
6.302.0x, January 2016—Notes Set 2 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.302.0x—Introduction to Feedback System Design
January 2016

Notes Set 2

Where we’ve been, where we are, and where we are going next.

In each week of this three-week class, we are trying to weave together three concepts: a strategy
for constructing mathematical models for a system of interest, a technique for characterizing that
model’s behavior, and an approach to feedback control based on insights from the modeling and
characterization.

In the first week, we characterized homogenous LDE models. We showed that their natural fre-
quencies could be used to determine important model behaviors: growing or decaying, monotonic
or oscillatory, and so on. In parallel, we examined how to construct homogenous LDE models
for systems like the wall-seeking robot or the mutinous crane. And in the first lab, we used ho-
mogenous LDE models and their natural-frequency-based characterization to examine the up- and
down-pointing copter-levitated arm. In particular, we derived a simple, and then a more compli-
cated, model and used the model’s natural-frequency-based characterization to show that together,
gravity and air resistance were responsible for stabilizing the arm position in the down-point case,
and that gravity alone was responsible for destablizing the arm in the up-pointing case.

This week, we will be investigating the impact of proportional feedback on a first-order system’s
response to variability and disturbances. We will examine how to model disturbances for systems
of interest using first-order LDEs with inputs, and in parallel, we will learn how to characterize the
model’s behavior using natural frequencies and by examining immediate and asymptotic responses
to canonical inputs (unit steps and unit samples, see below). In lab, we will need to combine these
concepts (and the ones we learned last week) to design an effective feedback/feed-forward approach
to controlling propellor speed by adjusting motor current.

Next week, we will learn how to use natural frequencies to design second-order systems, and show
how our understanding of higher-order LDEs can aid in the in the design of proportional plus delta
feedback, (if you have seen the term PID control, delta is the D). In parallel, we will learn how to
design the controller by examining the associated natural frequencies. And in lab, you will design
a high-performance position controller for the copter-levitated arm.

Feedback and Feed-Forward Control in First Order Systems

What is Feedback Control

Thermostats, cruise control, camera autofocusers, scooter stabilizers, aircraft autopilots, audio am-
plifiers, maglev; all examples that demonstrate the pervasive role of feedback control in engineering
design. But not all controllers use feedback. For example, when you stand on one foot, you use
feedback control to stay balanced, by shifting your weight if you start to fall. But when you kick a
ball towards a goal with that same foot, you are using predictive, or feed-forward, control. The ball
arrives at the goal because you determined the right way to kick it, not because you corrected its
trajectory in midflight (unless the ball is outfitted with your quadcopter, or the game is quidditch).

6.302.0x, January 2016—Notes Set 2 2

Figure 1: Two Control System Block Diagrams, one with Feedback (bottom) and one Feed-forward
(top).

Feedback control has costs and limitations; we will confront some of those in lab this week. In fact,
most modern controllers do not rely entirely on feedback, but use combinations of feed-forward and
feedback control. But in order to describe those trade-offs, we first need a canonical description
of the differences between feedback and feed-foward control. To this end, consider the feedback
control (bottom) and feed-forward control (top) block diagrams in 1.

The plant block in both diagrams refers to what is being controlled, for example: room temperature,
vehicle cruising speed, or robot position. The actuator refers to the physical instrument that
modifies the plant or its environment in response to instructions from the controller. Actuator
examples include the furnace in a temperature control system, the car engine in a cruise control
system, or the motor-and-gears in an autofocusing system. The controller instructs the actuator,
either based on a predetermined recipe of actuator-plus-plant model (feed-forward) or based on
measurements of the plant state (feedback).

The sense block in the feedback control diagram means that the controller continually receives
plant state updates, so if the state is perturbed, the controller can easily adapt its instructions to
make corrections. When you use feedback control to balance on one foot, you continually monitor
your “state” (probably your tilt angle), and weight-shift in the opposite direction of your tilt. In
feed-forward control, there is no monitoring, the the controller sends instructions to the actuator
based on a recipe or a model of how the actuator and plant will respond.

Kicking the ball towards a goal is not exactly analogous to feed-forward control the way engineers
have classically thought about the problem, though the field is changing rapidly. When kicking a
ball towards a goal, your kick is based on your mental model of how to get the ball to heads towards
the goal, you can not impact the ball in midflight. But unlike our feed-forward block diagram, you
do have the a sensor (you can see the ball), you just lack the in-flight actuator to correct the ball’s
trajectory.

