
1/54

18.650 – Fundamentals of Statistics

3. Methods for estimation
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Goals

In the kiss example, the estimator was intuitively the right thing

to do: p̂ = X̄n.

In view of LLN, since p = IE[X], we have X̄n

so p̂ ⇡ p for n large enough.

If the parameter is ✓ 6= IE[X]? How do we perform?

1. Maximum likelihood estimation: a generic approach with very

good properties

2. Method of moments: a (fairly) generic and easy approach

3. M-estimators: a flexible approach, close to machine learning
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Total variation distance

Let
�
E, (IP✓)✓2⇥

�
be a statistical model associated with a sample

of i.i.d. r.v. X1, . . . , Xn. Assume that there exists ✓⇤ 2 ⇥ such

that X1 ⇠ IP✓⇤ : ✓⇤ is the true parameter.

Statistician’s goal: given X1, . . . , Xn, find an estimator

✓̂ = ✓̂(X1, . . . , Xn) such that IP✓̂ is close to IP✓⇤ for the true

parameter ✓⇤.
This means:

�� �� is small for all A ⇢ E.

Definition

The total variation distance between two probability measures IP✓

and IP✓0 is defined by

TV(IP✓, IP✓0) = max
A⇢E

�� �� .
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Total variation distance between discrete measures

Assume that E is discrete (i.e., finite or countable). This includes

Bernoulli, Binomial, Poisson, . . .

Therefore X has a PMF (probability mass function):

IP✓(X = x) = p✓(x) for all x 2 E,

p✓(x) � ,
X

x2E
p✓(x) =

The total variation distance between IP✓ and IP✓0 is a simple

function of the PMF’s p✓ and p✓0 :

TV(IP✓, IP✓0) =
1

2

X

x2E

��p✓(x)� p✓0(x)
�� .
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Total variation distance between continuous measures

Assume that E is continuous. This includes Gaussian, Exponential,

. . .

Assume that X has a density IP✓(X 2 A) =
R
A f✓(x)dx for all

A ⇢ E.

f✓(x) � 0, = 1 .

The total variation distance between IP✓ and IP✓0 is a simple

function of the densities f✓ and f✓0 :

TV(IP✓, IP✓0) =
1

2

��f✓(x)� f✓0(x)
�� .
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Properties of Total variation

I TV(IP✓, IP✓0) = (symmetric)

I TV(IP✓, IP✓0) � (positive)

I If TV(IP✓, IP✓0) = 0 then (definite)

I TV(IP✓, IP✓0)  (triangle inequality)

These imply that the total variation is a between

probability distributions.
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Exercises
Compute:

a)TV(Ber(0.5),Ber(0.1)) =

b) TV(Ber(0.5),Ber(0.9)) =

c)TV(Exp(1),Unif[0, 1]) =

d)TV(X,X + a) =
for any a 2 (0, 1), where X ⇠ Ber(0.5)

e)TV(2
p
n(X̄n � 1/2), Z) =

where Xi
i.i.d⇠ Ber(0.5) and Z ⇠ N (0, 1)
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An estimation strategy

Build an estimator cTV(IP✓, IP✓⇤) for all ✓ 2 ⇥. Then find ✓̂ that

minimizes the function ✓ 7! cTV(IP✓, IP✓⇤).

problem: Unclear how to build cTV(IP✓, IP✓⇤)!
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Kullback-Leibler (KL) divergence

There are many distances between probability measures to replace

total variation. Let us choose one that is more convenient.

Definition

The Kullback-Leibler
1
(KL) divergence between two probability

measures IP✓ and IP✓0 is defined by

KL(IP✓, IP✓0) =

8
>>>>>>><

>>>>>>>:

X

x2E
p✓(x) log

⇣ p✓(x)

p✓0(x)

⌘
if E is discrete

if E is continuous

1KL-divergence is also know as “relative entropy”
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Properties of KL-divergence

I KL(IP✓, IP✓0) 6=KL(IP✓0 , IP✓) in general

I KL(IP✓, IP✓0) � 0

I If KL(IP✓, IP✓0) = 0 then IP✓ = IP✓0 (definite)

I KL(IP✓, IP✓0) ⇥ KL(IP✓, IP✓00) + KL(IP✓00 , IP✓0) in general

Not a distance.

