CTL.SC1x -Supply Chain & Logistics Fundamentals

Causal Forecasting Models

Causal Models

 Used when demand is correlated with some known and measurable environmental factor.

Demand (y) is a function of some variables (x₁, x₂, . . . x_k)

Dependent Variable

Independent Variables

Disposable Diapers ~ f(births, household income)

Car Repair Parts ~ f(weather/snow)

Promoted Item ~f(discount, placement, advertisements)

Agenda

- Simple Linear Regression
- Regression in Spreadsheets

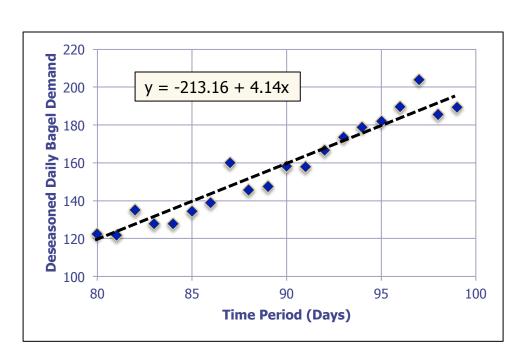
- Multiple Linear Regression
- Model Transformations
- Model Fit and Validity

Example: Simple Linear Regression

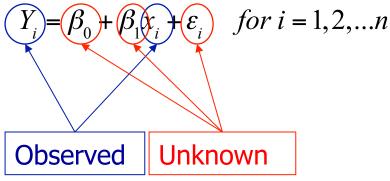
- Recall from earlier lecture on exponential smoothing
- Estimating initial parameters for Holt-Winter (level, trend, seasonality)

Lesson: Causal Forecasting Models

Removed seasonality in order to estimate initial level and trend

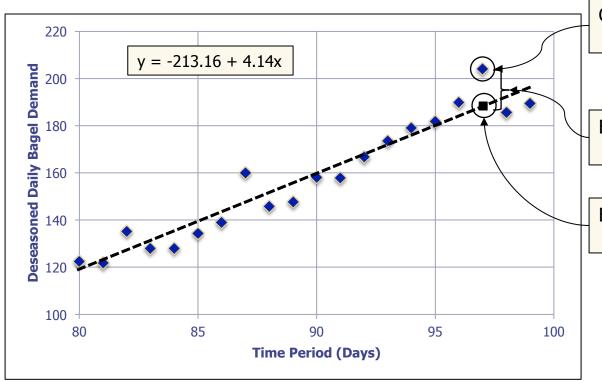


$$y_i = \beta_0 + \beta_1 x_i$$



$$E(Y \mid x) = \beta_0 + \beta_1 x$$
$$StdDev(Y \mid x) = \sigma$$

- The relationship is described in terms of a linear model
- The data (x_i, y_i) are the observed pairs from which we try to estimate the Beta coefficients to find the 'best fit'
- The error term, ε, is the 'unaccounted' or 'unexplained' portion
- The error terms are assumed to be iid $\sim N(0,\sigma)$



Observed demand for period 97 $= y_{97} = 204$

Error (residual) for period $97 = \varepsilon_{97}$ = $y_{97} - \hat{y}_{97} = 204 - 188.4 = 15.6$

Estimated demand for period 97 = \hat{y}_{97} = -213.16 + 4.14(97) \approx 188.4

- Residuals or Error Terms
 - Residuals, e_i, are the difference of actual minus predicted values
 - Find the b's that "minimize the residuals"

$$\hat{y}_i = b_0 + b_1 x_i$$
 for $i = 1, 2, ...n$
 $e_i = y_i - \hat{y}_i = y_i - b_0 - b_1 x_i$ for $i = 1, 2, ...n$

