18.650 - Fundamentals of Statistics

3. Methods for estimation

Goals

In the kiss example, the estimator was intuitively the right thing to do: $\hat{p}=\bar{X}_{n}$.

In view of LLN, since $p=\mathbb{E}[X]$, we have \bar{X}_{n}
so $\hat{p} \approx p$ for n large enough.
If the parameter is $\theta \neq \mathbb{E}[X]$? How do we perform?

1. Maximum likelihood estimation: a generic approach with very good properties
2. Method of moments: a (fairly) generic and easy approach
3. M-estimators: a flexible approach, close to machine learning

Total variation distance

Let $\left(E,\left(\mathbb{P}_{\theta}\right)_{\theta \in \Theta}\right)$ be a statistical model associated with a sample of i.i.d. r.v. X_{1}, \ldots, X_{n}. Assume that there exists $\theta^{*} \in \Theta$ such that $X_{1} \sim \mathbb{P}_{\theta^{*}}: \theta^{*}$ is the true parameter.

Statistician's goal: given X_{1}, \ldots, X_{n}, find an estimator $\hat{\theta}=\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)$ such that $\mathbb{P}_{\hat{\theta}}$ is close to $\mathbb{P}_{\theta^{*}}$ for the true parameter θ^{*}. This means: $\left|\mathbb{P}_{\hat{\theta}}(A)-\mathbb{P}_{\theta^{*}}(A)\right|$ is small for all $A \subset E$.

Definition

The total variation distance between two probability measures \mathbb{P}_{θ} and $\mathbb{P}_{\theta^{\prime}}$ is defined by

$$
\operatorname{TV}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{\prime}}\right)=\max _{A \subset E}\left|\mathbb{P}_{\theta}(A)-\mathbb{P}_{\theta^{\prime}}(A)\right|
$$

Total variation distance between discrete measures

Assume that E is discrete (i.e., finite or countable). This includes Bernoulli, Binomial, Poisson, ...

Therefore X has a PMF (probability mass function):
$\mathbb{P}_{\theta}(X=x)=p_{\theta}(x)$ for all $x \in E$,

$$
p_{\theta}(x) \geq 0, \quad \sum_{x \in E} p_{\theta}(x)=1
$$

The total variation distance between \mathbb{P}_{θ} and $\mathbb{P}_{\theta^{\prime}}$ is a simple function of the PMF's p_{θ} and $p_{\theta^{\prime}}$:

$$
\mathrm{TV}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{\prime}}\right)=\frac{1}{2} \sum_{x \in E}\left|p_{\theta}(x)-p_{\theta^{\prime}}(x)\right|
$$

Total variation distance between continuous measures

Assume that E is continuous. This includes Gaussian, Exponential,

Assume that X has a density $\mathbb{P}_{\theta}(X \in A)=\int_{A} f_{\theta}(x) d x$ for all $A \subset E$.

$$
f_{\theta}(x) \geq 0, \quad \int_{E} f(x) d x=1
$$

The total variation distance between \mathbb{P}_{θ} and $\mathbb{P}_{\theta^{\prime}}$ is a simple function of the densities f_{θ} and $f_{\theta^{\prime}}$:

$$
\mathrm{TV}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{\prime}}\right)=\frac{1}{2} \int\left|f_{\theta}(x)-f_{\theta^{\prime}}(x)\right| d x
$$

Properties of Total variation

$-\operatorname{TV}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{\prime}}\right)=\operatorname{TV}\left(\mathbb{P}_{\theta^{\prime}}, \mathbb{P}_{\theta}\right)$
$-\operatorname{TV}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{\prime}}\right) \geq 0, \operatorname{TV}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{\prime}}\right) \leqslant 1$
(symmetric)
(positive)

- If $\operatorname{TV}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{\prime}}\right)=0$ then $\mathbb{P}_{\theta}=\mathbb{P}_{\theta^{\prime}}$
(definite)
$-\operatorname{TV}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{\prime}}\right) \leq T V\left(\mathbb{P}_{\nabla^{\prime}}, \mathbb{P}_{\theta^{\prime \prime}}\right)+T\left(\mathbb{R}_{\theta^{\prime \prime}}, \mathbb{P}_{\theta^{\prime}}\right) \quad$ (triangle inequality)
These imply that the total variation is a distance between probability distributions.

Exercises
Compute:

$$
\begin{aligned}
& \text { Compute: } \\
& \begin{array}{l}
\text { a) } \left.\operatorname{TV}(\operatorname{Ber}(0.5), \operatorname{Ber}(0.1))=\frac{1}{2} \quad\left[\left|p_{0.5}(0)-p_{0.1}(0)\right|+\mid p_{0.5}(1)+p_{0.1}(1)\right)\right] \\
E=|0,1| \\
\text { b) } \operatorname{TV}(\operatorname{Ber}(0.5), \operatorname{Ber}(0.9))=\underbrace{[\mid .5-.9}_{0.4}|+|.5-.1|]=\frac{0.8}{2}=0.4
\end{array}
\end{aligned}
$$

c) $\operatorname{TV}(\operatorname{Exp}(1), \operatorname{Unif}[0,1])=\frac{1}{e}$
d) $\mathrm{TV}(X, X+a)=1 \quad \left\lvert\, \frac{1}{\mathbb{P}(X \in\{0,1\})}-\widetilde{\mathbb{P}(X+e \in\{0,1\}) \mid}=1\right.$ for any $a \in(0,1)$, where $X \sim \operatorname{Ber}(0.5)$
e) $\operatorname{TV}\left(2 \sqrt{n}\left(\bar{X}_{n}-1 / 2\right), Z\right)=1$ where $X_{i} \stackrel{i . i . d}{\sim} \operatorname{Ber}(0.5)$ and $Z \sim \mathcal{N}(0,1)$

