Algorithm — Consensus in the Fail-Stop Model

Algorithm 1 Hierarchical Consensus

Implements:
Consensus, instance c.
Uses:
BestEffortBroadcast, instance beb.
PerfectFailureDetector, instance P.
1: upon event (Init) do
2: detectedranks := ()
3: round =1
4: proposal == 1
5: proposer := 0
6: Vpen delivered[p] := FALSE
e broadcast := FALSE
8: upon event (P, Crash | p) do
9: detectedranks := detectedranks U {RANK(p)}
10: upon event (¢, Propose | v) do
11: if proposal = L then
12: proposal :=v
13: upon event (beb, Deliver | p, [DECIDED, v]) do
14: 7 = RANK(p)
15: if r < RANK(self) A r > proposer then
16: proposal == v
17: proposer =1
18: delivered[p] := TRUE

19: upon event (round = RANK(self) A proposal # L A —broadcast) do
20: broadcast :== TRUE

21: trigger (beb, Broadcast | [DECIDED, proposal|)

29: trigger (¢, Decide | proposal)

23: upon event (round € detectedranks V delivered[RANK ™! (round)]) do
24: round := round + 1

Note: Where RANK™! be the inverse function to RANK (which exists since
RANK is a bijection between IT and {1,..., |II|} C N).

Algorithm 2 Hierarchical Uniform Consensus
Implements:

UniformConsensus, instance uc.

Uses:
BestEffortBroadcast, instance beb.
ReliableBroadcast, instance beb.
PerfectPointToPointLinks, instance pp2p.
PerfectFailureDetector, instance P.

: upon event (Init) do
detectedranks := ()
ackranks := ()
round := 1

1

2

3

4

5: proposal == L
6 decision = L

7 Vpert proposed[p] := L

8: upon event (P, Crash | p) do

9 detectedranks = detectedranks U {RANK(p)}
10: upon event (uc, Propose | v) do

11: if proposal = 1 then

12 proposal == v

13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

upon event (beb, Deliver | p,[PROPOSAL, v]) do
proposed[p] == v
if RANK(p) > round then
trigger (pp2p, Send | p, ACK)
upon event (pp2p, Deliver | p, ACK) do
ackranks := ackranks U {RANK(p)}
upon event (rb, Deliver | p, [DECIDED, v]) do
if decision # | then
decision := v
trigger (uc, Decide | decision)
upon event (round = RANK(self) A proposal # L A decision = L) do
trigger (beb, Broadcast | [PROPOSAL, proposal)])
upon event (round € detectedranks) do
if proposed[RANK ™! (round)] # L then
proposal := proposed[RANK ! (round))]
round = round + 1
upon event (detectedranks U ackranks = {1, ... |II|}) do
trigger (rb, Broadcast | [DECIDED, proposal])

