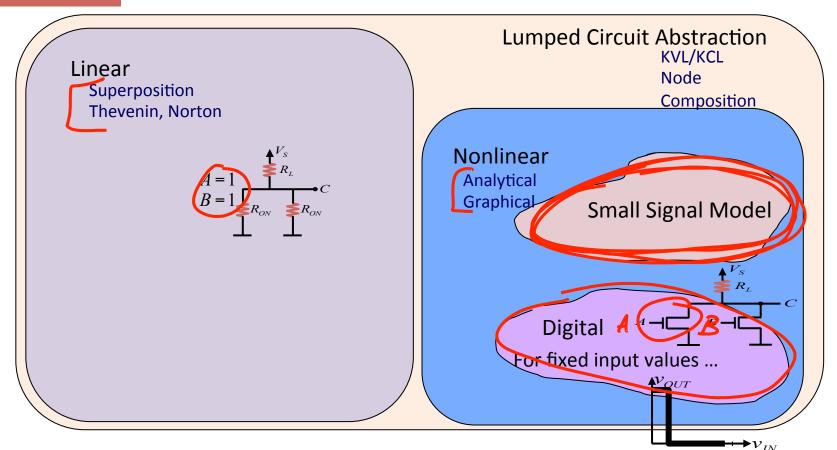


CIRCUITS AND ELECTRONICS

Incremental Analysis

Small signal Knick

The 6.002x world



Review

Nonlinear Analysis

- Analytical method
- Graphical method
- ► Piecewise Linear method

Today

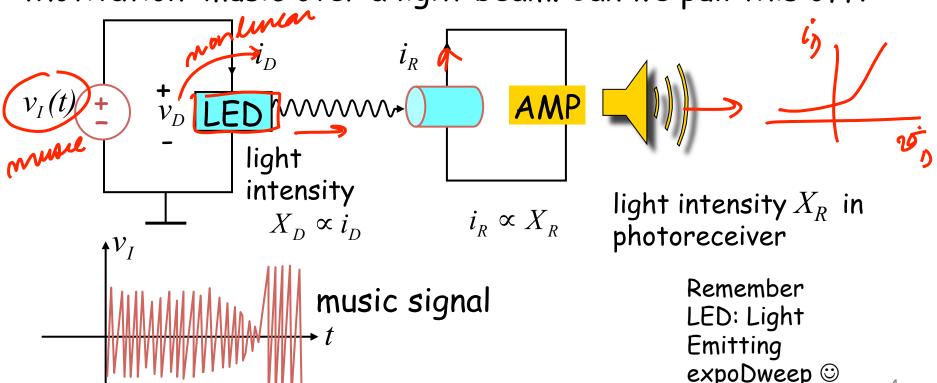
Incremental analysis or small signal method

