
- t-SNE reduces this by using *t*-distribution with 1 degree of freedom for *y*'s:

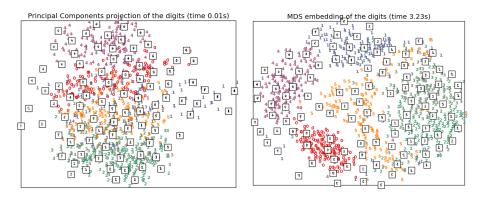
$$q_{ij} = rac{(1 + \|y_i - y_j\|_2^2)^{-1}}{\sum_{k
eq \ell} (1 + \|y_i - y_j\|_2^2)^{-1}}$$

• reduces crowding: moderate distance in high-dim. space can be faithfully modeled by much larger distance in low-dim. space

- \sim 1800 hand-written digits (i.e., $n \approx$ 180 for each class label)
- each (centered) digit was put in a 8×8 -grid (i.e., d = 64)
- measure grey value in each part of the grid, i.e. 64 grey values

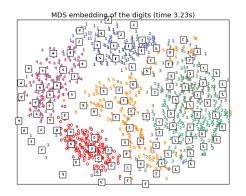


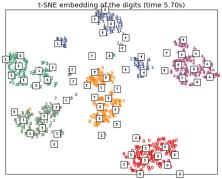


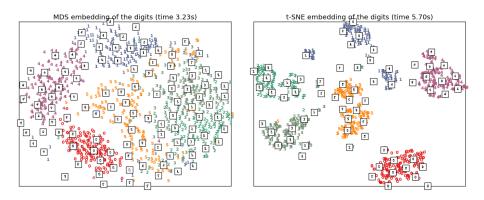


For code and figures see

http:scikit-learn.orgstableauto_examplesmanifoldplot_lle_digits.html







- tSNE seems to find meaningful clusters
- But: This is the result of a non-convex optimization problem, which depends immensely on the starting configuration
- Axes of tSNE have NO meaning

- For PCA and MDS:
 - B. Everitt & T. Hothorn. An Introduction to Applied Multivariate Analysis with R. Springer, 2011.
 - T. Hastie, R. Tibshirani & J. Friedman. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction.* Springer, 2009.
- For tSNE:
 - L. van der Maaten & G. E. Hinton. *Visualizing Data using t-SNE*. JMLR, 2008.
 - G. E. Hinton & S. T. Roweis. *Stochastic Neighbor Embedding*. NIPS, 2002.