An estimation strategy

Build an estimator $\widehat{\mathrm{TV}}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{*}}\right)$ for all $\theta \in \Theta$. Then find $\hat{\theta}$ that minimizes the function $\theta \mapsto \widehat{\mathrm{TV}}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{*}}\right)$.

problem: Unclear how to build $\widehat{\mathrm{TV}}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{*}}\right)$!

Kullback-Leibler (KL) divergence

There are many distances between probability measures to replace total variation. Let us choose one that is more convenient.

Definition

The Kullback-Leibler ${ }^{1}$ (KL) divergence between two probability measures \mathbb{P}_{θ} and $\mathbb{P}_{\theta^{\prime}}$ is defined by

$$
\mathrm{KL}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{\prime}}\right)= \begin{cases}\sum_{x \in E} p_{\theta}(x) \log \left(\frac{p_{\theta}(x)}{p_{\theta^{\prime}}(x)}\right) & \text { if } E \text { is discrete } \\ \int_{E} f_{\theta}(x) \log \left(\frac{f_{\theta}(x)}{f_{\theta^{\prime}}(x)}\right) d x & \text { if } E \text { is continuous }\end{cases}
$$

[^0]
Properties of KL－divergence

$-\mathrm{KL}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{\prime}}\right) \neq \mathrm{KL}\left(\mathbb{P}_{\theta^{\prime}}, \mathbb{P}_{\theta}\right)$ in general
$-\operatorname{KL}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{\prime}}\right) \geq 0$
－If $\mathrm{KL}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{\prime}}\right)=0$ then $\mathbb{P}_{\theta}=\mathbb{P}_{\theta^{\prime}}$（definite）
$>\operatorname{KL}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{\prime}}\right) \not \leq \mathrm{KL}\left(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^{\prime \prime}}\right)+\mathrm{KL}\left(\mathbb{P}_{\theta^{\prime \prime}}, \mathbb{P}_{\theta^{\prime}}\right)$ in general
Not a distance．
This is is called a divergence
Asymmetry is the key to our ability to estimate it！
θ^{*} 谓咲 minimizer of $\quad \theta \mapsto K L\left(\mathbb{P}_{\theta^{*}}, \mathbb{P}_{\theta}\right)$

Maximum likelihood

estimation

Estimating the KL

$$
\begin{aligned}
\mathrm{KL}\left(\mathbb{P}_{\theta^{*}}, \mathbb{P}_{\theta}\right) & =\mathbb{E}_{\theta^{*}}\left[\log \left(\frac{p_{\theta^{*}}(X)}{p_{\theta}(X)}\right)\right] \\
& =\mathbb{E}_{\theta^{*}}\left[\log p_{\theta^{*}}(X)\right]-\mathbb{E}_{\theta^{*}}\left[\log p_{\theta}(x)\right]
\end{aligned}
$$

So the function $\theta \mapsto K L\left(\mathbb{P}_{\theta^{*}}, \mathbb{P}_{\theta}\right)$ is of the form:

$$
\text { "constant" }-\mathbb{E}_{8} *\left[\log p_{\theta}(X)\right]
$$

Can be estimated: $\mathbb{E}_{\theta^{*}}[h(X)] \rightsquigarrow \frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)($ by LLN $)$

$$
\widehat{\mathrm{KL}}\left(\mathbb{P}_{\theta^{*}}, \mathbb{P}_{\theta}\right)=\text { "constant" }-\frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}\left(X_{i}\right) \quad \text { (blue cure) }
$$

Maximum likelihood

$$
\begin{aligned}
& \widehat{\mathrm{KL}}\left(\mathbb{P}_{\theta^{*}}, \mathbb{P}_{\theta}\right)=\text { "constant" }-\frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}\left(X_{i}\right) \\
& \min _{\theta \in \Theta} \widehat{\mathrm{KL}}\left(\mathbb{P}_{\theta^{*}}, \mathbb{P}_{\theta}\right) \Leftrightarrow \min _{\theta \in \Theta}-\frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}\left(X_{i}\right) \\
& \Leftrightarrow \operatorname{nox}_{\theta \in Q} \sum_{n} \sum_{i=1}^{n} \log \rho_{\theta}\left(X_{i}\right) \\
& \Leftrightarrow \operatorname{nax} \log \left[\prod_{i=1}^{n} P_{\theta}\left(X_{i}\right)\right] \\
& \Leftrightarrow \max _{\theta \in \Theta} \prod_{i=1}^{n} p_{\theta}\left(X_{i}\right)
\end{aligned}
$$

This is the maximum likelihood principle.