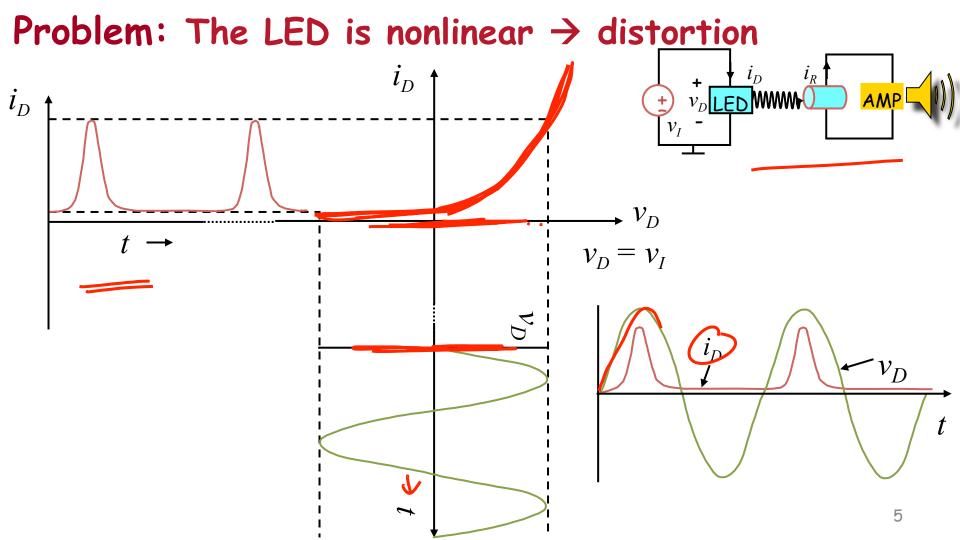
Reading: Section 4.5

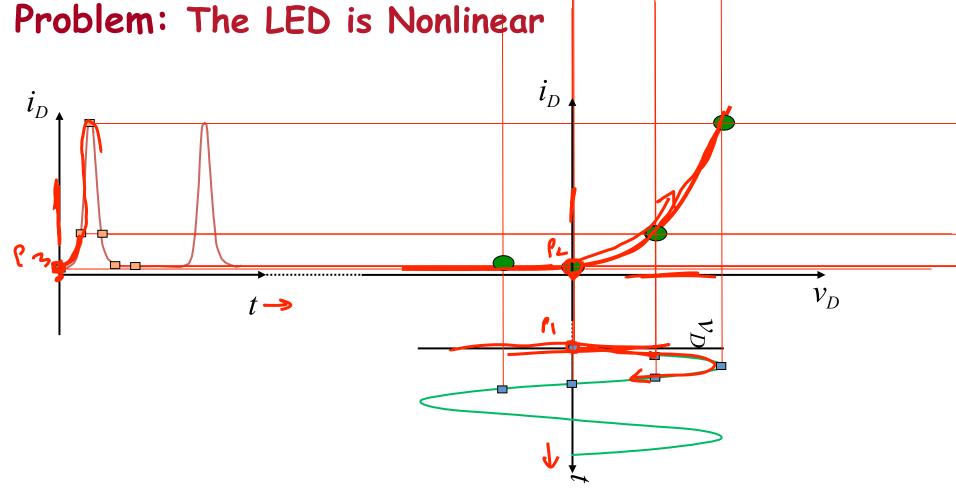
Method 3: Incremental Analysis

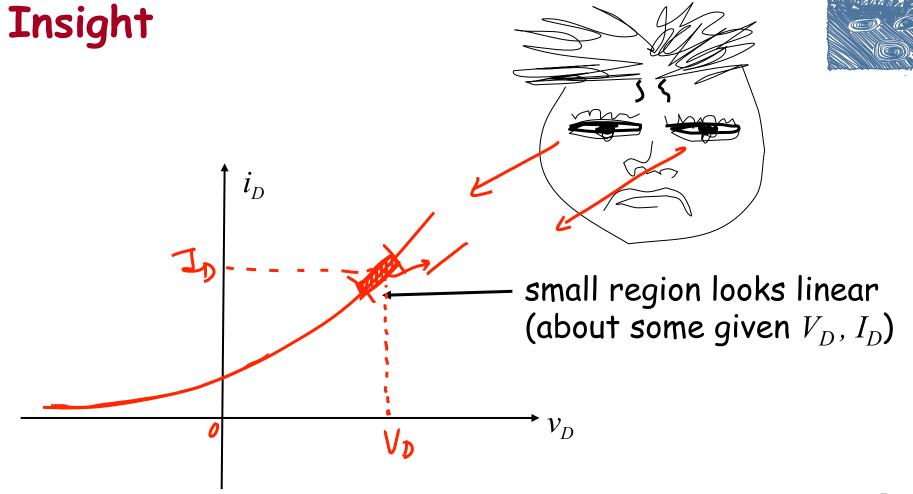
(Actually a particular disciplined use of a circuit)

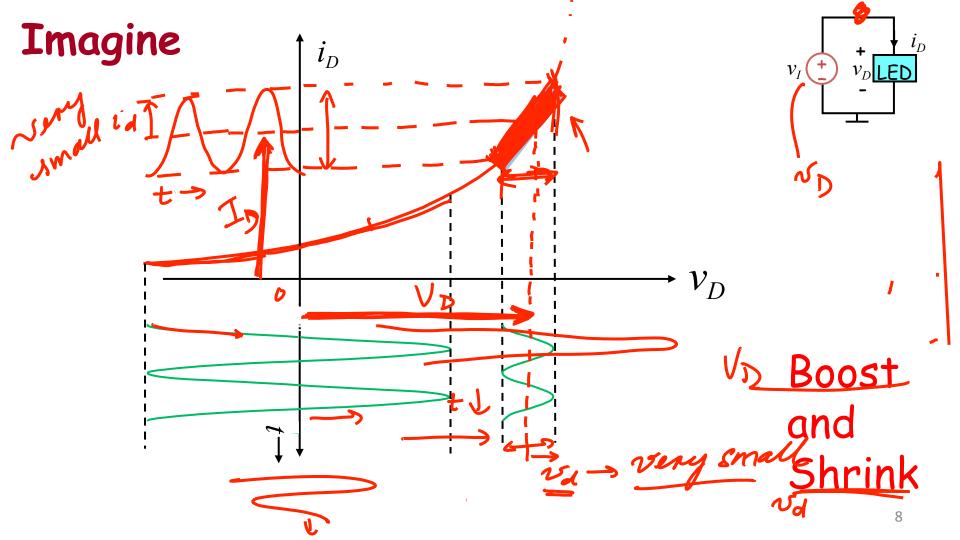
Motivation: music over a light beam. Can we pull this off?

