
1/37

18.650 – Fundamentals of Statistics

1. Introduction and probability
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Goals

Goals:

I To give you a solid introduction to the mathematical theory
behind statistical methods;

I To provide theoretical guarantees for the statistical methods
that you may use for certain applications.

At the end of this class, you will be able to

1. From a real-life situation, formulate a statistical problem in
mathematical terms

2. Select appropriate statistical methods for your problem

3. Understand the implications and limitations of various
methods
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Why statistics?
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In the press
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https/:www.nytimes.com:interactive:2018:07:18:upshot:nike-vaporfly-shoe-strava.html 
Citation/Attribution: Article (c) New York Times 

Object Source/ URL:  https://www.technologyreview.com/s/609760/data-mining-reveals-the-way-humans-evaluate-each-other/ 
Citation/Attribution -- Article from the MIT Technology Review. (c) MIT 



In businesses
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tps://hbr.org/2018/06/how-vineyard-vines-uses-analytics-to-win-over-customers 
Citation/Attribution -- Article and Image Copyright © 2019 Harvard Business School Publishing. All rights reserved

ttps://www.fastcompany.com/90188017/appnexus-is-key-to-atts-plans-to-use-hbo-for-more-consumer-data 
Citation/Attribution -- Article by Jeff Beer on Fast Company & Inc            © 2019 Mansueto Ventures, 



In science and engineering
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Object Source / URL* 
https://www.theguardian.com/science/2017/oct/04/what-is-cryo-electron-microscopy-the-chemistry-nobel-prize-winning-
technique 
Citation/Attribution -- Image (c) The Guardian. 

https://spectrum.ieee.org/tech-talk/biomedical/devices/measuring-tiny-magnetic-fields-with-an-intelligent-quantum-sensor 
Citation/Attribution -- Article Image (c) International Journal of Electrical, Electronics and Data Communication. 



On TV

"Last Week Tonight with John Oliver”: Scientific Studies
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Object Source / URL* 
https://medium.com/netflix-techblog/studio-production-data-science-646ee2cc21a1 Citation/Attribution Image on the Medium website (c) Netflix corporation. 

Object Source / URL* 
https://www.youtube.com/watch?v=0Rnq1NpHdmw&has_verified=1 Citation/Attribution Photo of John Oliver © 2019 Home Box Office, Inc. All Rights Reserved
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Statistics, Data Science . . . and all that

Statistics, Data Science, Machine Learning, Artificial Intelligence

What’s the di↵erence?

I All use data to gather insight and ultimately make decisions

I Statistics is at the core of the data processing part

I Nowadays, computational aspects play an important role as
data becomes larger
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Computational and statistical aspects of data science

I Computational view: data is a (large) sequence of numbers
that needs to be processed by a relatively fast algorithm:
approximate nearest neighbors, low dimensional embeddings,
spectral methods, distributed optimization, etc.

I Statistical view: data comes from a random process. The
goal is to learn how this process works in order to make
predictions or to understand what plays a role in it.

To understand randomness, we need Probability.
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Probability

I Probability studies randomness (hence the prerequisite)

I Sometimes, the physical process is completely known: dice,
cards, roulette, fair coins, . . .

Rolling 1 die:

I Alice gets $1 if # of dots  3

I Bob gets $2 if # of dots  2

Who do you want to be: Alice or Bob?

Rolling 2 dice:

I Choose a number between 2 and 12

I Win $100 if you chose the sum of the 2 dice

Which number do you choose?
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Statistics and modeling

I Dice are well known random process from physics: 1/6 chance
of each side (no need for data!), dice are independent. We
can deduce the probability of outcomes, and expected $
amounts. This is probability.

I How about more complicated processes? Need to estimate
parameters from data. This is statistics

I Sometimes real randomness (random student, biased coin,
measurement error, . . . )

I Sometimes deterministic but too complex phenomenon:
statistical modeling

Complicated process “=” Simple process + random noise

I (good) Modeling consists in choosing (plausible) simple
process and noise distribution.



Statistics

Probability

Truth Observations (data)
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Statistics vs. probability

Probability Previous studies showed that the drug was 80%
e↵ective. Then we can anticipate that for a study on
100 patients, in average 80 will be cured and at least
65 will be cured with 99.99% chances.