Likelihood, Discrete case (1)

Let $\left(E,\left(\mathbb{P}_{\theta}\right)_{\theta \in \Theta}\right)$ be a statistical model associated with a sample of i.i.d. r.v. X_{1}, \ldots, X_{n}. Assume that E is discrete (i.e., finite or countable).

Definition

The likelihood of the model is the map L_{n} (or just L) defined as:

$$
\begin{aligned}
L_{n}: & E^{n} \times \Theta \\
\left(x_{1}, \ldots, x_{n}, \theta\right) & \rightarrow \mathbb{R} \\
& \mapsto \mathbb{P}_{\theta}\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right] . \\
& =\prod_{i=1}^{n} \mathbb{R}_{\partial}\left[X_{i}=x_{i}\right]
\end{aligned}
$$

Likelihood for the Bernoulli model

Example 1 (Bernoulli trials): If $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Ber}(p)$ for some $p \in(0,1)$:

- $E=\{0,1\}$; ,
- $\Theta=(0,1)$; ,
- $\forall\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}, \quad \forall p \in(0,1)$,

$$
\begin{aligned}
L\left(x_{1}, \ldots, x_{n}, p\right) & =\prod_{i=1}^{n} \mathbb{P}_{p}\left[X_{i}=x_{i}\right] \\
& =\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}} \\
& =p \sum_{i==}^{\infty} x_{i}(1-p)^{n-\sum_{i=1}^{n} x_{i}}
\end{aligned}
$$

Likelihood for the Poisson model

Example 2 (Poisson model):
If $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Poiss}(\lambda)$ for some $\lambda>0$:

$$
\begin{aligned}
& \forall E=\mathbb{N} ; \\
& \nabla \Theta=(0, \infty) ; \\
& \forall\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}, \quad \forall \lambda>0, \\
& L\left(x_{1}, \ldots, x_{n}, \lambda\right)=e^{-n \lambda} \frac{\lambda^{\sum_{i=1}^{n} x_{i}}}{x_{1}!\ldots x_{n}!} \\
& \mathbb{P}_{\lambda}\left(X_{i}=x_{i}\right)=\frac{\lambda^{x_{i}}}{x_{i}!} e^{-\lambda} \Rightarrow L_{i=1}^{n}\left(x_{1} \ldots x_{n}, \lambda\right)=\frac{\lambda_{i=1}^{n} x_{i}}{\prod_{i=1}^{n} x_{i}!} e^{-n \lambda} \mathbb{P}_{\lambda}\left(X_{i}=x_{i}\right)
\end{aligned}
$$

Likelihood, Continuous case

Let $\left(E,\left(\mathbb{P}_{\theta}\right)_{\theta \in \Theta}\right)$ be a statistical model associated with a sample of i.i.d. r.v. X_{1}, \ldots, X_{n}. Assume that all the \mathbb{P}_{θ} have density f_{θ}.

Definition

The likelihood of the model is the map L defined as:

$$
\begin{aligned}
& L: E^{n} \times \Theta \\
&\left(x_{1}, \ldots, x_{n}, \theta\right) \mapsto \mathbb{R} \\
& \mapsto \prod_{i=1}^{n} f_{\theta}\left(x_{i}\right) .
\end{aligned}
$$

Likelihood for the Gaussian model

Example 1 (Gaussian model): If $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathcal{N}\left(\mu, \sigma^{2}\right)$, for some $\mu \in \mathbb{R}, \sigma^{2}>0$:

- $E=\mathbb{R}$;
- $\Theta=\mathbb{R} \times(0, \infty)$
- $\forall\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, \quad \forall\left(\mu, \sigma^{2}\right) \in \mathbb{R} \times(0, \infty)$,

$$
L\left(x_{1}, \ldots, x_{n} ; \mu, \sigma^{2}\right)=\frac{1}{(\sigma \sqrt{2 \pi})^{n}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right)
$$

Exercises

Let $\left(E,\left(\mathbb{P}_{\theta}\right)_{\theta \in \Theta}\right)$ be a statistical model associated with $X_{1}, \ldots, X_{n} \sim \operatorname{Exp}(\lambda), \lambda>0$.
a) What is E ? $(0, \infty)$
b) What is Θ ? $\quad(0, \infty)$
c) Find the likelihood of the model.

Exercise

Let $\left(E,\left(\mathbb{P}_{\theta}\right)_{\theta \in \Theta}\right)$ be a statistical model associated with $X_{1}, \ldots, X_{n} \sim U n i f[0, b]$ for some $b>0$.
a) What is E ?

$$
[0, \infty)
$$

b) What is Θ ?

$$
[0, \infty)
$$

c) Find the likelihood of the model.

$$
L\left(x_{1}, \ldots, x_{n} ; b\right)=\frac{1}{b^{n}} G\left(\max _{i} X_{i} \leqslant b\right)
$$

Maximum likelihood estimator

Let X_{1}, \ldots, X_{n} be an i.i.d. sample associated with a statistical model $\left(E,\left(\mathbb{P}_{\theta}\right)_{\theta \in \Theta}\right)$ and let L be the corresponding likelihood.