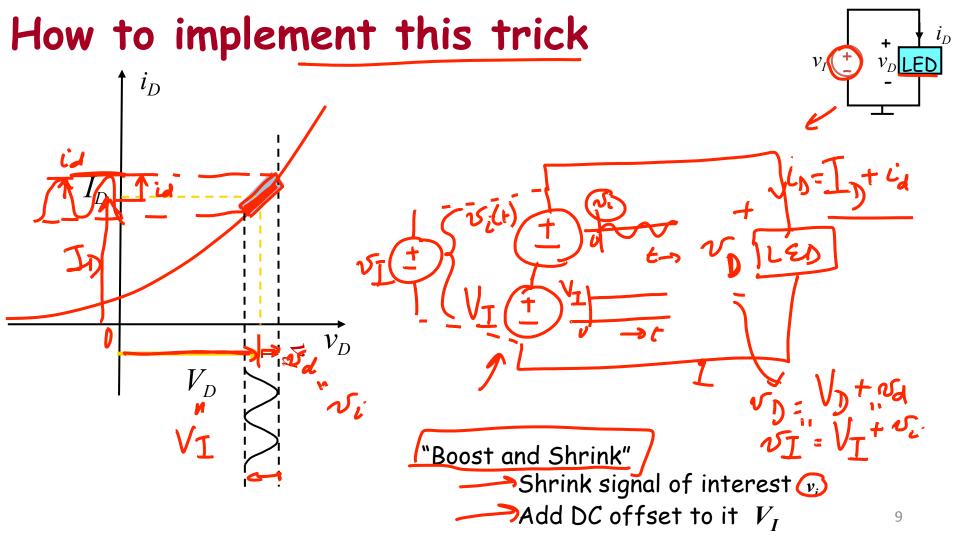


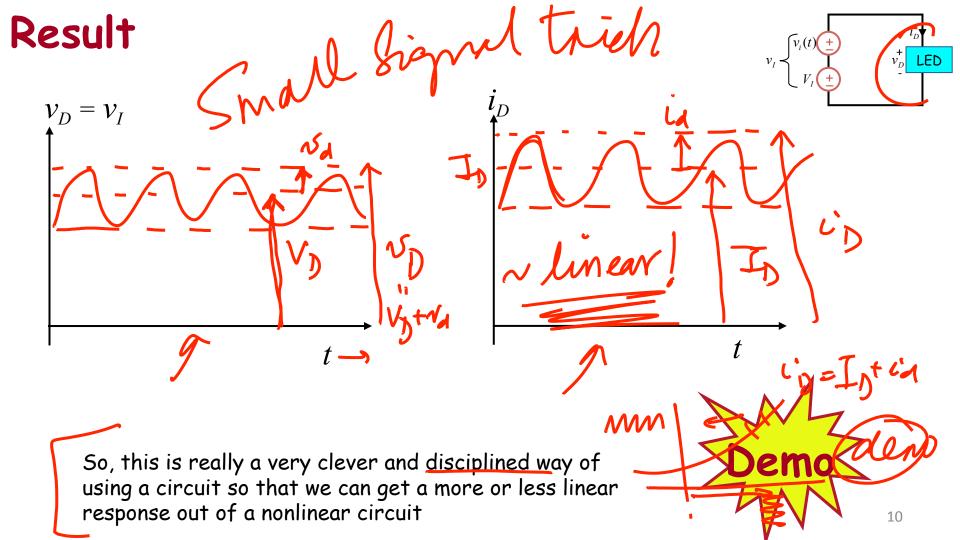






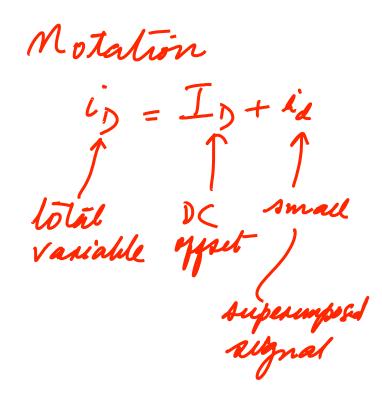






The incremental method: (or small signal method)

