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Lecture 1: Visualization of Hig-Dimensional Data
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3 different approaches

Principle component analysis: projection that spreads data as much
as possible

Multidimensional scaling: projection that retains original distances as
much as possible

Stochastic neighbor embedding: non-linear embedding that tries to
keep close-by points close
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Principle Component Analysis

Goal: Dimension reduction to a few dimensions

Intuition: Find low-dimensional projection with largest spread
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Definition 1: Maximize projection variance

Start with centered data X ∈ Rn×pPCA (Version 1): Orthogonal directions 

11 Appl. Multivariate Statistics - Spring 2012 

PC 1 

PC 2 

PC 3 

• PC 1 is direction of largest variance 

• PC 2 is  
- perpendicular to PC 1 
- again largest variance 

• PC 3 is  
- perpendicular to PC 1, PC 2 
- again largest variance 

• etc. 
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Definition 2: Minimize projection residuals

PC 1: Straight line with smallest orthogonal distance to all points

PC 1 & PC 2: Plane with with smallest orthogonal distance to all
points

etc.PCA: Intuition in 2d  

9 Appl. Multivariate Statistics - Spring 2012 
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Figure from Elements of Statistical Learningby Hastie and Tibshirani
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Definition 3: Spectral decomposition

Covariance matrix (or correlation matrix) R = 1
nX

TX is symmetric
and positive semidefinite

Spectral Decomposition Theorem: Every real symmetric matrix R
can be decomposed as

R = VΛV T ,

where Λ is diagonal and V is orthogonal

Columns of V (= eigenvectors of R) are the PCs

Diagonal entries of Λ (= eigenvalues of R) are variances along PCs
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Covariance versus correlation - to scale or not to scale

Using covariance will find the variable with largest spread as 1. PC

Use correlation, if different units are compared

Person Age Height
(years) (cm)

A 35 190
B 40 190
C 35 160
D 40 160

Example 1: cm 

� 4 persons 

10 Appl. Multivariate Statistics - Spring 2012 

Person Age 
[years] 

Height 
[cm] 

A 35 190 

B 40 190 

C 35 160 

D 40 160 

Close 
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Covariance versus correlation - to scale or not to scale

Using covariance will find the variable with largest spread as 1. PC

Use correlation, if different units are compared

Person Age Height
(years) (feet)

A 35 6.232
B 40 6.232
C 35 5.248
D 40 5.248
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Covariance versus correlation - to scale or not to scale

Using covariance will find the variable with largest spread as 1. PC

Use correlation, if different units are compared

Person Age Height
(years) (feet)

A -0.87 0.87
B 0.87 0.87
C -0.87 -0.87
D 0.87 -0.87

Example 1: scaled 

� 4 persons 

12 Appl. Multivariate Statistics - Spring 2012 

Person Age 
[scaled] 

Height 
[scaled] 

A -0.87 0.87 

B 0.87 0.87 

C -0.87 -0.87 

D 0.87 -0.87 

No subgroups  
anymore 
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Distance and dissimilarity

D ∈ Rn×n is a distance matrix if

Dii = 0, Dij ≥ 0, Dij = Dji , Dij ≤ Dik + Djk for all i , j , k

Ex: Euclidean distance, Manhattan distance, maximum distance, . . .

D ∈ Rn×n is a dissimilarity matrix if

Dii = 0, Dij ≥ 0, Dij = Dji for all i , j , k

More flexible than distances, works e.g. for rankings
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Multidimensional scaling (MDS)

Given a matrix D ∈ Rn×n, determine points y1, . . . , yn ∈ Rq such that:

Classical MDS: minimize
∑n

i=1

∑n
j=1(Dij − ||yi − yj ||2)2

assuming D is a Euclidean distance matrix

Weighted MDS: minimize
∑n

i=1

∑n
j=1 wij(Dij − ||yi − yj ||2)2

assuming D is a distance matrix and wij are non-negative weights

solved iteratively using stress majorization

Non-metric MDS: minimize
∑n

i=1

∑n
j=1(θ(Dij)− ||yi − yj ||2)2

assuming D is a dissimilarity matrix

also optimize over increasing function θ

finds low-dimensional embedding that respects ranking of dissimilarities

solved numerically (isotonic regression); very time-consuming
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Classical MDS

