
Programming	with	weak	
synchronization	models	

Guest	lecture	ID2203	
	

Peter	Van	Roy	
Christopher	Meiklejohn	

Annette	Bieniusa	

Overview	of	the	lesson	
•  Motivation	and	principles	

–  “As	easy	as	strong	consistency,	as	efficient	as	weak	consistency”	
–  A	sweet	spot:	Strong	Eventual	Consistency	

•  Convergent	data	structures	
–  Conflict-free	replicated	data	types	(CRDTs)	

•  Lasp	
–  Programming	language	and	platform	based	on	composing	CRDTs	

•  Antidote	
–  Causal	transactional	database	based	on	CRDTs	

Guest	lecturers	
•  This	lesson	is	brought	to	you	by:	

		

–  Peter	Van	Roy,	Université	catholique	de	Louvain	
–  Christopher	Meiklejohn,	Université	catholique	de	Louvain	
–  Annette	Bieniusa,	Technische	Universität	Kaiserslautern	
		

•  This	research	is	being	done	in	two	European	projects:	
EU	FP7	
2013-2016	

EU	H2020	
2017-2019	

Both	easy	and	efficient	
•  One	of	the	holy	grails	of	distributed	systems	is	to	make	them	both	

easy	to	program	and	efficient	to	execute	

•  Strong	consistency	(linearizability)	is	easy	to	program	but	inefficient	

•  Eventual	consistency	(operations	eventually	complete)	is	efficient	to	
execute	but	hard	to	program	

•  Can	we	get	the	best	of	both	worlds?	
–  Synchronization-free	programming	aims	to	combine	the	ease	of	strong	

consistency	with	the	efficiency	of	eventual	consistency	

–  How	can	this	work?	

Back	to	basics	
•  Distributed	system	=	a	collection	of	networked	computing	

nodes	that	behaves	like	one	system	(=	consistency	model)	

•  To	make	this	work,	the	nodes	will	coordinate	with	each	
other	according	to	well-defined	rules	(=	synchronization	
algorithm)	

•  For	example,	a	reliable	broadcast	algorithm	guarantees	the	
all-or-none	property:	all	correct	nodes	deliver,	or	none	do	

How	far	can	we	go?	
•  We	would	like	the	consistency	model	to	be	as	strong	as	

possible	(easy	to	program)	and	the	synchronization	
algorithm	to	be	as	weak	as	possible	(efficient	to	execute)	

•  Let’s	try	the	extreme	case:	the	weakest	possible	
synchronization	is	no	synchronization	(no	rules),	which	
enforces	no	consistency	at	all!	
–  So	it’s	clear	we	need	some	synchronization	
–  How	little	can	we	get	away	with?	

A	sweet	spot:	SEC	
•  Strong	Eventual	Consistency	(SEC)	

–  The	data	structure	is	defined	so	that	n	replicas	that	receive	the	
same	updates	(in	any	order)	have	equivalent	state	

–  Synchronization	is	eventual	replica-to-replica	communication	

•  This	consistency	model	is	surprisingly	powerful	
–  It	supports	a	programming	model	that	resembles	a	concurrent	
form	of	functional	programming	

–  It	handles	both	nondeterminism	and	nonmonotonicity	
–  It	has	an	efficient,	resilient	implementation	

Let’s	exploit	SEC!	
•  In	the	rest	of	the	lesson	we	will	see	how	far	we	can	
go	with	Strong	Eventual	Consistency	
–  Convergent	data	structures	(CRDTs)	
–  Programming	by	composing	CRDTs	(Lasp)	
–  Causally	consistent	transactions	on	CRDTs	(Antidote)	
–  Applications	

Convergent	data	structures	
•  We	can	define	distributed	data	structures	that	obey	Strong	

Eventual	Consistency	
–  One	approach:	Conflict-free	Replicated	Data	Type	(CRDT)	

•  Many	CRDTs	exist	and	have	millions	of	users	

CRDT	definition	
•  A	state-based	CRDT		is	defined	as	a	triple	((s1,	…,	sn),m,q):	

–  (s1,	…,	sn)	is	the	configuration	on	n	replicas,	with	si∊S	where	S	is	a	join	semilattice	

–  qi:S⟶V	is	a	query	function	(read	operation)	

–  mi:S⟶S	is	a	mutator	(update	operation)	such	that	s⊑m(s)	