Now suppose you kick the ball many times, and watch where it goes, and eventually learn how to
kick the ball in to the goal. You are observing experiments and using those observations to improve
your model, so you are using feedback, but is it feedback control? Not traditionally, but approaches
from areas like machine learning are changing our perspectives.

6.302.0x, January 2016—Notes Set 2 3

Figure 2: A robot with a light sensor and a timer

Hitting the wall again

Suppose you have a simple robot that moves forward continuously when turned on, and remains
stationary otherwise. The robot must perform only one task, to move from an initial position,
eleven meters from a wall, to a final position, exactly one meter from the wall (see Figure 2).
Consider two strategies for controlling the robot so it performs this task.

Strategy One: The robot has a timer, and you use it to determine T , the interval of time the
robot must be turned on to travel ten meters. To have the robot performs its task, your controller
(controller 1) first turns the robot on, and then turns it off when the timer reading exceeds T
seconds.

Strategy Two: The wall has a lamp, and the robot has a light sensor. You use them to determine
L, the sensor reading that corresponds to one meter from the wall. To have the robot perform its
task, your controller (controller 2) first turns the robot on, and then turns it off when the light
sensor reading exceeds L.

Sensitivity to Actuator Variations

We can best understand the differences between the two strategies by considering the impact of
changes in the environment or the robot.

Example 1 Suppose the robot’s initial position is modified, to twenty-one meters from the wall.
But there is no opportunity to run new tests and determine new values for T and L.

Question 1. How would you change the timer-based controller? Do you expect that the
robot’s final position will still be one meter from the wall?

For controller one, you could keep the robot on until the timer reading exceeds 2T . But the robot’s
final position may be inaccurate, doubling the interval ignores robot start-up and slow-down, which
do not double.

Question 2. How would you change the light-sensor-based controller? Do you expect that
the robot’s final position will still be to one meter from the wall?

6.302.0x, January 2016—Notes Set 2 4

For controller 2, you do not need to change anything. And it will still end up one meter from the
wall.

Example 2 Consider what will happen if on of the wheels on the robot breaks, and is replaced with
larger wheels.

Question 3. Will controller 1 still position the robot accurately? Will controller 2?

For controller 1, the time calibration will be wrong. The robot will likely travel too far, and might
even crash in to the wall. For controller 2, the robot will still end up one meter from the wall.

The timer-based controller and the light-sensor-based controller both rely on initial calibration, and
both are making measurements while the robot is moving, but there is a key difference. The timer-
based controller is measuring time, and those readings are independent of the robot’s distance to
the wall. So time measurements can not be used to correct for changes in robot initial position or
changes in wheel size. The light-sensor-based controller’s measurements are related to the robot’s
current position, regardless of how the robot got there. Feeding back these measurement allow the
controller to correct for changes in robot initial position or wheel size.

For these two strategies, we see a key attribute of feedback systems, they reduce the impact of vari-
ations or disturbances. The light-sensor-based controller always gets us to the right final position,
regardless of wheel size or starting position, as long as the sensor is calibrated correctly. We will
investigate these ideas more formally below.

Sensitivity to Sensor Variations

There is one more aspect of feedback control that makes it more a tool for the engineer than the
scientist.

Example 3 Suppose the light on the on the wall is replaced by a brighter light.

Question 4. Will controller 2 still position the robot accurately?

No, the robot will end up too far away from the wall. The brighter light will cause the sensor’s
reading to exceed the L threshold further away than one meter from the wall, and the robot will be
turned off. The problem is that the calibration used to relate sensor reading to distance was based
on light sensor readings from a dimmer lamp.

For controller 1, we calibrated the actuator by measuring the time to travel ten meters. Of course
the controller fails when we change the actuator or the distance to the wall. But the same is true
of controller 2. We calibrated the light sensor by measuring the light level one meter from the lamp
on wall. Of course controller 2 fails when we switch to a brighter wall lamp.

It is true that that by using feedback, we made the robot behavior insensitive to changes in the
actuator or the enviroment, but we also made it much more sensitive to changes in the sensor. So
why is feedback so important? Because it is far easier and cheaper to make an accurate
sensor than to make an accurate actuator, or to ensure a consistent environment. The
value of feedback that it enables this important engineering trade-off. But it is a trade-off, using
feedback has costs and limitations, as we will learn over the next few weeks.

6.302.0x, January 2016—Notes Set 2 5

Figure 3: The Crane Redux.