Definition

The maximum likelihood estimator of θ is defined as:

$$
\hat{\theta}_{n}^{M L E}=\underset{\theta \in \Theta}{\operatorname{argmax}} L\left(X_{1}, \ldots, X_{n}, \theta\right)
$$

provided it exists.
Remark (log-likelihood estimator): In practice, we use the fact that

$$
\hat{\theta}_{n}^{M L E}=\underset{\theta \in \Theta}{\operatorname{argmax}} \log L\left(X_{1}, \ldots, X_{n}, \theta\right)
$$

Interlude: maximizing/minimizing functions

optimizatiou

Note that

$$
\min _{\theta \in \Theta}-h(\theta) \quad \Leftrightarrow \quad \max _{\theta \in \Theta} h(\theta)
$$

In this class, we focus on maximization.
Maximization of arbitrary functions can be difficult:

Example: $\theta \mapsto \prod_{i=1}^{n}\left(\theta-X_{i}\right)$

Concave and convex functions

Definition

A function twice differentiable function $h: \Theta \subset \mathbb{R} \rightarrow \mathbb{R}$ is said to be concave if its second derivative satisfies

$$
h^{\prime \prime}(\theta) \leq 0, \quad \forall \theta \in \Theta
$$

It is said to be strictly concave if the inequality is strict: $h^{\prime \prime}(\theta)<0$
Moreover, h is said to be (strictly) convex if $-h$ is (strictly) concave, ie. $h^{\prime \prime}(\theta) \geq 0\left(h^{\prime \prime}(\theta)>0\right)$.
Examples:
$-\Theta=\mathbb{R}, h(\theta)=-\theta^{2}, h^{\prime}(\theta)=-2 \theta, h^{\prime \prime}(\theta)=-2<o(s$. Concourse)

- $\Theta=(0, \infty), h(\theta)=\sqrt{\theta}, h^{\prime}(\theta)=\frac{1}{2 \sqrt{\theta}}, h^{\prime \prime}(\theta)=-\frac{1}{4 \theta^{3 / 2}}<0 \quad$ (S. Bn cue)
- $\Theta=(0, \infty), h(\theta)=\log \theta, h^{\prime}(\theta)=\frac{1}{\theta} \cdot h^{\prime \prime}(\theta)=-\frac{1}{\delta^{2}}<0$ (s.cacose)
- $\Theta=[0, \pi], h(\theta)=\sin (\theta), h^{\prime}(\theta)=\cos (\theta), h^{\prime \prime}(\theta)=\cdot \sin (\theta) \leqslant 0 \quad$ (concise)
- $\Theta=\mathbb{R}, h(\theta)=2 \theta-3, h^{\prime}(\theta)=2, \quad l^{\prime \prime}(\theta)=\left.0\right|_{\substack{0 \\ 0}} \quad$ Both

Multivariate concave functions

More generally for a multivariate function: $h: \Theta \subset \mathbb{R} / \vec{d} \rightarrow \mathbb{R}$, $d \geq 2$, define the

- gradient vector: $\nabla h(\theta)=\left(\begin{array}{c}\frac{\partial h}{\partial \theta_{1}}(\theta) \\ \vdots \\ \frac{\partial h}{\partial \theta_{d}}(\theta)\end{array}\right) \in \mathbb{R}^{d}$
- Hessian matrix:

$$
\mathbf{H} h(\theta)=\left(\begin{array}{ccc}
\frac{\dot{\partial}^{2} h}{\partial \theta_{1} \partial \theta_{1}}(\theta) & \cdots & \frac{\partial^{2} h}{\partial \theta_{1} \partial \theta_{d}}(\theta) \\
\frac{\partial^{2} h}{\partial \theta_{d} \partial \theta_{d}}(\theta) & \cdots & \frac{\partial^{2} h}{\partial \theta_{d} \partial \theta_{d}}(\theta)
\end{array}\right) \in \mathbb{R}^{d \times d}
$$

h is concave $\quad \Leftrightarrow \quad x^{\top} \mathbf{H} h(\theta) x \leq 0 \quad \forall x \in \mathbb{R}^{d}, \theta \in \Theta$.
h is strictly concave $\Leftrightarrow x^{\top} \mathbf{H} h(\theta) x<0 \quad \forall x \in \mathbb{R}^{d}, \theta \in \Theta$.
Examples:

$$
x \neq 0
$$

- $\Theta=\mathbb{R}^{2}, h(\theta)=-\theta_{1}^{2}-2 \theta_{2}^{2}$ or $h(\theta)=-\left(\theta_{1}-\theta_{2}\right)^{2}$
- $\Theta=(0, \infty), h(\theta)=\log \left(\theta_{1}+\theta_{2}\right)$,

Optimality conditions

Strictly concave functions are easy to maximize: if they have a maximum, then it is unique. It is the unique solution to

$$
h^{\prime}(\theta)=0,
$$

or, in the multivariate case

$$
\nabla h(\theta)=0 \in \mathbb{R}^{d}
$$

There are many algorithms to find it numerically: this is the theory of "convex optimization". In this class, often a closed form formula for the maximum.