This is is called a

Asymmetry is the key to our ability to estimate it!
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Maximum likelihood

estimation
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Estimating the KL

KL(IP✓⇤ , IP✓) = IE✓⇤

h
log
⇣p✓⇤(X)

p✓(X)

⌘i

= IE✓⇤
⇥
log p✓⇤(X)

⇤
�

So the function ✓ 7! KL(IP✓⇤ , IP✓) is of the form:

“constant”�

Can be estimated: IE✓⇤ [h(X)] 1

n

nX

i=1

h(Xi) (by LLN)

cKL(IP✓⇤ , IP✓) = “constant”� 1

n

nX

i=1

log p✓(Xi)
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Maximum likelihood

cKL(IP✓⇤ , IP✓) = “constant”� 1

n

nX

i=1

log p✓(Xi)

min
✓2⇥

cKL(IP✓⇤ , IP✓) , min
✓2⇥

� 1

n

nX

i=1

log p✓(Xi)

,

,

, max
✓2⇥

nY

i=1

p✓(Xi)

This is the maximum likelihood principle.
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Likelihood, Discrete case (1)

Let
�
E, (IP✓)✓2⇥

�
be a statistical model associated with a sample

of i.i.d. r.v. X1, . . . , Xn. Assume that E is discrete (i.e., finite or

countable).

Definition

The likelihood of the model is the map Ln (or just L) defined as:

Ln : En ⇥⇥ ! IR
(x1, . . . , xn, ✓) 7! IP✓[X1 = x1, . . . , Xn = xn].
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Likelihood for the Bernoulli model

Example 1 (Bernoulli trials): If X1, . . . , Xn
iid⇠ Ber(p) for some

p 2 (0, 1):

I E = {0, 1};

I ⇥ = (0, 1);

I 8(x1, . . . , xn) 2 {0, 1}n, 8p 2 (0, 1),

L(x1, . . . , xn, p) =
nY

i=1

IPp[Xi = xi]

=
nY

i=1

= p (1� p) .
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Likelihood for the Poisson model

Example 2 (Poisson model):

If X1, . . . , Xn
iid⇠ Poiss(�) for some � > 0:

I E = IN;

I ⇥ = (0,1);

I 8(x1, . . . , xn) 2 INn, 8� > 0,

L(x1, . . . , xn, p) = e�n� �
Pn

i=1 xi

x1! . . . xn!
.
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Likelihood, Continuous case

Let
�
E, (IP✓)✓2⇥

�
be a statistical model associated with a sample

of i.i.d. r.v. X1, . . . , Xn. Assume that all the IP✓ have density f✓.

Definition

The likelihood of the model is the map L defined as:

L : En ⇥⇥ ! IR
(x1, . . . , xn, ✓) 7!

Qn
i=1 f✓(xi).



18/54

Likelihood for the Gaussian model

Example 1 (Gaussian model): If X1, . . . , Xn
iid⇠ N (µ,�2), for

some µ 2 IR,�2 > 0:

I E = IR;

I ⇥ = IR⇥ (0,1)

I 8(x1, . . . , xn) 2 IRn, 8(µ,�2) 2 IR⇥ (0,1),

L(x1, . . . , xn, µ,�
2) =

1

(�
p
2⇡)n

exp

 
� 1

2�2

nX

i=1

(xi � µ)2
!
.