First-Order LDE Models of Proportional Control

When we adjust velocity to control position, or adjust acceleration to control velocity, we say our
system is first order. The former is equal to the rate of change of the latter. When we adjust
acceleration to control position, we say our system is second order, because the former is related
to the latter by two rates of change in sequence. Acceleration is the rate of change of velocity,
and velocity is the rate of change in position. The approach to feedback control, and its ability
to reduce the impact of variations and disturbances, is very different in the two cases. We will
consider using proportional feedback on first-order systems this week, and examine second-order
systems next week.

Example 4 Our ill-fated heavy cargo crane returns, and is shown in Figure 3. It still travels on a
track above a buried beacon, and measures its signed distance to the beacon every δT seconds. It has
been redesigned to self-drive, and can reposition itself automatically at any location along the track.
In addition, the crane now has an internal velocity controller, and we must design a new external
position controller. The input to our position controller should be r, a sequence of desired crane
locations, and d, the sequence of measured crane locations, and its output should be v, a sequence
of crane velocities.

To model how the crane moves along its track, we can relate the measured distance, d, to its
velocity, v, as

d[n] = d[n− 1] + δTv[n− 1], (1)

where d[n] and d[n − 1] are the measured distances along the crane’s track at sample time n and
n− 1, respectively, and v[n− 1] is the crane velocity at the time of sample n− 1.

A proportional feedback approach to controlling the crane would be to make the crane velocity
proportional to the difference between the desired and measured crane positions, as diagrammed
in Figure 4. Then the velocity is given by

v[n] = Kp(r[n] − d[n]). (2)

where Kp is the proportional gain and r is the desired position.

6.302.0x, January 2016—Notes Set 2 6

Figure 4: Crane Proportional Controller.

In order to determine the performance of this proportional-feedback approach as a function of gain,
we substitute the control formula in to the distance-velocity relation for the crane,

d[n] = d[n− 1] + δTKp (r[n− 1] − d[n− 1]) , (3)

and then simplify,
d[n] = (1− δTKp)d[n− 1] + δTKpr[n− 1], (4)

to arrive at a first-order LDE with an input, r.

Examining Errors

Since our primary goal is to minimize position error, defined by

e[n] ≡ r[n] − d[n], (5)

where e[n] is the error at the nth step, we will be able to better understand the relationship between
proportional feedback gain and error by deriving a difference equation for the error alone.

Starting with the tautology r[n] = r[n], and subtracting the difference equation for d above from
both sides,

r[n] − d[n] = r[n] − (d[n− 1] + δTKp (r[n− 1] − d[n− 1])) , (6)

and simplifying,
e[n] = (r[n] − d[n− 1]) − δTKpe[n− 1], (7)

results in an LDE for e, but it still depends on d, a quantity we do not yet know.

We can eliminate d by rewriting r[n] as r[n− 1] plus a difference,

r[n] = (r[n] − r[n− 1]) + r[n− 1], (8)

and then substitute this alternative representation for r[n] in the equation for error,

e[n] = (r[n] − r[n− 1]) (r[n− 1] − d[n− 1]) − δTKpe[n− 1], (9)

then substitute (r[n− 1] − d[n− 1]) = e[n− 1],

e[n] = (r[n] − r[n− 1]) + e[n− 1] − δTKpe[n− 1], (10)

and finally, reorganize,

e[n] = (1− δTKp)e[n− 1] + (r[n] − r[n− 1]) . (11)

6.302.0x, January 2016—Notes Set 2 7

We now have a first-order LDE for the position error, with desired position as an input. Well, not
exactly desired position, but rather the differences in desired position from one sample to the next.

If we assume that the desired position changes only occasionally, and we are interested in how
the error behaves between those changes, the error equation becomes homogenous, and we already
learned how to solve those equations.

That is, between changes in desired position, r[n] − r[n− 1] = 0, the error is given by

e[ñ] = (1− δTKp)e[ñ− 1] (12)

where n0 < ñ < n1 where ñ is used to remind us that we are only considering samples between n0,
the time sample of a particular change in r, and n1, the time sample for the next change in r.