Exercises

a) Which one of the following functions are concave on $\Theta=\mathbb{R}^{2}$?

1. $h(\theta)=-\left(\theta_{1}-\theta_{2}\right)^{2}-\theta_{1} \theta_{2}$
2. $h(\theta)=-\left(\theta_{1}-\theta_{2}\right)^{2}+\theta_{1} \theta_{2}$
3. $h(\theta)=\left(\theta_{1}-\theta_{2}\right)^{2}-\theta_{1} \theta_{2}$
4. Both 1. and 2.
5. All of the above
6. None of the above
b)Let $h: \Theta \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function whose hessian matrix $\mathbf{H} h(\theta)$ has a positive diagonal entry for some $\theta \in \Theta$. Can h be concave? Why or why not?

Examples of maximum likelihood estimators

- Bernoulli trials: $\hat{p}_{n}^{M L E}=\bar{X}_{n}$.
- Poisson model: $\hat{\lambda}_{n}^{M L E}=\bar{X}_{n}$.
- Gaussian model: $\left(\hat{\mu}_{n}, \hat{\sigma}_{n}^{2}\right)=\left(\bar{X}_{n}, \hat{S}_{n}\right)$.

$$
\hat{s}_{s}=\frac{1}{\pi} \sum_{i=1}^{n}\left(x_{i}-x_{0}\right)^{-2}
$$

Consistency of maximum likelihood estimator

Under mild regularity conditions, we have

$$
\hat{\theta}_{n}^{M L E} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \theta^{*}
$$

This is because for all $\theta \in \Theta$

$$
\left.\frac{1}{n} \log L\left(X_{1}, \ldots, X_{n}, \theta\right) \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \text { "constant"-KL(} \mathbb{P}_{\theta^{*},} \mathbb{P}_{\theta}\right)
$$

Moreover, the minimizer of the right-hand side is θ^{*} if the parameter is identifiable

Technical conditions allow to transfer this convergence to the minimizers.

Covariance

How about asymptotic normality?

$$
\hat{\theta}=\binom{\overline{X_{n}}}{\hat{S}_{n}}
$$

In general, when $\theta \subset \mathbb{R}^{d}, d \geq 2$, its coordinates are not necessarily indeperdeut.
The covariance between two random variables X and Y is

$$
\begin{aligned}
\operatorname{Cov}(X, Y): & =\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] \\
& =\mathbb{E}[X \cdot Y]-\mathbb{E}[X] \mathbb{E}[Y] \\
& =\mathbb{E}[X \cdot(Y-\mathbb{E}[Y])] \\
& =\mathbb{E}[(X-\mathbb{E}[X]) Y]
\end{aligned}
$$

Properties

- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$

\triangleIn general, the converse is not true except if $(X, Y)^{\top}$ is a Gaussian vector , ie., $\alpha X+\beta Y$ is Gaussian for all $(\alpha, \beta) \in \mathbb{R}^{2} \backslash\{(0,0)\}$

Rodemecher

 Take $X \sim \mathcal{N}(0,1), B \sim \operatorname{Ber}(1 / 2), R=2 B-1 \sim \operatorname{Rad}(1 / 2)$. Then$$
Y=R \cdot X \sim N(0,1)
$$

But taking $\alpha=\beta=1$, we get

$$
X+Y=\left\{\begin{array}{c}
2 \cdot X \\
0
\end{array}\right.
$$

with prob. $1 / 2$ with prob. 1/2

Actually $\operatorname{Cov}(X, Y)=0$ but they are not independent: $|X|=|Y|$

Covariance matrix

The covariance matrix of a random vector $X=\left(X^{(1)}, \ldots, X^{(d)}\right)^{\top} \in \mathbb{R}^{d}$ is given by

$$
\Sigma=\operatorname{Cov}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))(X-\mathbb{E}(X))^{\top}\right]
$$

This is a matrix of size $d \times d$
The term on the i th row and j th column is

$$
\Sigma_{i j}=\mathbb{E}\left[\left(X^{(i)}-\mathbb{E}\left(X^{(i)}\right)\right)\left(X^{(j)}-\mathbb{E}\left(X^{(j)}\right)\right)\right]=\operatorname{Cov}\left(X^{(i)}, X^{(\gamma)}\right)
$$

In particular, on the diagonal, we have $\Sigma_{i i}=\operatorname{Cov}\left(X^{(i)}, X^{(i)}\right)=\operatorname{Vor}\left(X^{(i)}\right)$
Recall that for $X \in \mathbb{R}, \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$. Actually, if $X \in \mathbb{R}^{d}$ and A, B are matrices:

$$
\operatorname{Cov}(A X+B)=\operatorname{Cov}(A X)=A \operatorname{Cov}(X) A^{\top}=A\left[A^{\top}\right.
$$

The multivariate Gaussian distribution

If $(X, Y)^{\top}$ is a Gaussian vector then its pdf depends on 5 parameters:

$$
\mathbb{E}[X], \operatorname{Vor}(X), \mathbb{E}[Y, \operatorname{Var}(Y) \text { and } \operatorname{Cov}(X, Y)
$$