19/54

Exercises

Let
�
E, (IP✓)✓2⇥

�
be a statistical model associated with

X1, . . . , Xn ⇠ Exp(�).

a) What is E?

b) What is ⇥?

c) Find the likelihood of the model.
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Exercise

Let
�
E, (IP✓)✓2⇥

�
be a statistical model associated with

X1, . . . , Xn⇠Unif[0, b] for some b > 0.
a) What is E?

b) What is ⇥?

c) Find the likelihood of the model.
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Maximum likelihood estimator

Let X1, . . . , Xn be an i.i.d. sample associated with a statistical

model
�
E, (IP✓)✓2⇥

�
and let L be the corresponding likelihood.

Definition

The maximum likelihood estimator of ✓ is defined as:

✓̂MLE
n = argmax

✓2⇥
L(X1, . . . , Xn, ✓),

provided it exists.

Remark (log-likelihood estimator): In practice, we use the fact

that

✓̂MLE
n = argmax

✓2⇥
L(X1, . . . , Xn, ✓).



22/54

Interlude: maximizing/minimizing functions

Note that

min
✓2⇥

�h(✓) , max
✓2⇥

h(✓)

In this class, we focus on maximization.

Maximization of arbitrary functions can be di�cult:

Example: ✓ 7!
Qn

i=1(✓ �Xi)
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Concave and convex functions

Definition

A function twice di↵erentiable function h : ⇥ ⇢ IR ! IR is said to

be concave if its second derivative satisfies

h00(✓)  0 , 8 ✓ 2 ⇥

It is said to be strictly concave if the inequality is strict: h00(✓) < 0

Moreover, h is said to be (strictly) convex if �h is (strictly)

concave, i.e. h00(✓) � 0 (h00(✓) > 0).

Examples:

I ⇥ = IR, h(✓) = �✓2,

I ⇥ = (0,1), h(✓) =
p
✓,

I ⇥ = (0,1), h(✓) = log ✓,

I ⇥ = [0,⇡], h(✓) = sin(✓)

I ⇥ = IR, h(✓) = 2✓ � 3
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Multivariate concave functions

More generally for a multivariate function: h : ⇥ ⇢ IRd ! IR,
d � 2, define the

I gradient vector: rh(✓) =

0

B@

1

CA 2 IRd

I Hessian matrix:

Hh(✓) =

0

BBBB@

@2h
@✓1@✓1

(✓) · · · @2h
@✓1@✓d

(✓)

@2h
@✓d@✓d

(✓) · · · @2h
@✓d@✓d

(✓)

1

CCCCA
2 IRd⇥d

h is concave , x>Hh(✓)x  0 8x 2 IRd, ✓ 2 ⇥.

h is strictly concave , x>Hh(✓)x < 0 8x 2 IRd, ✓ 2 ⇥.

Examples:

I ⇥ = IR2
, h(✓) = �✓21 � 2✓22 or h(✓) = �(✓1 � ✓2)2

I ⇥ = (0,1), h(✓) = log(✓1 + ✓2),
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Optimality conditions

Strictly concave functions are easy to maximize: if they have a

maximum, then it is unique. It is the unique solution to

h0(✓) = 0 ,

or, in the multivariate case

= 0 2 IRd .

There are many algorithms to find it numerically: this is the theory

of “convex optimization”. In this class, often a closed form
formula for the maximum.
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Exercises

a) Which one of the following functions are concave on ⇥ = IR2
?

1. h(✓) = �(✓1 � ✓2)2 � ✓1✓2

2. h(✓) = �(✓1 � ✓2)2 + ✓1✓2

3. h(✓) = (✓1 � ✓2)2 � ✓1✓2

4. Both 1. and 2.

5. All of the above

6. None of the above

b)Let h : ⇥ ⇢ IRd ! IR be a function whose hessian matrix Hh(✓)
has a positive diagonal entry for some ✓ 2 ⇥. Can h be concave?

Why or why not?
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Examples of maximum likelihood estimators

I Bernoulli trials: p̂MLE
n = X̄n.