Right after a change in desired position,

e[n0] = r[n0] − d[n0], (13)

then the solution to the homogenous equation for e is given by

e[ñ] = (1− δTKp)
ñ−n0 e[n0]. (14)

And now we have insight in to how to select the gain, Kp! If we want the crane to move to the new
desired position right after a change, then we want the position error to decrease. And that means
we want

| (1− δTKp) | < 1 (15)

or

0 < Kp <
2

δT
. (16)

If we want the error to decrease fast, then we want to select Kp to make

| (1− δTKp) | ≈ 0 (17)

or

Kp ≈
1

δT
. (18)

And one more point, if we want the error to decay monotonically (so the crane does not rock back
and forth),

0 < (1− δTKp) < 1 (19)

or

0 < Kp <
1

δT
. (20)

Disturbances and Proportional Control

Our crane controller has a curious property. We just saw that if we choose a proportional gain that
is positive and less than 2

δT , the crane’s position will eventually match the desired position, even if
we make our gain very small. Though, in the case of very small proportional gain we will have to
be patient and wait a long time before making another change in desired position. The main point

6.302.0x, January 2016—Notes Set 2 8

Figure 5: Crane Proportional Control With Disturbances.

is that if we only change the desired position once, then higher gains do not get us better matches,
they only get us faster matches.

This exactness in the position match disappears once we consider disturbances. For the crane, the
major disturbance is wind, and if we model wind as a velocity disturbance, the result will be the
modified block diagram of Figure 5. In the figure, x[n] is the velocity impact of the disturbing wind
at the nth step.

Including velocity disturbances in the relation between position and velocity

d[n] = d[n− 1] + δT (v[n− 1] + x[n− 1]) , (21)

and then using the proportional feedback formula, v[n] = Kpe[n],

d[n] = d[n− 1] + δT (Kpe[n− 1] + x[n− 1]) . (22)

To derive the equation for the position error in this disturbing case, we again use the “subtract
r[n] from both sides” trick (and forgo a step or two), to get

e[n] = r[n] − r[n− 1] + e[n− 1] − δT (Kpe[n− 1] + x[n− 1]) . (23)

Reorganizing,
e[n] = (1− δTKp)e[n− 1] − (r[n] − r[n− 1]) − δTx[n− 1]. (24)

Again assuming that we are interested in the intervals between changes in desired position (and as
a reminder that we are restricting ourselves to values of n between n0 and n1, we used ñ),

e[ñ] = (1− δTKp)e[ñ− 1] − δTx[ñ− 1]. (25)

Note that we have a first-order LDE for e, as before, but now the LDE has an input, the disturbance
due to wind, as represented by x.

It is clear that in a heavy wind, our proportional feedback controller will not position the crane
in exactly the right position. But what is the relationship between proportional gain, the strength
of the wind, and the inaccuracy in crane position. Will using high gain reduce the impact of high
winds? For that, we will need to look at solving first-order difference equations with an input.

6.302.0x, January 2016—Notes Set 2 9

First-Order LDE’s with unit-step and unit-sample inputs.

For any system we are trying to control, we will presumably try to influence its outputs by changing
its inputs, so we will need to add an input to the homogenous LDE models we already know. In
the first-order case, the general form of an LDE with an input is

y[n] = α1y[n− 1] + β1x[n− 1] , (26)

where α1 and β1 are real coefficients, the sequence x is a known input, and the sequence y is the
output we need to determine.

For the systems we will be considering, most often we are interested in one of two types of inputs,
a unit sample or a unit step.

Unit Sample Input

A delayed unit sample with delay n0 is given by

x[n] = 0 n 6= n0 x[n] = 1, n = n0, (27)

for which we use the compact notation x[n] = δ[n− n0].

As a formal matter, systems described by LDEs are completely characterized by the output due
to a unit sample input, referred to as the unit sample response, but that is a digression for us.
Formality aside, we can reason about systems by examining their response to a unit sample.

If y[0] = 0, and the input is a delayed unit sample, x[n] = δ[n−n0], then y[n] has a familiar power
series form that can be derived in a few steps.

For n ≤ n0, y[n] = 0, and for n = n0,

y[n0 + 1] = β1x[n0] = β1δ[n0 − n0] = β1 (28)

For n > n0 + 1, x[n] = 0 and therefore y[n] = α1y[n − 1], the generating difference equation for
the power series. Iterating yields

y[n] = (α1)
n−n0

β1
α1

n > n0. (29)

a form very similar to the solution of the homogenous case with non-zero initial conditions.

In the stable case, that is if |α1| < 1,

lim
n→∞y[n] = y[n∞] = 0. (30)

Unit Step Input

A delayed unit step with delay n0 is given by

x[n] = 0 0 ≤ n < n0 x[n] = 1, n ≥ n0, (31)

for which we use the compact notation x[n] = u[n− n0]

6.302.0x, January 2016—Notes Set 2 10

Given a unit step input, x[n] = u[n−n0], and y[0] is still zero, then y[n] = 0 n ≤ n0 and y[n0+1]
must equal β1x[n0] = β1u[n0 − n0] = β1. For n > n0 + 1, x[n] = 1 and therefore

y[n] = α1y[n− 1] + β1.