- How should we "minimize" the residuals?
 - Min sum of errors shows bias, but not accurate
 - Min sum of absolute error accurate & shows bias, but intractable
 - Min sum of squares of error shows bias & is accurate

$$\sum_{i=1}^{n} (e_i^2) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

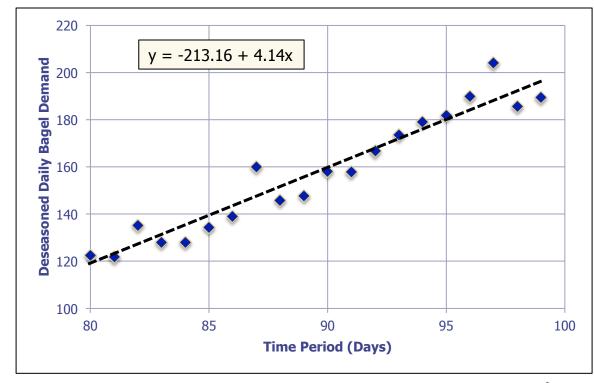
- Ordinary Least Squares (OLS) Regression
 - Finds the coefficients (b_0 and b_1) that minimize the sum of the squared error terms.
 - We can use partial derivatives to find the first order optimality condition with respect to each variable.

$$\sum_{i=1}^{n} (e_i^2) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$b_0 = \overline{y} - b_1 \overline{x}$$

We know from the data: $\bar{x} = 89.5$ $\bar{y} = 157.4$



OLS Regression in Spreadsheet

Regression – By Hand

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

Original	data	(y in	col	umn /	A, x	in	column	B)
----------	------	-------	-----	-------	------	----	--------	----

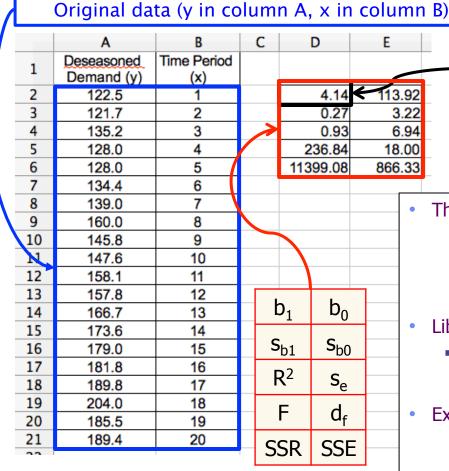
/l		original aa	ta (y iii co	701111117	, x iii coid	5 /	J		
/		Α	В	С	D	E	F		$b_0 = \overline{y} - b_1 \overline{x}$
	1	Deseasoned	Time Period				(x-avgx)*	Γ	\mathcal{S}_0 \mathcal{S}_1
	1	Demand (v)	(x)	(x-avgx)	(y-avgy)	(x-avgx)^2	(y-avgy)	L,	
	2	122.5	1	-9.50	-34.90	90.25	331.50		=B7-\$B\$22
	3	121.7	2	-8.50	-35.70	72.25	303.41		-b7 \$b\$22
	4	135.2	3	-7.50	22.20	56.25	166.46	\perp	
	5	128.0	4	-6.50	-29.40	42.25	191.07		=A7-\$A\$22
	6	128.0	5	-5\0	-29 40	30.25	161.67		
	7	134.4	6	-4.50	-23.00	20.25	103.48		
\	8	139.0	7	-3.50	-18.40	12.25	64.38	Γ.	
N	9	160.0	8	-2.50	2.60	6.25	-6.51		=C7*D7
	10	145.8	9	-1.50	-11.60	2.25	17.39		-C7 D7
	N	147.6	10	-0.50	-9.80	0.25	4.90		C7A2
	12	158.1	11	0.50	0.70	0.25	0.35		=C7^2
	13	157.8	12	1.50	0.41	2.25	0.61		
	14	166.7	13	2.50	9.30	6.25	23.26		
	15	173.6	14	3.50	16.21	12.25	56.72	Γ	
	16	179.0	15	4.50	21.61	20.25	97.22		
	17	181.8	16	5.50	24.41	30.25	134.23		CUN4/CO CO4)
	18	189.8	17	6.50	32.41	42.25	210.63		=SUM(C2:C21) $=$ SUM(D2:D21)
	19	204.0	18	7.50	46.61	56.25	349.54		=SUM(E2:E21) $=$ SUM(F2:F21)
	20	185.5	19	8.50	28.11	72.25	238.89		3011(121121)
	21	189.4	20	9.50	32.01	90.25	304.05	1	
	22>	157.4	10.5	0.0	0.0	665.0	2753.25	K	
	23	Avera	ge		S	um			
/	24	b1 (trend) =	4.14	-			-	=F2	Regression Equation
		b0 (intercept) =	113.92						
\	20						=	127	$y = b_0 + b_1 x$
		AVERAGE(Λ 2 · Λ 2 1 \	_ ∧\ /⊏	DACE(P2	P21)			y = 113.92 + 4.14x
		AVERAGE(A	AZ.AZI)	-AVE	RAGE(DZ.	DZI)			