More generally, a Gaussian vector ${ }^{3} X \in \mathbb{R}^{d}$, is completely determined by its expected value and $\mathbb{E}[X]=\mu \in \mathbb{R}^{d}$ covariance matrix Σ. We write

$$
X \sim \mathcal{N}_{d}(\mu, \Sigma)
$$

It has pdf over \mathbb{R}^{d} given by:
$f(x)=f\left(x^{\Lambda} \ldots, x^{(1)}\right)=\frac{1}{(2 \pi \operatorname{det}(\Sigma))^{d / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$
${ }^{3}$ As before, this means that $\alpha^{\top} X$ is Gaussian for any $\alpha \in \mathbb{R}^{d}, \alpha \neq 0$.

The multivariate CLT

The CLT may be generalized to averages or random vectors (also vectors of averages).
Let $X_{1}, \ldots, X_{n} \in \mathbb{R}^{d}$ be independent copies of a random vector X such that $\mathbb{E}[X]=\mu, \operatorname{Cov}(X)=\Sigma$,

$$
\sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow[n \rightarrow \infty]{(d)} N_{d}(0, \Sigma)
$$

Equivalently

$$
\sqrt{n} \sum^{-1 / 2}\left(\bar{X}_{1}-\mu\right) \frac{(t)}{n \rightarrow \infty} N_{a\left(0, I_{d}\right)}
$$

$$
I_{d}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Multivariate Delta method

Let $\left(T_{n}\right)_{n \geq 1}$ sequence of random vectors in \mathbb{R}^{d} such that

$$
\sqrt{n}\left(T_{n}-\theta\right) \xrightarrow[n \rightarrow \infty]{(d)} \mathcal{N}_{d}(0, \Sigma),
$$

for some $\theta \in \mathbb{R}^{d}$ and some covariance $\Sigma \in \mathbb{R}^{d \times d}$.

Let $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}(k \geq 1)$ be continuously differentiable at θ. Then,

$$
\sqrt{n}\left(g\left(T_{n}\right)-g(\theta)\right) \xrightarrow[n \rightarrow \infty]{(d)} \mathcal{N}_{k}\left(0, \nabla_{g}(\theta)^{\top} \Sigma \nabla g(\theta)\right)
$$

where $\nabla g(\theta)=\frac{\partial g}{\partial \theta}(\theta)=\left(\frac{\partial g_{j}}{\partial \theta_{i}}\right)_{\substack{1 \leq i \leq d \\ 1 \leq j \leq k}} \in \mathbb{R}^{d \times k}$.

Fisher Information

Definition: Fisher information

Define the log-likelihood for one observation as:

$$
\ell(\theta)=\log L_{1}(X, \theta), \quad \theta \in \Theta \subset \mathbb{R}^{d}
$$

Assume that ℓ is a.s. twice differentiable. Under some regularity conditions, the Fisher information of the statistical model is defined as:

$$
I(\theta)=\mathbb{E}\left[\nabla \ell(\theta) \nabla \ell(\theta)^{\top}\right]-\mathbb{E}[\nabla \ell(\theta)] \mathbb{E}[\nabla \ell(\theta)]^{\top}=-\mathbb{E}[\mathbf{H} \ell(\theta)]
$$

If $\Theta \subset \mathbb{R}$, we get:

$$
I(\theta)=\operatorname{var}\left[\ell^{\prime}(\theta)\right]=-\mathbb{E}\left[\ell^{\prime \prime}(\theta)\right]
$$

Fisher information of the Bernoulli experiment

Let $X \sim \operatorname{Ber}(p)$.

$$
\begin{aligned}
& \ell(p)=X \log p+(1-x) \log (1-p) \\
& \ell^{\prime}(p)=\frac{x}{p}-\frac{1-x}{1-p} \quad \operatorname{var}\left[\ell^{\prime}(p)\right]=\frac{1}{p(1-p)} \\
& \ell^{\prime \prime}(p)=-\frac{x}{p^{2}}-\frac{1-x}{(1-p)^{2}} \quad-\mathbb{E}\left[\ell^{\prime \prime}(p)\right]=\frac{1}{p(1-p)}
\end{aligned}
$$

Asymptotic normality of the MLE

Theorem

Let $\theta^{*} \in \Theta$ (the true parameter). Assume the following:

1. The parameter is identifiable.
2. For all $\theta \in \Theta$, the support of \mathbb{P}_{θ} does not depend on θ;
3. θ^{*} is not on the boundary of Θ;
4. $I(\theta)$ is invertible in a neighborhood of θ^{*};
5. A few more technical conditions.

Then, $\hat{\theta}_{n}^{M L E}$ satisfies:

- $\hat{\theta}_{n}^{M L E} \underset{n \rightarrow \infty}{\mathbb{P}} \theta^{*}$ w.r.t. $\mathbb{P}_{\theta^{*}}$;
$-\sqrt{n}\left(\hat{\theta}_{n}^{M L E}-\theta^{*}\right) \xrightarrow[n \rightarrow \infty]{(d)} \mathcal{N}_{d}\left(0, \quad I\left(\delta^{*}\right)^{-1}\right) \quad$ w.r.t. $\mathbb{P}_{\theta^{*}}$.