Statistics Observe that 78/100 patients were cured. We (will
be able to) conclude that we are 95% confident that
for other studies the drug will be e↵ective on between
69.88% and 86.11% of patients
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What this course is about

I Understand mathematics behind statistical methods

I Justify quantitive statements given modeling assumptions

I Describe interesting mathematics arising in statistics

I Provide a math toolbox to extend to other models.

What this course is not about

I Statistical thinking/modeling (e.g., 15.075)

I Implementation (e.g. IDS.012)

I Laundry list of methods (e.g. AP stats)
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Let’s do some statistics



The kiss

Le baiser. Auguste Rodin. 1882.
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Object Source / URL* 
http://www.musee-rodin.fr/en/collections/sculptures/kiss Citation/Attribution Photo (c) Musée Rodin
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Object Source / URL* 
https://www.nature.com/articles/421711a Citation/Attribution – SpringerNature.com
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Statistical experiment

“A neonatal right-side preference makes a surprising ro-
mantic reappearance later in life.”

I Let p denote the proportion of couples that turn their head to
the right when kissing.

I Let us design a statistical experiment and analyze its outcome.

I Observe n kissing couples times and collect the value of each
outcome (say 1 for RIGHT and 0 for LEFT);

I Estimate p with the proportion p̂ of RIGHT.

I Study: “Human behaviour: Adult persistence of head-turning
asymmetry” (Nature, 2003): n = 124 and 80 to the right so

p̂ =
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Random intuition

Back to the data:

I 64.5% is much larger than 50% so there seems to be a
preference for turning right.

I What if our data was RIGHT, RIGHT, LEFT (n = 3). That’s
66.7% to the right. Even better?

I Intuitively, we need a large enough sample size n to make a
call. How large?

I Another way to put the problem: for n = 124, what is the
minimum number of couple ”to the right” would you need to
see to be convinced that p > 50%? 63? 72? 75? 80?

We need mathematical modeling to understand
the accuracy of this procedure?
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A first estimator

Formally, this procedure consists of doing the following:

I For i = 1, . . . , n, define Ri = 1 if the ith couple turns to the
right RIGHT, Ri = 0 otherwise.

I The estimator of p is the

p̂ = R̄n =
1

n

nX

i=1

Ri.

What is the accuracy of this estimator ?

In order to answer this question, we propose a statistical model
that describes/approximates well the experiment.

We think of the Ri’s as random variables so that p̂ is also a
random variable. We need to understand its fluctuation.
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Modelling assumptions

Coming up with a model consists of making assumptions on the
observations Ri, i = 1, . . . , n in order to draw statistical
conclusions. Here are the assumptions we make:

1. Each Ri is a random variable.

2. Each of the r.v. Ri is with parameter p.

3. R1, . . . , Rn are mutually independent.
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Discussion

Let us discuss these assumptions.

1. Randomness is a way of modeling lack of information; with
perfect information about the conditions of kissing (including
what goes on in the kissers’ mind), physics or sociology would
allow us to predict the outcome.

2. Hence, the Ri’s are necessarily Bernoulli r.v. since
Ri 2 {0, 1}. They could still have a di↵erent parameter
Ri ⇠ Ber( ) for each couple but we don’t have enough
information with the data to estimate the pi’s accurately. So
we simply assume that our observations come from the same
process: pi = p for all i

3. Independence is reasonable (people were observed at di↵erent
locations and di↵erent times).
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Population vs. Samples

I Assume that there is a total population of 5,000
“airport-kissing” couples

I Assume for the sake of argument that p = 35% or that
p = 65%.

I What do samples of size 124 look like in each case?
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Why probability?

We need to understand probabilistic aspects of the distribution of
the random variable:

p̂ = R̄n =
1

n

nX

i=1

Ri.

Specifically, we need to be able to answer questions such as:

I Is the expected value of p̂ close to the unknown p?

I Does p̂ take values close to p with high probability?

I Is the variance of p̂ large? I.e. does p̂ fluctuate a lot?

We need probabilistic tools! Most of them are about average of
independent random variables.
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Probability redux
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Averages of random variables: LLN & CLT

Let X,X1, X2, . . . , Xn be i.i.d. r.v., µ = IE[X] and �2 = V[X].