CTL.SC1x - Supply Chain and Logistics Fundamentals

Lesson: Causal Forecasting Models

10

Regression – Using LINEST function



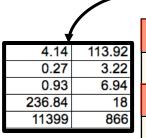
=LINEST(A2:A21,B2:B21,1,1)

LINEST(known y's, known x's, constant, statistics)

- The LINEST is an array function
 - Receives and returns data to multiple cells
 - The equation will be bookended by {} brackets when active
 - While the function is the same in both LibreOffice and Excel, activating it differs slightly.
- LibreOffice
 - Type the formula into cell D2 and press the keyboard combination Ctrl+Shift+Enter (for Windows & Linux) or command+shift+return (for Mac OS X).
- Excel

- Select a range of 2 columns by 5 rows, in this case (D2:E6).
- Then, in the 'Insert Function' area, type the formula and press the keyboard combination **Ctrl+Shift+Enter** (for Windows & Linux) or **command+shift+return** (for Mac OS X).

Regression – Using LINEST



 b_0 S_{b1} S_{b0} Se

SSE

SSR

n = number of observations

k = number of explanatory variables (NOT intercept)

 d_f = degrees of freedom (n-k-1)

 $b_0 = \text{estimate of the intercept}$ $b_0 = \overline{y} - b_1 \overline{x}$

$$b_0 = \overline{y} - b_1 \overline{x}$$

 b_1 = estimate of the slope (explanatory variable 1)

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

Goodness of fit of the model – proportion of the variation in Y which is explained by X

Total Sum of Squares (SST)

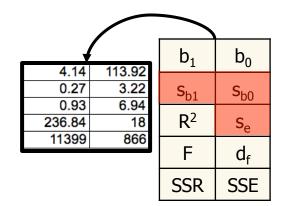
$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y})^2$$

"Explained" Portion Sum of Squares of Regression (SSR) "Unexplained" Portion Sum of Squares of the Error (SSE)

 R^2 = Coefficient of Determination: the ratio of "explained" to total sum of squares where $0 \le R^2 \le 1$

$$R^2 = \frac{SSR}{SST} = \frac{SSR}{SSR + SSE}$$

Regression – Using LINEST



s_e = standard error of estimate: an estimate of variance of the error term around the regression line.

$$S_e = \sqrt{\frac{\sum_{i=1}^{n} e_i^2}{n - k - 1}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n - k - 1}}$$

 s_{b0} = standard error of intercept

 s_{b1} = standard error of slope

$$S_{b0} = S_e \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

$$S_{b1} = S_e \sqrt{\frac{1}{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$$

How significant is the explanatory variable? Is it different from zero?

- Test the null hypothesis H_0 : $b_1=0$ with alternate hypothesis H_A : $b_1\neq 0$
- Use two-tailed t-test $=TDIST(t_statistic, d_f, number tails)$ always use 2 tail test
- Accepted thresholds for p-value \leq 0.01, 0.05, or 0.10 (meaning we can reject the H $_0$ with 99%, 95%, and 90% probability respectively)

$$t_{b1} = \frac{b_1}{s_{b1}} = \frac{4.14}{0.27} = 15.33$$

p-value =TDIST(15.33, 18, 2) = $8.92 \times 10^{-12} < 0.01$

Regression – Using LINEST

b_1	b_0
S _{b1}	S _{b0}
R ²	S _e
F	d_{f}
SSR	SSE

	Α	В	С	D	Е
1	Deseasoned Demand (y)	Time Period (x)			
2	122.5	1		4.14	113.92
3	121.7	2		0.27	3.22
4	135.2	3		0.93	6.94
5	128.0	4		236.84	18.00
6	128.0	5		11399.08	866.33
7	134.4	6			
8	139.0	7		b1	b0
9	160.0	8	T-Stat	15.39	35.35
10	145.8	9	P-value	0.0000%	0.0000%
11	147.6	10			
12	158.1	11			
13	157.8	12			
14	166.7	13	1.	Ном	v is the
15	173.6	14		1100	v 15 ti 1
16	179.0	15		Loo	k at Co
17	181.8	16			
18	189.8	17		No	hard ru
19	204.0	18			