I Poisson model: �̂MLE
n = X̄n.

I Gaussian model:
�
µ̂n, �̂

2
n

�
=
⇣
X̄n, Ŝn

⌘
.
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Consistency of maximum likelihood estimator

Under mild regularity conditions, we have

✓̂MLE
n

IP���!
n!1

✓⇤

This is because for all ✓ 2 ⇥

1

n
L(X1, . . . , Xn, ✓)

IP���!
n!1

“constant”�

Moreover, the minimizer of the right-hand side is if the

parameter is .

Technical conditions allow to transfer this convergence to the

minimizers.
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Covariance

How about asymptotic normality?

In general, when ✓ ⇢ IRd, d � 2, its coordinates are not necessarily

.

The covariance between two random variables X and Y is

Cov(X,Y ) =

= IE
⇥
X · Y

⇤
�

= IE
⇥
X ·

� �⇤
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Properties

I Cov(X,Y ) =

I Cov(X,Y ) = Cov(Y,X)

I If X and Y are independent, then Cov(X,Y ) =

B In general, the converse is not true except if (X,Y )>

is a Gaussian vector2, i.e., ↵X + �Y is Gaussian for all

(↵,�) 2 IR\{(0, 0)}.

Take X ⇠ N (0, 1), B ⇠ Ber(1/2), R = 2B � 1 ⇠ Rad(1/2). Then

Y = R ·X ⇠

But taking ↵ = � = 1, we get

X + Y =

⇢
with prob. 1/2

with prob. 1/2

Actually Cov(X,Y ) = 0 but they are not independent: |X| = |Y |
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Covariance matrix

The covariance matrix of a random vector

X = (X(1), . . . , X(d))> 2 IRd
is given by

⌃ = Cov(X) = IE
⇥�
X � IE(X)

��
X � IE(X)

�>⇤

This is a matrix of size

The term on the ith row and jth column is

⌃ij = IE
⇥�
X(i) � IE(X(i))

��
X(j) � IE(X(j))

�⇤
=

In particular, on the diagonal, we have

⌃ii =

Recall that for X 2 IR, Var(aX + b) = . Actually, if

X 2 IRd
and A,B are matrices:

Cov(AX +B) =
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The multivariate Gaussian distribution

If (X,Y )> is a Gaussian vector then its pdf depends on 5

parameters:

and Cov(X,Y )

More generally, a Gaussian vector
3 X 2 IRd

, is completely

determined by its expected value and IE[X] = µ 2 IRd
covariance

matrix ⌃. We write

X ⇠ Nd(µ,⌃) .

It has pdf over IRd
given by:

1

(2⇡ det(⌃))d/2
exp

✓
�1

2
(x� µ)>⌃�1(x� µ)

◆

3As before, this means that ↵>X is Gaussian for any ↵ 2 IRd,↵ 6= 0.
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The multivariate CLT

The CLT may be generalized to averages or random vectors (also

vectors of averages).

Let X1, . . . , Xn 2 IRd
be independent copies of a random vector X

such that IE[X] = µ, Cov(X) = ⌃,

p
n(X̄n � µ)

(d)���!
n!1

Equivalently

(d)���!
n!1

Nd(0, Id)
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Multivariate Delta method

Let (Tn)n�1 sequence of random vectors in IRd
such that

p
n(Tn � ✓)

(d)���!
n!1

Nd(0,⌃),

for some ✓ 2 IRd
and some covariance ⌃ 2 IRd⇥d

.

Let g : IRd ! IRk
(k � 1) be continuously di↵erentiable at ✓.