First convert a distance matrix D, with Dij = ||xi − xj ||2 into a
positive semidefinite matrix XXT , namely

XXT = −1

2
(I − 1

n
eet)D2(I − 1

n
eet), where e is vector of ones

Note: (XXT )ij = −1
2(D2

ij −D2
i ·−D2

·j +D2
··) (doubly centered matrix)

minY
∑n

i=1

∑n
j=1(D2

ij − ||yi − yj ||22)2 is equivalent to

min
Y

trace(XXT − YY T )2

Eigenvalue decomposition: XXT = VΛV T , where columns of V are
eigenvectors of XXT , Λ is diagonal containing eigenvalues of XXT

Best rank q approximation of XXT is given by choosing q largest
eigenvalues and corresponding eigenvectors, i.e. YY T = V1Λ1V

T
1 , or

equivalently, Y = V1Λ
1/2
1

Classical MDS is PCA on B = XXT ; classical PCA operates on XTX
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MDS example: Distances between US citiesExample : Distances between US Cities
Example : Distances between US Cities
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Stochastic neighbor embedding (SNE)

probabilistic approach to place objects from high-dimensional space
into low-dimensional space so as to preserve the identity of neighbors

center a Gaussian on each object in high-dimensional space

find embedding so that resulting high-dimensional distribution is
approximated well by resulting low-dimensional distribution

determine low-dimensional distribution by minimizing Kullback-Leibler
divergence

allows ambiguous objects like “bank”, to be close to “river” and
“finance” without forcing all outdoor concepts to be located close to
corporate concepts
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(Symmetric) SNE

given dissimilarity matrix D, for each object i compute probability of
picking j as neighbor:

pij =
exp(−D2

ij )∑
k 6=` exp(−D2

k`)

in low-dimensional space, for each point yi compute probability of
picking yj as neighbor:

qij =
exp(−||yi − yj ||22)∑

k 6=` exp(−||yk − y`||22)

Minimize the KL-divergence

KL(P||Q) =
∑
i 6=j

pij log
pij
qij

by modeling pij by qij = pij + x you gain less than you lose by
choosing qij = pij − x

keeps nearby objects nearby and separated objects relatively far
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tSNE

SNE (non-convex) is optimized using gradient descent from an initial
configuration

problem with many embedding methods: points often get crowded in
the middle

t-SNE reduces this by using t-distribution with 1 degree of freedom
for y ’s:

qij =
(1 + ||yi − yj ||22)−1∑
k 6=`(1 + ||yi − yj ||22)−1

reduces crowding: moderate distance in high-dim. space can be
faithfully modeled by much larger distance in low-dim. space
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Example: Digit recognition

∼ 1800 hand-written digits (i.e., n ≈ 180 for each class label)

each (centered) digit was put in a 8× 8-grid (i.e., d = 64)

measure grey value in each part of the grid, i.e. 64 grey values

Example: Digit recognition 

� 7129 hand-written digits 
� Each (centered) digit  

was put in a 16*16 grid 
� Measure grey value in 

each part of the grid, 
i.e. 256 grey values  
 

12 

Sample of digits 

Example with 8*8 grid 
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Example: Digit recognition

For code and figures see

http:scikit-learn.orgstableauto examplesmanifoldplot lle digits.html

Caroline Uhler (MIT) MITx: Statistics, Computation & Applications Lecture 8 16 / 18



Example: Digit recognition

For code and figures see

http:scikit-learn.orgstableauto examplesmanifoldplot lle digits.html

Caroline Uhler (MIT) MITx: Statistics, Computation & Applications Lecture 8 16 / 18



Example: Digit recognition

tSNE seems to find meaningful clusters

But: This is the result of a non-convex optimization problem, which
depends immensely on the starting configuration

Axes of tSNE have NO meaning
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