19

20

=LINEST(A2:A21,B2:B21,1,1)
LINEST(known_y's, known_x's, constant, statistics)

=D2/D3

=TDIST(D9,\$E\$5,2)

- 1. How is the overall fit of the model?
 - Look at Coefficient of Determination R²
 - No hard rules, but ≥0.70 is preferred
 - Are the individual variables statistically significant?
 - Use t-test for each explanatory variable
 - Lower p-value is better
 - Generally used threshold values include 0.10, 0.05, 0.01

185.5

189.4

20

21

Multiple Linear Regression

	Α	В	С	D	E	F
			Forecast			
1		Time	Average		Month	School in
	Demand	Period	Temp	Year	Name	Session
2	3025	1	37	1	Jan	No
3	3136	2	39	1	Feb	Yes
4	3414	3	46	1	Mar	Yes
5	3502	4	56	1	Apr	Yes
6	3736	5	67	1	May	Yes
7	3661	6	77	1	Jun	No
8	3553	7	82	1	Jul	No
9	3691	8	80	1	Aug	No
10	3474	9	73	1	Sep	Yes
11	3876	10	62	1	Oct	Yes
12	3865	11	52	1	Nov	Yes
13	3967	12	42	1	Dec	Yes
14	3596	13	37	2	Jan	No
15	4345	14	39	2	Feb	Yes
16	4413	15	46	2	Mar	Yes
17	4086	16	56	2	Apr	Yes
18	4377	17	67	2	May	Yes
19	4220	18	77	2	Jun	No
20	4238	19	82	2	Jul	No
21	4007	20	80	2	Aug	No
22	4086	21	73	2	Sept	Yes
23	4536	22	62	2	Oct	Yes
24	4291	23	52	2	Nov	Yes
25	4427	24	42	2	Dec	Yes

Develop Forecasting Model #1

- Level, trend, & avg. historical temperature
- Develop OLS regression model

$$Y_{i} = \beta_{0} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \varepsilon_{i}$$

DEMAND = LEVEL + TREND(period) + TEMP_EFFECT(temp)

Using LINEST function

- Follow earlier directions
- {=LINEST(A2:A25,B2:C25,1,1)}
- When activating, expand area to five (5) rows by k+1 columns
- Output shifts for new variables
 - Top right is always b₀
 - Bottom left six cells don't change

Output				
(0.27)	52.65	3,254.81		
2.75	6.24	174.85		
0.78	208.97	#N/A		
36.36	21	#N/A		
3,175,996	917,074	#N/A		

b_2	b_1	b_0
S _{b2}	S _{b1}	S _{b0}
R ²	S _e	
F	d _f	
SSR	SSE	

(0.27)	52.65	3,254.81
2.75	6.24	174.85
0.78	208.97	#N/A
36.36	21	#N/A
3,175,996	917,074	#N/A

b ₂	b_1	b_0
S _{b2}	S _{b1}	S _{b0}
R^2	S _e	
F	d_f	
SSR	SSE	

n= 24 observations k= 2 variables $d_f = n-k-1 = 24-2-1= 21$

- How is the overall fit of the model?
 - $R^2 = 0.78 \text{ or } 78\%$
- Are the individual variables statistically significant?
 - Run t-tests for each variable and the intercept

intercept

$$t_{b0} = \frac{b_0}{s_{b0}} = \frac{3255}{175} = 18.60$$

P-value =TDIST(18.6, 21, 2) < 0.0001

trend

$$t_{b1} = \frac{b_1}{s_{b1}} = \frac{52.65}{6.24} = 8.44$$

P-value =TDIST(8.44, 21, 2) < 0.0001

Lesson: Causal Forecasting Models

temperature effect

$$t_{b2} = \frac{b_2}{s_{b2}} = \frac{-0.27}{2.75} = -0.098$$

P-value =TDIST(0.27, 21, 2) = 0.9223

- Both the intercept and trend coefficients are significant
- Temperature effect is not, we cannot reject the H₀
- What next?
 - Try the model without the temperature effect