- 1. Operate at some DC offset or bias point V_D , I_D .
- 2. Superimpose small signal v_d (music) on top of V_D .
- 3. Response i_d to small signal v_d is approximately linear.



Using Taylor's Expansion to expand $f(v_D)$ near $v_D = V_D$

Why is the small signal response linear? constant w.r.t. Δv_D constant slope at V_D , I_D w.r.t. Δv_D

Why is the small signal response linear? time varying past ar /ro=Vn const. WYT AVD Incremental response

 $I_D = \mathcal{A}(V_D) = ae^{bv_D} = \left[\frac{df(v_D)}{dv_D} + \frac{df(v_D)}{dv_D} \right]_{v_D} = \left[\frac{df(v_D$ In our example From (x): Intia = a b VD + a b e n van ID! Equati DC and mental terms Incremetal term operating sprint aka DC offset aka bias point constant

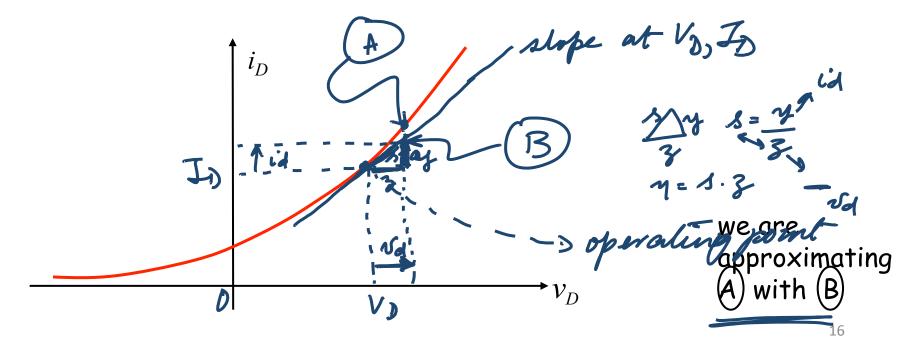
Graphical interpretation

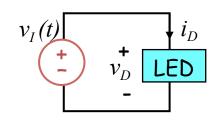
 $I_D = a e^{bV_D} \longrightarrow \text{operating point}$

 $i_d = I_D \cdot b \cdot v_d$ V_D, J_D

 $i_{D} = f(v_{D})$ $i_{D} = a e b v_{D}$ $T_{A} = v_{D}$

Jo Vo





$$v_D = f(v_D) = a e^{bV_D}$$

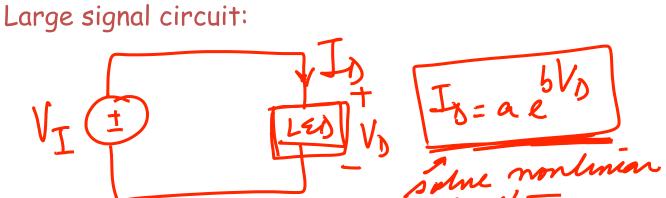
$$I_D = a e^{bV_D}$$

$$i_d = I_D \cdot b \cdot v_d$$

We studied the small signal graphically

mathematically ~

A circuit view of the small signal model



$$v_{D} = f(v_{D}) = a e^{bV_{D}}$$

$$\Rightarrow I_{D} = a e^{bV_{D}}$$

$$\Rightarrow i_{d} = I_{D} \cdot b \cdot v_{d}$$

For small signals, device

Where did you see $i = constant \times v$

before?