I Laws (weak and strong) of large numbers (LLN):

X̄n :=
1

n

nX

i=1

Xi
IP, a.s.����!
n!1

µ.

I Central limit theorem (CLT):

p
n
X̄n � µ

�

(d)���!
n!1

N (0, 1).

(Equivalently,
p
n (X̄n � µ)

(d)���!
n!1

N (0,�2).)
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Another useful tool: Hoe↵ding’s inequality

What if n is not large enough to apply CLT?

Theorem (Hoe↵ding, 1963)
Let n be a positive integer and X,X1, . . . , Xn be i.i.d. r.v. such
that µ = IE[X] and

X 2 [a, b] almost surely (a < b are given numbers)

Then,

IP[|X̄n � µ| � "]  2e
� 2n"2

(b�a)2 . 8" > 0

This holds even for small sample sizes n.
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Consequences

I The LLN’s tell us that

R̄n
IP, a.s.����!
n!1

p.

(what modeling assumptions did we use?)

I Hence, when the size n of the experiment becomes large, R̄n

is a good (say ”consistent”) estimator of p.

I The CLT refines this by quantifying how good this estimate
is: for n large enough the distribution of p̂ is almost:

IP(|R̄n � p| � ") ' IP(
��N

�
0,

��� > ")

In the Kiss example, IP(|R̄n � p| � 0.084) ' 5%

I Hoe↵ding’s inequality tells us that

IP(|R̄n � p| � 0.084)   0.35
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The Gaussian distribution

Because of the CLT, the Gaussian (a.k.a normal) distribution is
ubiquitous in statistics. It is named after German Mathematician
Carl Friedrich Gauss (1777–1855) in the context of the method of
least squares (regression).

I X ⇠ N (µ,�2)

I IE[X] = µ

I var(X) = �2 > 0

Object Source / URL* 
http://mathshistory.st-andrews.ac.uk/PictDisplay/Gauss.html Citation/Attribution Image from the MacTutor History of Mathematics 
archive (success) 
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Gaussian density (pdf)

Figure 1: Two pdfs: N (0, 1) and N (10, 4)

fµ,�2(x) =
1

�
p
2⇡

exp

✓
�(x� µ)2

2�2

◆

I Tails decay very fast (like e�
x2

2�2 ): almost in finite interval.
I There is no closed form for their cumulative distribution

function (CDF). We use tables (or computers):

Fµ,�2(x) =
1

�
p
2⇡

exp

✓
�(t� µ)2

2�2

◆
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Some useful properties of Gaussians

Perhaps the most useful property of the Gaussian family is that it’s
invariant under a�ne transformation:

I X ⇠ N (µ,�2), then for any a, b 2 IR,

a ·X + b ⇠ N
�

,
�

I Standardization (a.k.a Normalization/Z-score): If
X ⇠ N (µ,�2), then

Z = ⇠ N (0, 1)

Useful to compute probabilities from CDF of Z ⇠ N (0, 1):

IP(u  X  v) = IP
�

 Z 
�

I symmetry: If X ⇠ N (0,�2) then �X ⇠ N (0,�2): If x > 0

IP(|X| > x) =
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Gaussian probability tables

negative Z positive Z

Second decimal place of Z
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

...
...

...
...

...
...

...
...

...
...

...
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Examples

Assume that Z ⇠ N (0, 1) and compute

I IP(Z  1)

I IP(Z � �1)

I IP(|Z| > 1)

Assume that the score distribution for a final exam is
approximately X ⇠ N (85, 4), compute

I IP(X > 90)

I IP(80 < X < 90)

More complicated: what is x such that IP(X < x) = 90% (85-th
percentile?). For that we need to read the table backwards.
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Quantiles

Definition

Let ↵ in (0, 1). The quantile of order 1� ↵ of a random variable
X is the number q↵ such that

IP(X  q↵) = 1� ↵

Let F denote the CDF of X:

I F (q↵) =

I If F is invertible, then q↵ =

I IP(X > ) = ↵

I If X = Z ⇠ N (0, 1): IP(|X| > ) = ↵

Some important quantiles of the Z ⇠ N (0, 1) are:

↵ 2.5% 5% 10%
q↵ 1.65 1.28

We get that IP(|Z| > ) = 5%
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Three types of convergence

- (Tn)n�1 is a sequence of random variables
- T is a random variable (T may be deterministic).

