Nature as observed in experiments

Physics laws or "abstractions"

- Maxwell's abstraction for tables of data $V=R I$

S

Simple amplifier abstraction

Combinational logic f

Filters

Clocked digital abstraction

Instruction set abstraction Pentium, MIPS 6.004, 6.846

Programming languages
Java, C++, Matlab, Python 6.00
Software systems 6.033
Operating systems, Browsers

Lumped Element Abstraction

Consider

Suppose we wish to answer this question:
What is the current through the bulb?

We could do it the Hard Way...

Apply Maxwell's

Differential form Integral form

Faraday's

$$
\nabla \times E=-\frac{\partial B}{\partial t}
$$

$\int E \cdot d l=-\frac{\partial \phi_{B}}{\partial t}$
Continuity
$\nabla \cdot J=-\frac{\partial \rho}{\partial t}$
$f J \cdot d S=-\frac{\partial q}{\partial t}$

Others

$$
\nabla \cdot E=\frac{\rho}{\varepsilon_{0}}
$$

$$
\int E \cdot d S=\frac{q}{\varepsilon_{0}}
$$

Instead, there is an Easy Way...

First, let us build some insight:
Analogy

I ask you: What is the acceleration?
You quickly ask me: What is the mass?
I tell you:
You respond:
Done!!!

Instead, there is an Easy Way...

In doing so, you ignored

- the object's shape
- its temperature
- its color
- point of force application
\longrightarrow Point-mass discretization

The Easy Way...
Consider the filament of the light bulb.

We do not care about

- how current flows inside the filament
- its temperature, shape, orientation, etc.

We can replace the bulb with a
discrete resistor
for the purpose of calculating the current.

The Easy Way...
Replace the bulb with a

discrete resistor
for the purpose of calculating the current.

The Easy Way...

\boldsymbol{R} represents the only property of interest!
Like with point-mass:
replace objects with their mass m to find $a=\frac{F}{m}$

V-I Relationship

$$
\text { and } \quad I=\frac{V}{R}
$$

\boldsymbol{R} represents the only property of interest!
\boldsymbol{R} relates element V and I

$$
I=\frac{V}{R} \quad \text { called element } v \text {-i relationship }
$$

\boldsymbol{R} is a lumped element abstraction for the bulb.

Lumped Elements

Lumped circuit element described by its vi relation
 Power consumed by element $=v i$

Voltage source

Demo \longrightarrow Lumped element examples only for the sorts of whose behavior is completely captured by their $V-I$ relationship.
questions we as EEs would like to ask!

Demo \longrightarrow

Exploding resistor demo \longrightarrow can't predict that!
Pickle demo
\longrightarrow can't predict light, smell

Not so fast, though ...

Although we will take the easy way using lumped abstractions for the rest of this course, we must make sure (at least for the first time) that our abstraction is reasonable.

In this case, ensuring that \square are defined for the element

black box
I must be defined. True when

$$
I_{A} \xrightarrow{S_{A}}
$$

I into $S_{A}=I$ out of S_{B}
True only when $\frac{\partial q}{\partial t}=0$ in the filament!

$$
I_{B} \stackrel{S_{B}}{ }
$$

$$
I_{A}=I_{B} \quad \text { only if } \frac{\partial q}{\partial t}=0 \quad \text { So, are we stuck? }
$$

We're engineers! So, let's make it true!
V Must also be defined.

So $\quad V_{A B}=\int_{A B} E \cdot d l$ outside al cents
see
A \& Appendix A. 1
A \& LApp So let's assume this too!

Also, signal speeds of interest should be way lower than speed of light ${ }_{21}$

Welcome to the EECS Playground

The world
The EECS playground
Our self imposed constraints in this playground

Lumped Matter Discipline (LMD)
Or self imposed constraints:

Connecting using ideal wires lumped elements that obey LMD to form an assembly results in the lumped circuit abstraction

So, what does LMD buy us?

Replace the differential equations with simple algebra using lumped circuit abstraction (LCA).

For example:

What can we say about voltages in a loop under the lumped matter discipline?
Reading: Chapter 2.1-2.2.2 of A\&L

Kirchhoff's Voltage Law (KVL):

Remember, this is not true everywhere, only in our EECS playground

What can we say about currents?

What can we say about currents?

Kirchhoff's Current Law (KCL):
 The sum of the currents into a node is 0 .

simply conservation of charge

KVL and KCL Summary KVL:

KCL:

$$
\begin{array}{ll}
\frac{\partial \phi_{B}}{\partial t}=0 & \text { Outside elements } \\
\frac{\partial q}{\partial t}=0 & \text { Inside elements } \\
& \text { wires resistors sources }
\end{array}
$$

Also, signals speeds of interest should be way lower than speed of light

Summary

Lumped circuit element
power consumed by element $=v i$

Summary

Maxwell's equations simplify to algebraic KVL and KCL under LMD.

KVL:

$$
\sum_{j} v_{j}=0
$$

loop

This is amazing!

KCL:

$$
\sum_{j} i_{j}=0
$$

node

