Algorithm — Causal-Order Broadcast

Algorithm 1 No-Waiting Causal Broadcast

Implements:
CausalOrderReliableBroadcast, instance crb.
Uses:
ReliableBroadcast, instance rb.
1: upon event ( Init ) do
2: delivered := ()
3: past =[]
4: upon event ( crb, Broadcast | m ) do
5: trigger ( rb, Broadcast | [DATA, past, m] )
6: past := (self,m)::past > List cons instead of append for brevity.
7. upon event ( rb, Deliver | p, [DATA, mpast, m| ) do
8: if m ¢ delivered then
9: DELIVERDEPS(mpast)
10: trigger ( crb, Deliver | p,m )
11: delivered := delivered U {m}
12: if (p,m) ¢ past then
13: past := (p,m) :: past
14: function DELIVERDEPS((p, m) :: rest)
15: if m ¢ delivered then
16: DELIVERDEPS(rest)
17: trigger ( crb, Deliver | p,m )
18: delivered = delivered U {m}
19: if (p, m) ¢ past then
20: past := (p, m) :: past




Algorithm 2 Broadcast with Sequence Number

Implements:

FIFOReliableBroadcast, instance frb.
Uses:

ReliableBroadcast, instance rb.

1: upon event ( Init ) do

2 Isn =0

3: pending := ()

4 Vpert nextlp] =1

5. upon event ( frb, Broadcast | m ) do

6 Isn :=lsn+1

7: trigger ( rb, Broadcast | [DATA, self,m, lsn] )
8

9

: upon event ( rb, Deliver | p,[DATA, s, m, sn| ) do
pending := pending U {(s,m, sn)}

10: while 3 ./ sn)epending s = newt[s] do
11: next[s] := next[s] + 1

12: pending := pending \ {(s,m’, sn’)}
13: trigger ( frb, Deliver | s,m’ )




Algorithm 3 No-Waiting Causal Broadcast with FIFO

Implements:
CausalOrderReliableBroadcast, instance crb.
Uses:
FIFO-ReliableBroadcast, instance frb.
1: upon event ( Init ) do
2: delivered := ()
3: l:= H
4: upon event ( crb, Broadcast | m ) do
5: trigger ( frb, Broadcast | [DATA, (self,m)::1] )
6: l:= H
7. upon event ( frb, Deliver | p,[DATA, l,,] ) do
8: DELIVERDEPS(/,,)
9: function DELIVERDEPS((p, m) :: rest)
10: if m ¢ delivered then
11: DELIVERDEPS(rest)
12: trigger ( crb, Deliver | p,m )
13: delivered := delivered U {m}
14: if (p,m) ¢ [ then
15: l:=(p,m)::1




Algorithm 4 Waiting Causal Broadcast

Implements:

CausalOrderReliableBroadcast, instance crb.
Uses:

ReliableBroadcast, instance rb.

upon event ( Init ) do
Vpenn V[p] :=0
Isn:=0
pending := ()
upon event ( crb, Broadcast | m ) do
W=V
W self] == lsn
Isn:=lsn+1
trigger ( rb, Broadcast | [DATA, W, m] )

10: upon event ( rb, Deliver | p, [DATA, W, m| ) do
11: pending := pending U {(p, W, m)}

12: while El(p/,W’,m’)epending w'! < V do

13: pending := pending \ {(p', W/,m’)}

14: Vi :=Vp]+1

15: trigger ( crb, Deliver | p/,m’ )