–  Periodically,	replicas	update	each	other’s	state:	∀i,j:	si’=si⊔sj	

•  Because	the	mutator	only	inflates	the	value,	and	because	of	the	periodic	
dissemination,	all	replicas	will	eventually	converge	to	the	same	final	value	

Join	semilattice	
•  A	join-semilattice	is	a	partially	ordered	set	S	that	has	a	least	upper	bound	

(join)	for	any	nonempty	finite	subset:	
–  Partial	order:	∀x,	y,	z	∊	S:	

	Reflexivity:	x⊑x	
	Antisymmetry:	x⊑y	∧	y⊑x	⇒	x=y	
	Transitivity:	x⊑y	∧	y⊑z	⇒	x⊑z	

–  Least	upper	bound	(join):	∀x,	y	∊	S:		x⨆y	∊	S	
•  z=x⨆y	is	an	upper	bound	
•  All	other	upper	bounds	are	at	least	as	large	as	z	

CRDTs	satisfy	SEC	
•  Strong	Eventual	Consistency	(SEC)	

–  We	assume	eventual	delivery:	an	update	delivered	at	some	correct	
replica	is	eventually	delivered	to	all	correct	replicas	
•  Eventual	replica-to-replica	communication	satisfies	this	

–  An	object	is	SEC	if	all	correct	replicas	that	have	delivered	the	same	
updates	have	equivalent	state	

•  Theorem:	A	state-based	CRDT	satisfies	SEC	
–  Proof	by	induction	on	the	causal	histories	of	deliveries	at	the	replicas	
–  Proof	given	in	INRIA	Research	Report	RR-7687	(see	bibliography)	

Example:	Grow-Only	Counter	
•  Each	replica	i	stores	s=(c1,	c2,	…,	ci,	…,	cn)	where	ci∊N	(natural)	
•  Each	replica	accepts	inc,	val,	and	⊔	(join)	operations	

–  inci:	update	s	to	s’	where	s’=(c1,	c2,	…,	ci+1,	…,	cn)	
–  vali:	return	∑j∊i	s.j	
–  join:	s	⊔	s’	=	(max(c1,c1’),	…,	max(cn,cn’))	

•  How	does	this	work?	
–  The	state	vector	stores	the	increments	done	at	each	replica	
–  Eventually,	all	replicas’	vectors	will	converge	to	know	all	increments	

Example	execution	

•  Three	replicas,	each	replica	stores	a	3-vector	giving	the	
increments	it	knows	of	at	each	replica	

r1	

r2	

r3	
(0,0,0)	

(0,0,0)	

(0,0,0)	

Example	execution	

•  Increment	at	replica	3,	its	vector	becomes	(0,0,1)	

r1	

r2	

r3	
(0,0,0)	

inc	

(0,0,0)	

(0,0,0)	

(0,0,1)	

Example	execution	

•  Increment	at	replica	1,	its	vector	becomes	(1,0,0)	

r1	

r2	

r3	
(0,0,0)	

inc	

inc	

(0,0,0)	

(0,0,0)	 (1,0,0)	

(0,0,1)	

Example	execution	

•  Join	operations	merge	state	from	replica	1	and	replica	3	
•  Replica	2’s	state	is	updated	to	(0,0,1)	and	then	to	(1,0,1)	

r1	

r2	

r3	
(0,0,0)	

inc	

inc	

(0,0,0)	

(0,0,0)	 (1,0,0)	

(0,0,1)	

(0,0,1)	

(1,0,1)	

join	

join	

Example	execution	

•  Another	increment	at	replica	1	and	a	join	to	replica	3	
•  Replica	3’s	state	becomes	(2,0,1)	
•  Replica	1	is	(2,0,0)	and	replica	2	is	(1,0,1)	

r1	

r2	

r3	
(0,0,0)	

inc	

inc	

inc	

(0,0,0)	

(0,0,0)	 (1,0,0)	

(0,0,1)	

(0,0,1)	

(1,0,1)	

(2,0,0)	

(2,0,1)	

Example	execution	

•  Join	operation	from	replica	2	to	replica	1	
•  Join	operation	from	replica	3	to	replica	2	
•  All	replicas	have	converged	to	the	state	(2,0,1)	

r1	

r2	

r3	
(0,0,0)	

inc	

inc	

inc	

(0,0,0)	