Then,

p
n (g(Tn)� g(✓))

(d)���!
n!1

Nk

�
0, ⌃

�
,

where rg(✓) =
@g

@✓
(✓) =

✓
@gj
@✓i

◆

1i
1j

2 IRd⇥k
.
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Fisher Information

Definition: Fisher information

Define the log-likelihood for one observation as:

`(✓) = logL1(X, ✓), ✓ 2 ⇥ ⇢ IRd

Assume that ` is a.s. twice di↵erentiable. Under some regularity

conditions, the Fisher information of the statistical model is

defined as:

I(✓) = IE
⇥
r`(✓)r`(✓)>

⇤
� IE

⇥
r`(✓)

⇤
IE
⇥
r`(✓)

⇤>
= �IE [H`(✓)] .

If ⇥ ⇢ IR, we get:

I(✓) = var
⇥
`0(✓)

⇤
= �IE

⇥
`00(✓)

⇤
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Fisher information of the Bernoulli experiment

Let X ⇠ Ber(p).

`(p) =

`0(p) = var[`0(p)] =

`00(p) = � IE[`00(p)] =
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Asymptotic normality of the MLE

Theorem

Let ✓⇤ 2 ⇥ (the true parameter). Assume the following:

1. The parameter is identifiable.

2. For all ✓ 2 ⇥, the support of IP✓ does not depend on ✓;

3. ✓⇤ is not on the boundary of ⇥;

4. I(✓) is invertible in a neighborhood of ✓⇤;

5. A few more technical conditions.

Then, ✓̂MLE
n satisfies:

I ✓̂MLE
n

IP���!
n!1

w.r.t. IP✓⇤ ;

I p
n
⇣
✓̂MLE
n � ✓⇤

⌘
(d)���!

n!1
N
�
0,

�
w.r.t. IP✓⇤ .
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The method of moments
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Moments

Let X1, . . . , Xn be an i.i.d. sample associated with a statistical

model
�
E, (IP✓)✓2⇥

�
.

I Assume that E ✓ IR and ⇥ ✓ IRd
, for some d � 1.

I Population moments: Let mk(✓) = IE✓[Xk
1 ], 1  k  d.

I Empirical moments: Let m̂k = Xk
n = , 1  k  d.

I From LLN,

m̂k
IP/a.s���!
n!1

More compactly, we say that the whole vector converges:

(m̂1, . . . , m̂d)
IP/a.s���!
n!1
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Moments estimator

Let

M : ⇥ ! IRd

✓ 7! M(✓) = (m1(✓), . . . ,md(✓)) .

Assume M is one to one:

✓ = M�1(m1(✓), . . . ,md(✓)).

Definition

Moments estimator of ✓:

✓̂MM
n = M�1( ),

provided it exists.
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Statistical analysis

I Recall M(✓) = (m1(✓), . . . ,md(✓));

I Let M̂ = (m̂1, . . . , m̂d).

I Let ⌃(✓) = Cov✓(X1, X2
1 , . . . , X

d
1 ) be the covariance matrix

of the random vector (X1, X2
1 , . . . , X

d
1 ), which we assume to

exist.

I Assume M�1
is continuously di↵erentiable at M(✓).



42/54

Method of moments (5)

Remark: The method of moments can be extended to more

general moments, even when E 6⇢ IR.

I Let g1, . . . , gd : E ! IR be given functions, chosen by the

practitioner.

I Previously, gk(x) = xk, x 2 E = IR, for all k = 1, . . . , d.

I Define mk(✓) = IE✓[gk(X)], for all k = 1, . . . , d.

I Let ⌃(✓) = Cov✓(g1(X1), g2(X1), . . . , gd(X1)) be the

covariance matrix of the random vector

(g1(X1), g2(X1), . . . , gd(X1)), which we assume to exist.

I Assume M is one to one and M�1
is continuously

di↵erentiable at M(✓).
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Generalized method of moments

Applying the multivariate CLT and Delta method yields:

Theorem

p
n
⇣
✓̂MM
n � ✓

⌘
(d)���!

n!1
N (0,�(✓)) (w.r.t. IP✓),

where �(✓) =


@M�1

@✓

�
M(✓)

��>
⌃(✓)


@M�1

@✓

�
M(✓)

��
.
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MLE vs. Moment estimator

I Comparison of the quadratic risks: In general, the MLE is

more accurate.