The method of moments

Moments

Let X_{1}, \ldots, X_{n} be an i.i.d. sample associated with a statistical model $\left(E,\left(\mathbb{P}_{\theta}\right)_{\theta \in \Theta}\right)$.

- Assume that $E \subseteq \mathbb{R}$ and $\Theta \subseteq \mathbb{R}^{d}$, for some $d \geq 1$.
- Population moments: Let $m_{k}(\theta)=\mathbb{E}_{\theta}\left[X_{1}^{k}\right], 1 \leq k \leq d$.
- Empirical moments: Let $\hat{m}_{k}=\overline{X_{n}^{k}}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}, \quad 1 \leq k \leq d$.
- From LLN,

$$
\hat{m}_{k} \xrightarrow[n \rightarrow \infty]{\mathbb{P} / a . s} m_{k}(\theta)
$$

More compactly, we say that the whole vector converges:

$$
\left(\hat{m}_{1}, \ldots, \hat{m}_{d}\right) \xrightarrow[n \rightarrow \infty]{\mathbb{P} / a . s}\left(m_{1}(\theta), \ldots, m_{c}(\theta)\right)
$$

Moments estimator

Let

$$
\begin{aligned}
M: \Theta & \rightarrow \mathbb{R}^{d} \\
\theta & \mapsto M(\theta)=\left(m_{1}(\theta), \ldots, m_{d}(\theta)\right)
\end{aligned}
$$

Assume M is one to one:

$$
\theta=M^{-1}\left(m_{1}(\theta), \ldots, m_{d}(\theta)\right)
$$

Definition
Moments estimator of θ :

$$
\hat{\theta}_{n}^{M M}=M^{-1}\left(\hat{m}_{1}, \ldots, \hat{m}_{d}\right)
$$

provided it exists.

Statistical analysis

- Recall $M(\theta)=\left(m_{1}(\theta), \ldots, m_{d}(\theta)\right)$;
- Let $\hat{M}=\left(\hat{m}_{1}, \ldots, \hat{m}_{d}\right)$.
- Let $\Sigma(\theta)=\operatorname{Cov}_{\theta}\left(X_{1}, X_{1}^{2}, \ldots, X_{1}^{d}\right)$ be the covariance matrix of the random vector $\left(X_{1}, X_{1}^{2}, \ldots, X_{1}^{d}\right)$, which we assume to exist.
- Assume M^{-1} is continuously differentiable at $M(\theta)$.

Method of moments (5)

Remark: The method of moments can be extended to more general moments, even when $E \not \subset \mathbb{R}$.

- Let $g_{1}, \ldots, g_{d}: E \rightarrow \mathbb{R}$ be given functions, chosen by the practitioner.

$$
e \cdot g \cdot j_{k}(x)=\cos (2 \pi k \dot{x})
$$

- Previously, $g_{k}(x)=x^{k}, \quad x \in E=\mathbb{R}$, for all $k=1, \ldots, d$.
- Define $m_{k}(\theta)=\mathbb{E}_{\theta}\left[g_{k}(X)\right]$, for all $k=1, \ldots, d$.
- Let $\Sigma(\theta)=\operatorname{Cov}_{\theta}\left(g_{1}\left(X_{1}\right), g_{2}\left(X_{1}\right), \ldots, g_{d}\left(X_{1}\right)\right)$ be the covariance matrix of the random vector $\left(g_{1}\left(X_{1}\right), g_{2}\left(X_{1}\right), \ldots, g_{d}\left(X_{1}\right)\right)$, which we assume to exist.
- Assume M is one to one and M^{-1} is continuously differentiable at $M(\theta)$.

Generalized method of moments

Applying the multivariate CLT and Delta method yields:

Theorem

$$
\sqrt{n}\left(\hat{\theta}_{n}^{M M}-\theta\right) \xrightarrow[n \rightarrow \infty]{(d)} \mathcal{N}(0, \Gamma(\theta)) \quad\left(\text { w.r.t. } \mathbb{P}_{\theta}\right)
$$

where $\Gamma(\theta)=\left[\frac{\partial M^{-1}}{\partial \theta}(M(\theta))\right]^{\top} \Sigma(\theta)\left[\frac{\partial M^{-1}}{\partial \theta}(M(\theta))\right]$.

MLE vs. Moment estimator

- Comparison of the quadratic risks: In general, the MLE is more accurate.
- MLE still gives good results if model is misspecified
- Computational issues: Sometimes, the MLE is intractable but MM is easier (polynomial equations)

M-estimation

M-estimators

Idea:

- Let X_{1}, \ldots, X_{n} be i.i.d with some unknown distribution \mathbb{P} in some sample space $E\left(E \subseteq \mathbb{R}^{d}\right.$ for some $\left.d \geq 1\right)$.
- No statistical model needs to be assumed (similar to ML).
- Goal: estimate some parameter μ^{*} associated with \mathbb{P}, e.g. its mean, variance, median, other quantiles, the true parameter in some statistical model...
- Find a function $\rho: E \times \mathcal{M} \rightarrow \mathbb{R}$, where \mathcal{M} is the set of all possible values for the unknown μ^{*}, such that:

$$
\mathcal{Q}(\mu):=\mathbb{E}\left[\rho\left(X_{1}, \mu\right)\right]
$$

achieves its minimum at $\mu=\mu^{*}$.