So, We Can Build a Small Signal Circuit

Large signal circuit:

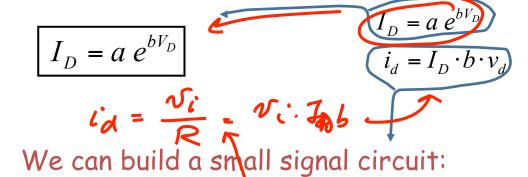


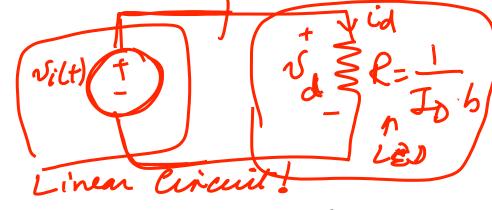
Small signal reponse:

$$i_{d} = I_{D} b v_{d}$$

$$\downarrow i_{d} R = \frac{1}{I_{D} b}$$

For small signals, device behaves like a resistor!





Small Signal Circuit Method

- Find operating point using DC bias inputs from large signal circuit
- typically mivolus a montinear analysis

Keye we can use

superposition

Develop small signal (linearized) models for each of the elements around the operating point.

and other linear circuit tools

Replace original elements with small signal element models. A - 200

Analyze resulting linearized circuit to obtain small signal

response...

super position, there is the apply

20

Small signal $v_{1} = \frac{\partial V_{0}}{\partial i_{s}}|_{i_{s}=I_{s}}$

See page 416 of textbook

Step 2: Voltage Sources and DC Supply V_{θ}

DC voltage source behaves as short to small signals.

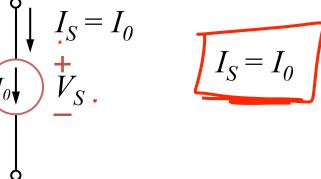
DC current source behaves as open to small signals.

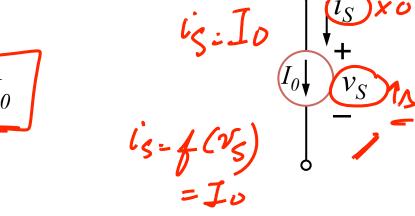
large

signal

Current Sources

large
$$I_S = V_S$$
 signal $I_O = V_S$

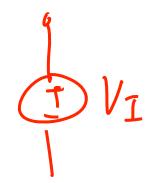




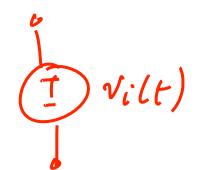
DC voltage source behaves as short to small signals.

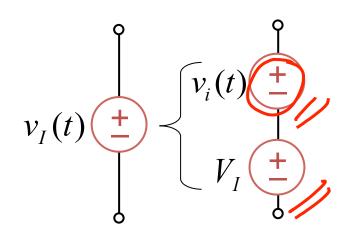
DC current source behaves as open to small signals.

Voltage Source Containing Both DC and Small Signal



Small signal



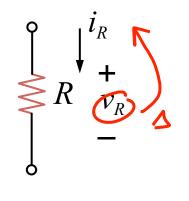


Similarly, R

large signal

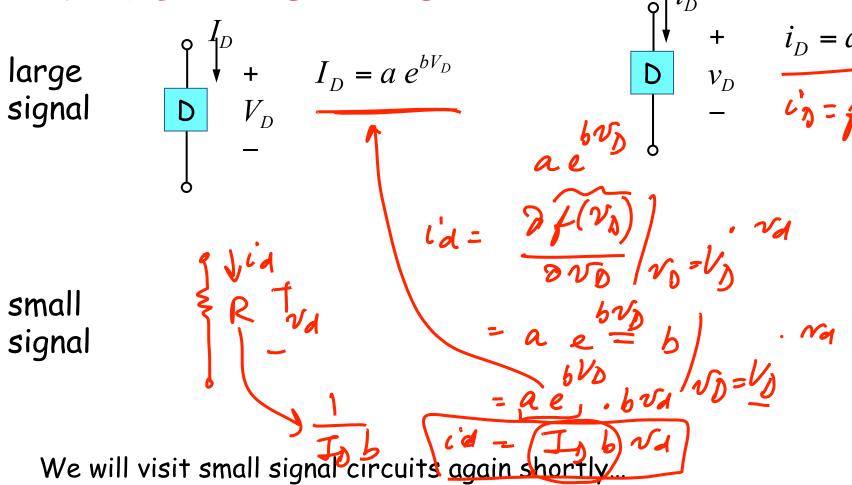
$$\begin{cases} I_R + V_R \\ R - V_R \end{cases}$$

$$V_R = R I_R$$



small signal

For Non-Linear Device D



Small signal circuit analysis example

also assume that the his point set at $V_I = IV$

Step 1

Step 2

Step 3 Sugnal Circuit Small 29