(0,0,0)	 (1,0,0)	

(0,0,1)	

(0,0,1)	

(1,0,1)	

(2,0,0)	

(2,0,1)	

(2,0,1)	

(2,0,1)	

Carrying	on	
•  The	Grow-Only	counter	is	one	of	the	simplest	CRDTs	

–  Each	replica	stores	information	about	all	replicas,	very	much	like	a	
vector	clock	

•  How	expressive	can	a	CRDT	be?	
–  Can	we	express	counters	that	both	increment	and	decrement?	
–  Can	we	express	sets	where	we	can	both	add	and	remove	elements?	

•  The	answer	is,	yes,	a	CRDT	can	express	all	that	and	more	
–  We	will	look	at	some	smarter	CRDTs	in	the	next	video	

More	powerful	CRDTs	
•  Let	us	now	look	at	some	more	powerful	CRDTs		
•  We	show	the	Up-Down	Counter	and	the	
Observed-Remove	set	

•  Many	more	powerful	CRDTs	exists;	we	refer	you	
to	the	bibliography	to	find	out	more	

•  We	compare	CRDTs	with	RSMs	as	a	way	to	
implement	distributed	data	structures	

Up-Down	Counter	(PN	Counter)	
•  Each	replica	i	stores	s=(u1,	…,	un,	d1,	…,	dn)	where	ui,	di∊N	(natural)	
•  Each	replica	accepts	inc,	dec,	val,	and	⊔	(join)	operations	

–  inci:	update	s	to	s’	where	s’=(u1,	…,	ui+1,	…,	un,	d1,	…,	dn)	
–  deci:	update	s	to	s’	where	s’=(u1,	…,	un,	d1,	…,	di+1,	…,	dn)	
–  vali:	return	∑1≤j≤n	s.j	-	∑n+1≤j≤2n	s.j	
–  join:	s	⊔	s’	=	(max(u1,u1’),	…,	max(un,un’),	max(d1,d1’),	…,	max(dn,dn’))	

•  How	does	this	work?	
–  Both	inc	and	dec	will	inflate	the	value	on	the	lattice	
–  The	val	function	calculates	the	correct	value	by	doing	a	subtraction	
–  Eventually	all	replicas	will	converge	to	the	correct	value,	as	before	

Observed-Remove	Set	
•  The	OR-Set	supports	both	adding	and	removing	elements	

–  The	outcome	of	a	sequence	of	adds	and	removes	depends	only	
on	the	causal	history	and	conforms	to	the	sequential	
specification	of	a	set	

–  In	case	of	concurrent	add	and	remove,	the	add	has	precedence	

•  The	intuition	is	to	tag	each	added	element	uniquely	
–  The	tag	is	not	exposed	when	querying	the	set	content	
–  When	removing	an	element,	all	tags	are	removed	

•  Each	replica	stores	triples	(e,a,r)	where	e	is	the	element,	a	is	the	set	of	adds	and	
r	is	the	set	of	removes	

•  If	(e,a,r)	with	a-r≠{}	then	e	is	in	the	set	
–  All	updates	(both	adds	and	removes)	cause	monotonic	increases	in	(e,a,r)	

Observed-Remove	Set	
add(1)	

add(1)	

(1,{a},{})	

(1,{b},{})	

remove(1)	

(1,{b},{b})	

(1,{a,b},{b})	

(1,{a,b},{b})	

(1,{a,b},{b})	(1,{b},{})	

«	1	is	in	the	set	»	

«	1	is	in	the	set	»	

«	1	is	in	the	set	»	

27	

r1	

r2	

r3	

Other	CRDTs	
•  Many	CRDTs	have	been	invented	

–  Registers:	last-writer	wins,	multi-value	
–  Sets:	grow-only,	2P,	add-wins,	remove-wins	
– Maps,	Pairs	(including	recursive	versions)	
–  Counter:	unlimited,	restricted	≥0	(bounded)	
–  Graph:	directed,	monotonic	DAG,	edit	graph	
–  Sequence	/	List	

Comparison	CRDT	︎⟷	RSM	
•  In	the	course	we	have	now	seen	two	ways	to	define	

replicated	distributed	data	structures	
–  Replicated	State	Machine	(RSM)	approach	
–  CRDT	approach	

•  What	is	the	difference?	
–  RSM	approach	ensures	consistency	of	replicas	after	each	
update,	at	the	cost	of	needing	consensus	(e.g.,	Paxos	or	Raft)	

–  CRDT	approach	ensures	consistency	when	replicas	have	
received	the	same	set	of	updates,	which	needs	only	node-to-
node	communication	

What’s	the	catch?	
•  Many	companies	and	applications	are	using	CRDTs,	and	

their	number	is	growing	daily	
–  But	if	CRDTs	are	so	great,	why	isn’t	everybody	using	them?	