I MLE still gives good results if model is misspecified

I Computational issues: Sometimes, the MLE is intractable but

MM is easier (polynomial equations)
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M-estimation
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M-estimators

Idea:

I Let X1, . . . , Xn be i.i.d with some unknown distribution IP in

some sample space E (E ✓ IRd
for some d � 1).

I No statistical model needs to be assumed (similar to ML).

I Goal: estimate some parameter µ⇤
associated with IP, e.g. its

mean, variance, median, other quantiles, the true parameter in

some statistical model...

I Find a function ⇢ : E ⇥M ! IR, where M is the set of all

possible values for the unknown µ⇤
, such that:

Q(µ) := IE [⇢(X1, µ)]

achieves its minimum at µ = µ⇤
.
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Examples (1)

I If E = M = IR and ⇢(x, µ) = (x� µ)2, for all x 2 IR, µ 2 IR:
µ⇤ =

I If E = M = IRd
and ⇢(x, µ) = kx� µk22, for all

x 2 IRd, µ 2 IRd
: µ⇤ =

I If E = M = IR and ⇢(x, µ) = |x� µ|, for all x 2 IR, µ 2 IR:
µ⇤

is a of IP.
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Examples (2)

If E = M = IR, ↵ 2 (0, 1) is fixed and ⇢(x, µ) = C↵(x� µ), for
all x 2 IR, µ 2 IR : µ⇤

is a ↵-quantile of IP.

Check function

C↵(x) =

(
�(1� ↵)x if x < 0

↵x if x � 0.
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MLE is an M-estimator

Assume that (E, {IP✓}✓2⇥) is a statistical model associated with

the data.

Theorem

Let M = ⇥ and ⇢(x, ✓) = � logL1(x, ✓), provided the likelihood is

positive everywhere. Then,

µ⇤ = ✓⇤,

where IP = IP✓⇤ (i.e., ✓⇤ is the true value of the parameter).
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Definition

I Define µ̂n as a minimizer of:

Qn(µ) := ⇢(Xi, µ).

I Examples: Empirical mean, empirical median, empirical

quantiles, MLE, etc.
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Statistical analysis

I Let J(µ) = � @2Q

@µ@µ> (µ) (= �IE


@2⇢

@µ@µ> (X1, µ)

�
under

some regularity conditions).

I Let K(µ) = Cov


@⇢

@µ
(X1, µ)

�
.

I Remark: In the log-likelihood case (write µ = ✓),

J(✓) = K(✓) =
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Asymptotic normality

Let µ⇤ 2 M (the true parameter). Assume the following:

1. µ⇤
is the only minimizer of the function Q;

2. J(µ) is invertible for all µ 2 M;

3. A few more technical conditions.

Then, µ̂n satisfies:

I µ̂n
IP���!

n!1
µ⇤

;

I p
n (µ̂n � µ⇤)

(d)���!
n!1

N
�
0, K(µ⇤)

�
.
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M-estimators in robust statistics

Example: Location parameter

If X1, . . . , Xn are i.i.d. with density f(·�m), where:

I f is an unknown, positive, even function (e.g., the Cauchy

density);

I m is a real number of interest, a location parameter ;

How to estimate m ?

I M-estimators: empirical mean, empirical median, ...

I Compare their risks or asymptotic variances;

I The empirical median is more robust.
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Recap

I Three principled methods for estimation: maximum likelihood,

Method of moments, M-estimators

I Maximum likelihood is an example of M -estimation

I Method of moments inverts the function that maps

parameters to moments

I All methods yield to asymptotic normality under regularity

conditions

I Asymptotic covariance matrix can be computed using

multivariate �-method

I For MLE, asymptotic covariance matrix is the inverse Fisher

information matrix