If we write out the terms, we can see the pattern,

y[n] = 0, n = n0 (32)

y[n] = β1, n = n0 + 1 (33)

y[n] = α1β1 + β1, n = n0 + 2 (34)

y[n] = α21β1 + α1β1 + β1, n = n0 + 3. (35)

Iterating yields a representation of y as a power series sum,

y[n] =
n∑

m=n0+1

(α1)
m−n0

β1
α1

n > n0. (36)

In the stable case, that is |α1| < 1,

lim
n→∞y[n] ≡ y[n∞] =

β1
1− α1

(37)

which can be seen by summing the series.

Determining the large n limit

For the stable case, |α1| < 1, if the input eventually becomes constant, such as in the delayed unit
step, we are often only interested in behavior for large n. If so, there is an easier approach to
determining y[n∞], a surprisingly useful trick more generally.

Suppose x[n] = 1 for n > n0 and |α1| < 1, In this stable, constant input, case, y[n] and yn − 1]
both approach y[n∞] for large n, so

y[n∞] = α1y[n∞] + β1 , (38)

and solving for y[n∞],

y[n∞] =
β1
1− α

. (39)

There are many ideas hidden in the above simple formula, and they are best exposed by answering
questions.

Question 5. Given β1 > 0 and x[n] = u[n], if α1 = −1 does y[n] remain bounded?

Question 6. For the α1 = −1 case, does y[n∞] exist?

Question 7. Does y[n] remain bounded if α = 1?

Question 8. Given a β1 > 0, and x[n] = u[n], what value of α1 minimizes y[n∞] when it exists,
and what is that minimum value.

The answers, in order of question

6.302.0x, January 2016—Notes Set 2 11

Figure 6: Delayed step response for α1 = 0.9 and n0 = 3.

• Yes, y[n] is bounded.

• No, y[n∞] does not exist as y[n] alternates between 0 and β1 forever.

• If α1 = 1, y[n] is unbounded and y[n∞ does not exist.

• Setting α1 very close to −1 minimizes y[n∞], which is bounded from below by β1

2 . But then
y[n] oscillates and decays very slowly.

And one last use of y[n∞], we use it to construct the entire step response. If y[0] = 0, x[n] =
u[n− n0], and |α1| < 1, then y[n] = 0 for n ≤ n0 and

y[n] =
(
1− αn−n0

1

)
y[n∞] n > n0. (40)

In Figures ,,??, we show the behavior of the step response for several different values for α1. Notice
the large n values in the plots. For example, even if α1 < 0, the large n value is still positive.

A summary of key points

There are two general ideas in these notes:

• Proportional feedback controllers can reduce the impact of variations.

• A common first-order application of proportional feedback is controlling position by setting
the velocity proportional to position error.

6.302.0x, January 2016—Notes Set 2 12

Figure 7: Delayed step response for α1 = 0.3 and n0 = 3.

Figure 8: Delayed step response for α1 = −0.3 and n0 = 3.

6.302.0x, January 2016—Notes Set 2 13

Figure 9: Unit step (no delay) response for α1 = −0.9 and n0 = 0.

And for the application of controlling position by setting the velocity proportional to position error
with gain Kp, the key points are:

• To ensure stability, 0 < Kp <
2
δT .

• To ensure monotonic error reduction, 0 < Kp <
1
δT .

• For fastest error reduction, Kp ≈ 1
δT .

• If there are no disturbances, and the desired position is fixed, then the position error decays
to zero (unless there are disturbances).

• In the case of a constant disturbance, there is a particular simple formula for the eventual
error.

Did you miss that last item in the notes? No, you did not. The formula was not given. We put
it here, as it is the most important point of the notes. Recall that the error with disturbance
(assuming no change in desired position) is

e[n] = (1− δTKp)e[n− 1] − δTx[n− 1]. (41)

where for constant disturbance, x[n] = x[0] for all n. If 0 < Kp <
2
δT (stable case), then using the

trick at the end of the previous section.

e[n∞] =
−1

1− (1− δTKp)
δTx[0], (42)

or

e[n∞] = −
x[0]

Kp
. (43)

6.302.0x, January 2016—Notes Set 2 14

Higher gains increase disturbance rejection, but stability considerations limit the gain.

The most important point of these notes is: Higher gains improve disturbance rejection,
and faster sample rates allow higher gains.