•  Trade-offs	for	using	CRDTs	
–  CRDTs	require	meta-data	to	ensure	monotonicity	and	causality,	
which	grows	with	the	number	of	replicas	

–  State-based	CRDTs	have	growing	state	(tombstones),	which	
requires	some	form	of	(unsynchronized)	garbage	collection	

–  Last-writer-wins	with	physical	clocks	undergoes	clock	skew	

Rest	of	the	lesson	
•  My	colleagues	Chris	and	Annette	will	now	explain	
two	important	directions	of	this	work:	

•  Lasp:	a	programming	language	and	platform	
based	on	strong	eventual	consistency	

•  Antidote:	a	causally	consistent	transactional	
database	based	on	strong	eventual	consistency	

Programming
Weak Synchronization
Models
Christopher S. Meiklejohn
Université catholique de Louvain, Belgium
Instituto Superior Técnico, Portugal

LIGHT	 ONE	

Convergent Objects 
Conflict-Free  
Replicated Data Types

2
SSS 2011

Conflict-Free  
Replicated Data Types

• Many types exist with different properties  
Sets, counters, registers, flags, maps

• Strong Eventual Consistency 
Instances satisfy SEC property per-object

• Bounded join-semilattices 
Formalized using bounded join-semilattices
where the merge operation is the join

3

Convergent Objects
Observed-Remove Set

4

RA

RB

RC

RA

RB

RC

{1}

(1, {a}, {})

add(1)

RA

RB

RC

{1}

(1, {a}, {})

add(1)

{1}

(1, {b}, {})

add(1)

RA

RB

RC

{1}

(1, {a}, {})

add(1)

{1}

(1, {b}, {})

add(1)

{}

(1, {b}, {b})

remove(1)

RA

RB

RC

{1}

(1, {a}, {})

add(1)

{1}

(1, {b}, {})

add(1)

{}

(1, {b}, {b})

remove(1)

{1}

{1}

{1}

(1, {a, b}, {b})

(1, {a, b}, {b})

(1, {a, b}, {b})

Convergence

reached.

Convergent Objects
Nondeterminism

10

RA

RB

RC

{1}

(1, {a}, {})

add(1)

{1}

(1, {b}, {})

add(1)

{}

(1, {b}, {b})

remove(1)

{1}

{1}

{1}

(1, {a, b}, {b})

(1, {a, b}, {b})

(1, {a, b}, {b})

RA

RB

RC

{1}

(1, {a}, {})

add(1)

{1}

(1, {b}, {})

add(1)

{}

(1, {b}, {b})

remove(1)

{1}

{1}

{1}

(1, {a, b}, {b})

(1, {a, b}, {b})

(1, {a, b}, {b})

Convergence

reached.

RA

RB

RC

{1}

(1, {a}, {})

add(1)

{1}

(1, {b}, {})

add(1)

{}

(1, {b}, {b})

remove(1)

{1}

{1}

{1}

(1, {a, b}, {b})

(1, {a, b}, {b})

(1, {a, b}, {b})

Desire:

The ability to reorder messages without impacting outcome.

RA {1}

(1, {a}, {})

{1}

(1, {a, b}, {a})

RB {1}

(1, {b}, {})

{1}

(1, {a, b}, {a})

{}

(1, {a}, {a})

RA {1}

(1, {a}, {})

{}

(1, {a, b}, {a, b})

RB {1}

(1, {b}, {})

{}

(1, {a, b}, {a, b})

{}

(1, {a, b}, {a, b})

add(1) remove(1)

add(1)

add(1)

add(1) remove(1)

RA {1}

(1, {a}, {})

{1}

(1, {a, b}, {a})

RB {1}

(1, {b}, {})

{1}

(1, {a, b}, {a})

{}

(1, {a}, {a})

RA {1}

(1, {a}, {})

{}

(1, {a, b}, {a, b})

RB {1}

(1, {b}, {})

{}

(1, {a, b}, {a, b})

{}

(1, {a, b}, {a, b})

add(1) remove(1)

add(1)

add(1)

add(1) remove(1)

Different
synchronization
schedules can
reach different

outcomes.