	Α	В	С	D	E	F
			Forecast			
1			Average		Month	School in
	Demand	Time Period	Temp	Year	Name	Session
2	3025	1	37	1	Jan	No
3	3136	2	39	1	Feb	Yes
4	3414	3	46	1	Mar	Yes
5	3502	4	56	1	Apr	Yes
6	3736	5	67	1	May	Yes
7	3661	6	77	1	Jun	No
8	3553	7	82	1	Jul	No
9	3691	8	80	1	Aug	No
10	3474	9	73	1	Sep	Yes
11	3876	10	62	1	Oct	Yes
12	3865	11	52	1	Nov	Yes
13	3967	12	42	1	Dec	Yes
14	3596	13	37	2	Jan	No
15	4345	14	39	2	Feb	Yes
16	4413	15	46	2	Mar	Yes
17	4086	16	56	2	Apr	Yes
18	4377	17	67	2	May	Yes
19	4220	18	77	2	Jun	No
20	4238	19	82	2	Jul	No
21	4007	20	80	2	Aug	No
22	4086	21	73	2	Sept	Yes
23	4536	22	62	2	Oct	Yes
24	4291	23	52	2	Nov	Yes
25	4427	24	42	2	Dec	Yes
2.0						

- Develop Forecasting Model #2
 - Level and trend
 - Develop OLS regression model

$$Y_i = \beta_0 + \beta_1 x_{1i} + \varepsilon_i$$

DEMAND = LEVEL + TREND(period)

- Using LINEST function
 - Follow earlier directions
 - {=LINEST(A2:A25,B2:B25,1,1)}

52.55	3239.89
6.02	86.05
0.78	204.22
76.14	22
3175570	917500

b_1	b ₀
S _{b1}	S _{b0}
R ²	S _e
F	d_f
SSR	SSE

- Model fit? R²=0.78
- Variables?
 - p-value for b_0 and b_1 are both < 0.0001

- Compare the goodness of fit between models
 - Model 1:
 - DEMAND = LEVEL + TREND(period) + TEMP_EFFECT(temp)
 - $R^2 = 0.77594$
 - Model 2:
 - DEMAND = LEVEL + TREND(period)
 - $R^2 = 0.77584$
- If Model #2 is "better", why is the R² lower?
 - R² will never get worse (and will usually improve) by adding more variables – even bad ones!
 - Need to modify the metric adjusted R²
 - Model 1: adj $R^2 = 1 (1-0.77594)(23/21) = 0.754600$
 - Model 2: adj $R^2 = 1 (1-0.77584)(23/22) = 0.765651$

$$adj \ R^2 = 1 - \left(1 - R^2\right) \left(\frac{n - 1}{n - k - 1}\right)$$

Transforming Variables

	Α	В	C
1		V	School in
	Demand	Time Period	Session
2	3025	1	0
3	3136	2	1
4	3414	3	1
5	3502	4	1
6	3736	5	1
7	3661	6	0
8	3553	7	0
9	3691	8	0
10	3474	9	1
11	3876	10	1
12	3865	11	1
13	3967	12	1
14	3596	13	0
15	4345	14	1
16	4413	15	1
17	4086	16	1
18	4377	17	1
19	4220	18	0
20	4238	19	0
21	4007	20	0
22	4086	21	1
23	4536	22	1
24	4291	23	1
25	4427	24	1

- Develop Forecasting Model #3
 - Level, trend, & school being open
 - Develop OLS regression model

$$Y_{i} = \beta_{0} + \beta_{1} x_{1i} + \beta_{3} x_{3i} + \varepsilon_{i}$$

DEMAND = LEVEL + TREND(period) + OPEN_EFFECT(open)