Examples (1)

- If $E=\mathcal{M}=\mathbb{R}$ and $\rho(x, \mu)=(x-\mu)^{2}$, for all $x \in \mathbb{R}, \mu \in \mathbb{R}$:
$\mu^{*}=\mathbb{E}[X]$
- If $E=\mathcal{M}=\mathbb{R}^{d}$ and $\rho(x, \mu)=\|x-\mu\|_{2}^{2}$, for all $x \in \mathbb{R}^{d}, \mu \in \mathbb{R}^{d}: \mu^{*}=\mathbb{E}[X] \in \mathbb{R}^{\perp}$
- If $E=\mathcal{M}=\mathbb{R}$ and $\rho(x, \mu)=|x-\mu|$, for all $x \in \mathbb{R}, \mu \in \mathbb{R}$: μ^{*} is a median of \mathbb{P}.

Examples (2)

If $E=\mathcal{M}=\mathbb{R}, \alpha \in(0,1)$ is fixed and $\rho(x, \mu)=C_{\alpha}(x-\mu)$, for all $x \in \mathbb{R}, \mu \in \mathbb{R}: \mu^{*}$ is a α-quantile of \mathbb{P}.

Check function

$$
C_{\alpha}(x)=\left\{\begin{array}{l}
-(1-\alpha) x \text { if } x<0 \\
\alpha x \text { if } x \geq 0
\end{array}\right.
$$

MLE is an M-estimator

Assume that $\left(E,\left\{\mathbb{P}_{\theta}\right\}_{\theta \in \Theta}\right)$ is a statistical model associated with the data.

Theorem
Let $\mathcal{M}=\Theta$ and $\rho(x, \theta)=-\log L_{1}(x, \theta)$, provided the likelihood is positive everywhere. Then,

$$
\mu^{*}=\theta^{*}
$$

where $\mathbb{P}=\mathbb{P}_{\theta^{*}}$ (i.e., θ^{*} is the true value of the parameter).

Definition

$$
\text { replace } \mathbb{E} \text { with } \frac{1}{n} \sum_{i=1}^{n}
$$

- Define $\hat{\mu}_{n}$ as a minimizer of:

$$
\mathcal{Q}_{n}(\mu):=\frac{1}{n} \sum_{i=1}^{n} \rho\left(X_{i}, \mu\right)
$$

- Examples: Empirical mean, empirical median, empirical quartiles, MLE, etc.

Statistical analysis

- Let $J(\mu)=+\frac{\partial^{2} Q}{\partial \mu \partial \mu^{\top}}(\mu) \quad\left(=+\mathbb{E}\left[\frac{\partial^{2} \rho}{\partial \mu \partial \mu^{\top}}\left(X_{1}, \mu\right)\right]\right.$ under
some regularity conditions).
- Let $K(\mu)=\operatorname{Cov}\left[\frac{\partial \rho}{\partial \mu}\left(X_{1}, \mu\right)\right]$.
- Remark: In the log-likelihood case (write $\mu=\theta$),

$$
J(\theta)=K(\theta)=I(\theta) \quad \text { (Fisher infornotion) }
$$

Asymptotic normality

Let $\mu^{*} \in \mathcal{M}$ (the true parameter). Assume the following:

1. μ^{*} is the only minimizer of the function \mathcal{Q};
2. $J(\mu)$ is invertible for all $\mu \in \mathcal{M}$;
3. A few more technical conditions.

Then, $\hat{\mu}_{n}$ satisfies:

- $\hat{\mu}_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \mu^{*}$;
- $\sqrt{n}\left(\hat{\mu}_{n}-\mu^{*}\right) \xrightarrow[n \rightarrow \infty]{(d)} \mathcal{N}\left(0, J\left(\left.\right|^{\sharp}\right)^{-1} K\left(\mu^{*}\right) J\left(\mu^{j}\right)^{-1}\right)$.

M-estimators in robust statistics

Example: Location parameter

If X_{1}, \ldots, X_{n} are i.i.d. with density $f(\cdot-m)$, where:

- f is an unknown, positive, even function (e.g., the Cauchy density);
- m is a real number of interest, a location parameter;

How to estimate m ?

- M-estimators: empirical mean, empirical median, ...
- Compare their risks or asymptotic variances;
- The empirical median is more robust.

Recap

- Three principled methods for estimation: maximum likelihood, Method of moments, M-estimators
- Maximum likelihood is an example of M-estimation
- Method of moments inverts the function that maps parameters to moments
- All methods yield to asymptotic normality under regularity conditions
- Asymptotic covariance matrix can be computed using multivariate Δ-method
- For MLE, asymptotic covariance matrix is the inverse Fisher information matrix

[^0]: ${ }^{1} \mathrm{KL}$-divergence is also know as "relative entropy"