Convergence

reached.

RA {1}

(1, {a}, {})

{1}

(1, {a, b}, {a})

RB {1}

(1, {b}, {})

{1}

(1, {a, b}, {a})

{}

(1, {a}, {a})

RA {1}

(1, {a}, {})

{}

(1, {a, b}, {a, b})

RB {1}

(1, {b}, {})

{}

(1, {a, b}, {a, b})

{}

(1, {a, b}, {a, b})

add(1) remove(1)

add(1)

add(1)

add(1) remove(1)

Reordering
must be

compatible
with causality.

Each of these
removes differ
by their causal
“influences.”

Convergent Objects
Composition

17

RA {1}

(1, {a}, {})

{1}

(1, {a, b}, {a})

RB {1}
(1, {b}, {})

{1}

(1, {a, b}, {a})

{}

(1, {a}, {a})

add(1) remove(1)

add(1)

Replicated
set of naturals

across two nodes.

RA {1}

(1, {a}, {})

{1}

(1, {a, b}, {a})

RB {1}
(1, {b}, {})

{1}

(1, {a, b}, {a})

{}

(1, {a}, {a})

add(1) remove(1)

add(1)

Map
Process

\x.2x

F(RA) {2} {2}{}

F(RB) {2} ?

Map
Process

\x.2x

Map
Process

\x.2x

Map
Process

\x.2x

Map
Process

\x.2x

{2}

Map \x.2x
over a set of naturals.

RA {1}

(1, {a}, {})

{1}

(1, {a, b}, {a})

RB {1}
(1, {b}, {})

{1}

(1, {a, b}, {a})

{}

(1, {a}, {a})

add(1) remove(1)

add(1)

Map
Process

\x.2x

F(RA) {2} {2}{}

F(RB) {2} ?

Map
Process

\x.2x

Map
Process

\x.2x

Map
Process

\x.2x

Map
Process

\x.2x

{2}

One node…

RA {1}

(1, {a}, {})

{1}

(1, {a, b}, {a})

RB {1}
(1, {b}, {})

{1}

(1, {a, b}, {a})

{}

(1, {a}, {a})

add(1) remove(1)

add(1)

Map
Process

\x.2x

F(RA) {2} {2}{}

F(RB) {2} ?

Map
Process

\x.2x

Map
Process

\x.2x

Map
Process

\x.2x

Map
Process

\x.2x

{2}

…another node.

RA {1}

(1, {a}, {})

{1}

(1, {a, b}, {a})

RB {1}
(1, {b}, {})

{1}

(1, {a, b}, {a})

{}

(1, {a}, {a})

add(1) remove(1)

add(1)

Map
Process

\x.2x

F(RA) {2} {2}{}

F(RB) {2} ?

Map
Process

\x.2x

Map
Process

\x.2x

Map
Process

\x.2x

Map
Process

\x.2x

{2}

RA {1}

(1, {a}, {})

{1}

(1, {a, b}, {a})

RB {1}
(1, {b}, {})

{1}

(1, {a, b}, {a})

{}

(1, {a}, {a})

add(1) remove(1)

add(1)

Map
Process

\x.2x

F(RA) {2} {2}{}

F(RB) {2} ?

Map
Process

\x.2x

Map
Process

\x.2x

Map
Process

\x.2x

Map
Process

\x.2x

{2}
Nondeterministic

outcome.

RA {1}

(1, {a}, {})

{1}

(1, {a, b}, {a})

RB {1}
(1, {b}, {})

{1}

(1, {a, b}, {a})

{}

(1, {a}, {a})

add(1) remove(1)

add(1)

Map
Process

\x.2x

F(RA) {2} {2}{}

F(RB) {2} ?

Map
Process

\x.2x

Map
Process

\x.2x

Map
Process

\x.2x

Map
Process

\x.2x

{2}

Correct output
that’s seen all

updates.