- Need to create Dummy Variable
 - $x_{3i} = 1$ if School is in Session, =0 otherwise
 - Interpret β₃ as increase (decrease) in demand when school is in session
- Using LINEST function

Lesson: Causal Forecasting Models

• {=LINEST(A2:A25,B2:C25,1,1)}

144.50	51.54	3156.12
85.35	5.81	96.30
0.80276	196.07	#N/A
42.74	21	#N/A
3285765	807305	#N/A

b_3	b_1	b_0
S _{b3}	S _{b1}	S _{b0}
R ²	S _e	
F	d _f	
SSR	SSE	

144.50	51.54	3156.12
85.35	5.81	96.30
0.80276	196.07	#N/A
42.74	21	#N/A
3285765	807305	#N/A

b ₃	b_1	b_0
S _{b3}	S _{b1}	S _{b0}
R ²	S _e	
F	d_f	
SSR	SSE	

n= 24 observations k= 2 variables $d_f = n-k-1 = 24-2-1= 21$

- How is the overall fit of the model?
 - $R^2 = 0.80276$ with adj $R^2 \approx 0.78398$ (better than #1 or #2)
- Are the individual variables statistically significant?
 - Run t-tests for each variable and the intercept
 - Intercept and trend coefficients are strongly significant, school flag is borderline

intercept

$$t_{b0} = \frac{b_0}{s_{b0}} = \frac{3156}{96.3} = 32.77$$

P-value =TDIST(32.77, 21, 2) < 0.0001

trend

$$t_{b1} = \frac{b_1}{s_{b1}} = \frac{51.54}{5.81} = 8.87$$

P-value =TDIST(8.87, 21, 2) < 0.0001

school in session

$$t_{b3} = \frac{b_3}{s_{b3}} = \frac{144.50}{85.35} = 1.69$$

P-value =TDIST(1.69, 21, 2) = 0.105

Let's interpret this:

Demand = 3156 + 52(t) + 145(if in session)

• We are forecasting a monthly demand level of 3,156 iced coffees with a monthly trend of \sim 52 additional cups each month and an increase of \sim 145 cups whenever school is in session.

- My forecast for sales:
 - January year 3 = 3156 + 25(51.5) + 144.5(0) = 4444
 - February year 3 = 3156 + 26(51.5) + 144.5(1) = 4640

Model & Variable Transformations

- We are using linear regression, so how can we use dummy variables?
 - The model just needs to be <u>linear in the parameters</u>
 - For model #3: $y = \beta_0 + \beta_1(period) + \beta_3(open_flag)$
 - Many transformations can be used:

$$y = \beta_0 + \beta_1 x_1$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2$$

$$y = \beta_0 + \beta_1 \ln(x_1)$$

$$y = ax^b \Rightarrow \ln(y) = \ln(a) + b\ln(x)$$

$$y = ax_1^{b1} x_2^{b2} \Rightarrow \ln(y) = \ln(a) + b_1 \ln(x_1) + b_2 \ln(x_2)$$

- Transformations and dummy variables allow for many models
 - For example:
 - $x_{4i} = (x_{3i})^*$ (temperature) if sales increase with temperature when school is in session
 - $x_{5i} = 1$ if competing store runs a sale, =0 otherwise
 - $x_{6i} = x_{1i}^2$, so that we can capture a tapering effect to the linear trend

Lesson: Causal Forecasting Models

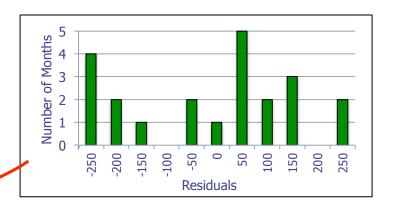
But, be careful on interpretation of results

