Algorithm — Eventually Perfect Failure Detector

Algorithm 1 Increasing Timeout

Implements:

EventuallyPerfectFailureDetector, instance ¢ P.
Uses:

PerfectPointToPointLinks, instance pp2p.

1: upon event (Init) do
2 alive =11

3 suspected = ()

4 delay == A

5: STARTTIMER (delay)
6: upon event (Timeout) do

7 if alive N suspected # () then

8 delay := delay + A

9: for all p € Il do

10: if (p ¢ alive) A\ (p ¢ suspected) then

11: suspected = suspected U {p}

12: trigger (OP, Suspect | p)

13: else if (p € alive) A (p € suspected) then

14: suspected = suspected \ {p}

15: trigger (OP, Restore | p)

16: trigger (pp2p, Send | p, HEARTBEATREQUEST])
17: alive := ()

18: STARTTIMER (delay)

19: upon event (pp2p, Deliver | p, [HEARTBEATREQUEST]) do
20: trigger (pp2p, Send | p, [HEARTBEATREPLY])

21: upon event (pp2p, Deliver | p, [HEARTBEATREPLY]) do
22: alive := alive U {p}

Algorithm 2 Increasing Timeout with sequence numbers

Implements:

EventuallyPerfectFailureDetector, instance ¢ P.
Uses:

PerfectPointToPointLinks, instance pp2p.

1: upon event (Init) do
2: seqnum =0
3: alive :=11
4: suspected = ()
5: delay := A
6: STARTTIMER (delay)
7: upon event (Timeout) do
8: if alive N suspected # () then
9: delay := delay + A
10: seqnum = seqnum + 1
11: for all p € Il do
12: if (p ¢ alive) A\ (p ¢ suspected) then
13: suspected = suspected U {p}
14: trigger (OP, Suspect | p)
15: else if (p € alive) A (p € suspected) then
16: suspected = suspected \ {p}
17: trigger (OP, Restore | p)
18: trigger (pp2p, Send | p, [HEARTBEATREQUEST, seqnum])
19: alive := ()
20: STARTTIMER (delay)
21: upon event (pp2p, Deliver | p, [HEARTBEATREQUEST, n]) do
22: trigger (pp2p, Send | p, [HEARTBEATREPLY, n|)
23: upon event (pp2p, Deliver | p, [HEARTBEATREPLY, n|) do
24: if n = seqnum V p € suspected then
25: alive := alive U {p}