RA {1}

(1, {a}, {})

{1}

(1, {a, b}, {a})

RB {1}
(1, {b}, {})

{1}

(1, {a, b}, {a})

{}

(1, {a}, {a})

add(1) remove(1)

add(1)

Map
Process

\x.2x

F(RA) {2} {2}{}

F(RB) {2} ?

Map
Process

\x.2x

Map
Process

\x.2x

Map
Process

\x.2x

Map
Process

\x.2x

{2}

“Earlier” value
that’s been

delayed.

Programming
Weak Synchronization
Models
Christopher S. Meiklejohn
Université catholique de Louvain, Belgium
Instituto Superior Técnico, Portugal

LIGHT	 ONE	

Convergent Programs
Lattice Processing

27
PPDP 2015

Lattice Processing
• Asynchronous dataflow with streams 

Combine and transform streams of inputs
into streams of outputs

• Convergent data structures 
Data abstraction (inputs/outputs) is the CRDT

• Confluence 
Provides composition that preserves the SEC
property

28

Lattice Processing
Confluence

29

A B
Map

Process
\x.2x

30

Sequential

specification.

A’

A’’

B’

B’’

Map
Process

\x.2x

Map
Process

\x.2x

A B
Map

Process
\x.2x

31

Replication

per node.

A’

A’’

B’

B’’

Map
Process

\x.2x

Map
Process

\x.2x

A B
Map

Process
\x.2x

32

Replication

per node.

A’

A’’

B’

B’’

Map
Process

\x.2x

Map
Process

\x.2x

A B
Map

Process
\x.2x

33

Replication

per node.

A’

A’’

B’

B’’

Map
Process

\x.2x

Map
Process

\x.2x

A B
Map

Process
\x.2x

34

One possible schedule….

A’

A’’

B’

B’’

Map
Process

\x.2x

Map
Process

\x.2x

A B
Map

Process
\x.2x

35
…another possible schedule.

A’

A’’

B’

B’’

Map
Process

\x.2x

Map
Process

\x.2x

A B
Map

Process
\x.2x

36

A B
Map

Process
\x.2x

37

All schedules equivalent
to sequential schedule.

A BF

38

Arbitrary

application.

Lattice Processing
Example

39

40

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

41

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

42

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

43

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

44

%% Create initial set.
S1 = declare(set),

%% Add elements to initial set and update.
update(S1, {add, [1,2,3]}),

%% Create second set.
S2 = declare(set),

%% Apply map operation between S1 and S2.
map(S1, fun(X) -> X * 2 end, S2).

Programming
Weak Synchronization
Models
Christopher S. Meiklejohn
Université catholique de Louvain, Belgium
Instituto Superior Técnico, Portugal

LIGHT	 ONE	

Processes
• Replicas as monotonic streams 

Each replica of a CRDT produces a monotonic
stream of states

• Monotonic processes 
Read from one or more input replica streams
and produce a single output replica stream

• Inflationary reads 
Read operation ensures that we only read
inflationary updates to replicas

46

Lattice Processing
Monotonic Streams

47

RA

{}

C1

{}

C2

{}

48

RA

{}

(1, {a}, {})

C1

(1, {a}, {})

{}

C2

{}

49

RA

{}

(1, {a}, {})

(1, {a, b}, {})

C1

(1, {a}, {})

{}

C2

(1, {b}, {})

{}

50

RA

{}

(1, {a}, {})

(1, {a, b}, {})

(1, {a, b}, {a})

C1

(1, {a}, {})

{}

(1, {a}, {a})

C2

(1, {b}, {})

{}

51

RA

{}

(1, {a}, {})

(1, {a, b}, {})

(1, {a, b}, {a})

C1

(1, {a}, {})

{}

(1, {a}, {a})

C2

(1, {b}, {})

{}

(1, {a, b}, {a})(1, {a, b}, {a}) (1, {a, b}, {a})

52

RA

{}

(1, {a}, {})

(1, {a, b}, {})

(1, {a, b}, {a})

C1

(1, {a}, {})

{}

(1, {a}, {a})

C2

(1, {b}, {})

{}

(1, {a, b}, {a})(1, {a, b}, {a}) (1, {a, b}, {a})

53

Clients can
operate with partial state…

RA

{}

(1, {a}, {})

(1, {a, b}, {})

(1, {a, b}, {a})

C1

(1, {a}, {})

{}

(1, {a}, {a})

C2

(1, {b}, {})

{}

(1, {a, b}, {a})(1, {a, b}, {a}) (1, {a, b}, {a})

54

… and synchronize
with their local replica.