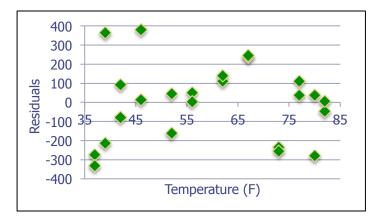
Model Fit & Validation

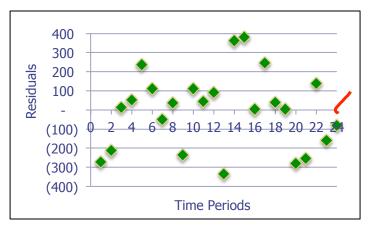
Model Validation

- Basic Checks
 - Goodness of Fit look at the R² values ✓
 - Individual coefficients t-tests for p-value
- Additional Assumption Checks
 - Normality of residuals look at histogram
 - Heteroscedasticity look at scatter plot of residuals
 - Does the standard deviation of the error terms differ for different values of the independent variables?
 - Autocorrelation is there a pattern over time
 - Are the residuals not independent?
 - Multi-Collinearity look at correlations
 - Are the independent variables correlated?
 - Make sure dummy variables were not over specified

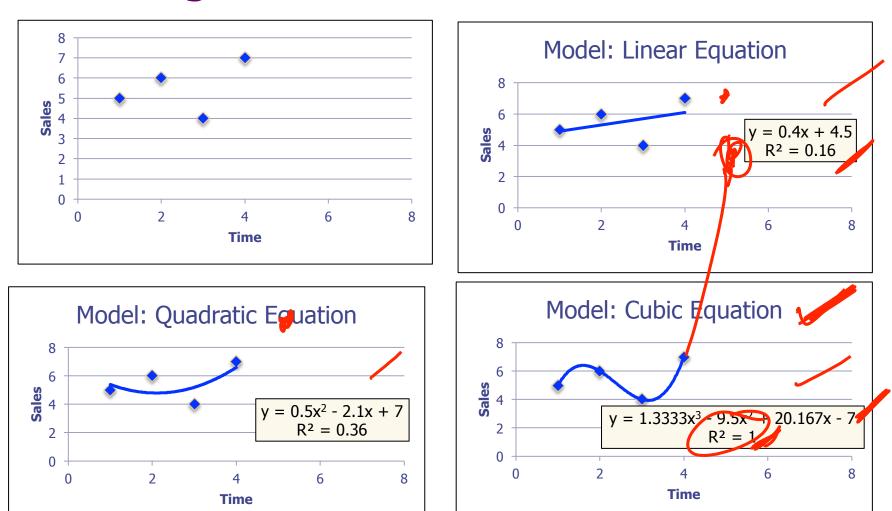
- Statistics Software
 - Most packages check for all of these
 - More sophisticated tests and remedies







Modeling Results – which is best?



Avoid over-fitting. Objective is to forecast demand for planning purposes.

Key Points from Lesson

Key Points

$$Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \varepsilon_i$$

- Regression finds correlations between
 - A single dependent variable (y)
 - One or more independent variables $(x_1, x_2, ...)$
- Coefficients are estimates by minimizing the sum of the squares of the errors
- Always test your model:
 - Goodness of fit (R²)
 - Statistical significance of coefficients (p-value)
- Some Warnings:
 - Correlation is not causation
 - Avoid over-fitting of data
- Why not use this instead of exponential smoothing?
 - All data treated the same
 - Amount of data required to store

CTL.SC1x -Supply Chain & Logistics Fundamentals

Questions, Comments, Suggestions? Use the Discussion!

"Casey"
Photo courtesy Yankee Golden
Retriever Rescue (www.ygrr.org)

Image Sources

- "Pampers packages (2718297564)" by Elizabeth from Lansing, MI, USA Pampers packagesUploaded by Dolovis. Licensed under Creative Commons Attribution 2.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Pampers_packages_(2718297564).jpg#mediaviewer/
 - http://commons.wikimedia.org/wiki/File:Pampers_packages_(2718297564).jpg#mediaviewer/File:Pampers_packages_(2718297564).jpg
- "Kraft Coupon" by Julie & Heidi from West Linn & Gillette, USA Grocery Coupons Tearpad shelf display of coupons for Kraft Macaroni & Cheese. Licensed under Creative Commons Attribution-Share Alike 2.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Kraft Coupon.jpg#mediaviewer/File:Kraft Coupon.jpg

Lesson: Causal Forecasting Models

• "Damaged car door" by Garitzko - Own work. Licensed under Public domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Damaged car door.jpg#mediaviewer/File:Damaged car door.jpg