I Almost surely (a.s.) convergence:

Tn
a.s.���!
n!1

T i↵ IP
hn

! : Tn(!) ���!
n!1

T (!)
oi

= 1.

I Convergence in probability:

Tn
IP���!

n!1
T i↵ IP [|Tn � T | � "] ���!

n!1
, 8" > 0.

I Convergence in distribution:

Tn
(d)���!

n!1
T i↵ IE[f(Tn)] ���!

n!1
IE[f(T )]

for all continuous and bounded function f .
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Properties

I If (Tn)n�1 converges a.s., then it also converges in probability,
and the two limits are equal a.s.

I If (Tn)n�1 converges in probability, then it also converges in
distribution

I Convergence in distribution implies convergence of
probabilities if the limit has a density (e.g. Gaussian):

Tn
(d)���!

n!1
T ) IP(a  Tn  b) ���!

n!1
IP(a  T  b)
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Exercises

a) Is the following statement correct? ”If (Tn)n�1 converges in
probability, then it also converges a.s”

1. Yes

2. No

Let {X1, X2, . . . , Xn} be a sequence of r.v. such that
xn ⇠ Ber( 1n). Exercises b), c) and d) are about this sequence.
b)Let 0 < ✏ < 1, n � 1. What is the value of P ({|Xn| > ✏})?
(answer: 1

n)
c) Does {Xn} converges in probability?

1. Yes

2. No
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Exercises

d) Denote by X the limit of {Xn} (if it exists) (that is,

Xn
IP���!

n!1
X). What is the value of X?

1. X does not exist

2. 0

3. 1

4. None of the above

e) Dose {Xn} converge in distribution?

1. Yes

2. No

f) What is the limit of the sequence IE[cos(Xn)] as n tends to
infinity?
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Addition, multiplication, division

. . . only for a.s. and IP. . .
Assume

Tn
a.s./IP����!
n!1

T and Un
a.s./IP����!
n!1

U

Then,

I Tn + Un
a.s./IP����!
n!1

T + U ,

I TnUn
a.s./IP����!
n!1

TU ,

I If in addition, U 6= 0 a.s., then
Tn

Un

a.s./IP����!
n!1

T

U
.

B In general, these rules do not apply to convergence (d).
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Slutsky’s theorem

Some partial results exist for convergence in distribution on the
form of Slutsky’s theorem.

Let (Xn), (Yn) be two sequences of r.v., such that:

(i) Tn
(d)���!

n!1
T and (ii) Un

IP���!
n!1

u

where T is a r.v. and u is a given real number (deterministic limit:
IP(U = u) = 1). Then,

I Tn + Un
(d)���!

n!1
T + u,

I TnUn
(d)���!

n!1
Tu,

I If in addition, u 6= 0, then
Tn

Un

(d)���!
n!1

.

. . .
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Taking functions

Continuous functions (for all three types) . If f is a continuous
function:

Tn
a.s./IP/(d)�������!

n!1
T ) f(Tn) �������!

n!1
f(T ).

Example: Recall that by LLN, R̄n
IP, a.s.����!
n!1

p. Therefore

f(R̄n)
IP, a.s.����!
n!1

for any continuous f

(Only need f to be continuous around p: f(x)=1/x works if p > 0)

We also have by CLT:
p
n

R̄n � pp
p(1� p)

(d)���!
n!1

Z, Z ⇠ N (0, 1). So

(d)���!
n!1

f(Y ) Y ⇠ N (0, p(1� p))

B not the limit of
p
n[f(R̄n)� f(p)] !!
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Recap

I Averages of random variables occur naturally in statistics

I We make modeling assumptions to apply probability results

I For large sample size they are consistent (LLN) and we know
their distribution (CLT)

I CLT gives the (weakest) convergence in distribution but is
enough to compute probabilities

I We use standardization and Gaussian tables to compute
probabilities and quantiles

I We can make operations (addition, multiplication, continuous
functions) on sequences of random variables
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