Lattice Processing
Monotonic Processes

55

RA

{}

P1 F(RA)

{}

56

RA

{}

P1 F(RA)

{}strict_read({})

57

RA

{}

P1 F(RA)

{}strict_read({})

(1, {a}, {})

58

RA

{}

P1 F(RA)

{}strict_read({})

(1, {a}, {}) F((1, {a}, {}))

59

RA

{}

P1 F(RA)

{}strict_read({})

(1, {a}, {}) F((1, {a}, {})) (2, {a}, {})

60

Every time replica changes…

RA

{}

P1 F(RA)

{}strict_read({})

(1, {a}, {}) F((1, {a}, {})) (2, {a}, {})

61

….the process will compute a new result.

RA

{}

P1 F(RA)

{}strict_read({})

(1, {a}, {}) F((1, {a}, {})) (2, {a}, {})

strict_read((1, {a}, {})(1, {a}, {})

62

RA

{}

P1 F(RA)

{}strict_read({})

(1, {a}, {}) F((1, {a}, {})) (2, {a}, {})

strict_read((1, {a}, {})(1, {a}, {})

(1, {a}, {a}) F((1, {a}, {a})) (2, {a}, {a})

strict_read((1, {a}, {a})(1, {a}, {a})

63

RA

{}

P1 F(RA)

{}strict_read({})

(1, {a}, {})

(1, {a}, {})

(1, {a}, {a}) F((1, {a}, {a})) (2, {a}, {a})

strict_read((1, {a}, {a})(1, {a}, {a})

64

Omitted interleaving
does not sacrifice correctness.

Programming
Weak Synchronization
Models
Christopher S. Meiklejohn
Université catholique de Louvain, Belgium
Instituto Superior Técnico, Portugal

LIGHT	 ONE	

Convergent Programs
Lattice Processing

66
PPDP 2015

Lattice Processing
Map Example

67

RC

F(RC)

68

RC

F(RC) {2}

Map
Process

\x.2x

(2, {b}, {})

(1, {b}, {})

{1}

69

Transform element,
map metadata.

RC

F(RC) {2}

Map
Process

\x.2x

(2, {b}, {})

(1, {b}, {})

{1} {}

(1, {b}, {b})

{}

Map
Process

\x.2x

(2, {b}, {b})

70

RC

F(RC) {2}

Map
Process

\x.2x

(2, {b}, {})

(1, {b}, {})

{1} {}

(1, {b}, {b})

{}

Map
Process

\x.2x

(2, {b}, {b})

{1}

(1, {a, b}, {b})

{2}

Map
Process

\x.2x

(2, {a, b}, {b})

71

RC

F(RC) {2}

Map
Process

\x.2x

(2, {b}, {})

(1, {b}, {})

{1} {}

(1, {b}, {b})

{}

Map
Process

\x.2x

(2, {b}, {b})

{1}

(1, {a, b}, {b})

{2}

Map
Process

\x.2x

(2, {a, b}, {b})

{1}

{2}

72

Lattice Processing
Filter Example

73

RC

F(RC)

74

RC

F(RC) {1}

Filter
Process
odd(x)

(1, {b}, {})

(1, {b}, {})

{1}

75

Possible omit element,
map metadata.

RC

F(RC) {1}

Filter
Process
odd(x)

(1, {b}, {})

(1, {b}, {})

{1} {}

(1, {b}, {b})

{}

Filter
Process
odd(x)

(1, {b}, {b})

76

RC

F(RC) {1}

Filter
Process
odd(x)

(1, {b}, {})

(1, {b}, {})

{1} {}

(1, {b}, {b})

{}

Filter
Process
odd(x)

(1, {b}, {b})

{1}

(1, {a, b}, {b})

{1}

Filter
Process
odd(x)

(1, {a, b}, {b})

77

RC

F(RC) {1}

Filter
Process
odd(x)

(1, {b}, {})

(1, {b}, {})

{1} {}

(1, {b}, {b})

{}

Filter
Process
odd(x)

(1, {b}, {b})

{1}

(1, {a, b}, {b})

{1}

Filter
Process
odd(x)

(1, {a, b}, {b})

{1}

{1}

78

Lattice Processing
Fold Example

79

Fold Operation
• Morphism between CRDTs 

For example, from a CRDT set to a CRDT counter

• Restricted in expressiveness 
“Unordered” sets imply combiner must be
associative, commutative, idempotent

• Invertable 
Operations must have an inverse for operating
on “tombstone” values

80

RC

F(RC)

81

RC

F(RC) 1

Fold
Process

card

({(b, 1)},{})

(1, {b}, {})

{1}

82

Apply morphism and
transform element and metadata.

RC

F(RC) 1

Fold
Process

card

({(b, 1)},{})

(1, {b}, {})

{1} {}

(1, {b}, {b})

0

Fold
Process

card

({(b, 1)},{(b, 1)})

83

RC

F(RC) 1

Fold
Process

card

({(b, 1)},{})

(1, {b}, {})

{1} {}

(1, {b}, {b})

0

Fold
Process

card

({(b, 1)},{(b, 1)})

{1}

(1, {a, b}, {b})

1

Fold
Process

card

({(a, 1), (b, 1)},{(b, 1)})

84

RC

F(RC) 1

Fold
Process

card

({(b, 1)},{})

(1, {b}, {})

{1} {}

(1, {b}, {b})

0

Fold
Process

card

({(b, 1)},{(b, 1)})

{1}

(1, {a, b}, {b})

1

Fold
Process

card

({(a, 1), (b, 1)},{(b, 1)})

{1}

1

85

Lattice Processing
Union Example

86

A

Union
(A, B)

B

87

A

Union
(A, B)

B

{1}

Union
Process

(1, {a}, {})

(1, {a}, {})

{1}

88

A

Union
(A, B)

B

{1}

Union
Process

(1, {a}, {})

(1, {a}, {})

{1}

Union
Process

{1,2}

(1, {a}, {})
(2, {b}, {})

{2}

(2, {b}, {})

89

Join both metadata
and elements.

A

Union
(A, B)

B

{1}

Union
Process

(1, {a}, {})

(1, {a}, {})

{1}

Union
Process

{1,2}

(1, {a}, {})
(2, {b}, {})

{2}

(2, {b}, {})

(1, {a}, {a})
(2, {b}, {})

{}

(1, {a}, {a})

{2}

Union
Process

90

A

Union
(A, B)

B

{1}

Union
Process

(1, {a}, {})

(1, {a}, {})

{1}

Union
Process

{1,2}

(1, {a}, {})
(2, {b}, {})

{2}

(2, {b}, {})

(1, {a}, {a})
(2, {b}, {})

{}

(1, {a}, {a})

{2}

Union
Process

{}

{2}

{2}

91

Lattice Processing
Product Example

92

A

A X B

B

93

A

A X B

B

{}

Product
Process

{}

(1, {a}, {})

{1}

94

A

A X B

B

{}

Product
Process

{}

(1, {a}, {})

{1}

Product
Process

(1,2)

((1,2}, {(a, b)}, {})

{2}

(2, {b}, {})

95

Create new elements and
map metadata through.

A

A X B

B

{}

Product
Process

{}

(1, {a}, {})

{1}

Product
Process

(1,2)

((1,2}, {(a, b)}, {})

{2}

(2, {b}, {})

((1,2}, {(a, b)}, {(a, b)})

{}

(1, {a}, {a})

{}

Product
Process

96

A

A X B

B

{}

Product
Process

{}

(1, {a}, {})

{1}

Product
Process

(1,2)

((1,2}, {(a, b)}, {})

{2}

(2, {b}, {})

((1,2}, {(a, b)}, {(a, b)})

{}

(1, {a}, {a})

{}

Product
Process

{}

{}

{2}

97

Lattice Processing
Intersection Example

98

A

B

99

A

B

Product
Process

100

A

B

Product
Process

Filter
Process

101

A

B

Product
Process

Filter
Process

Map
Process

102

Programming
Weak Synchronization
Models
Christopher S. Meiklejohn
Université catholique de Louvain, Belgium
Instituto Superior Técnico, Portugal

LIGHT	 ONE	

Example Application
Advertisement Counter

104

Advertisement Counter
• Lower-bound invariant 

Advertisements are paid according to a minimum
number of impressions

• Clients will go offline 
Clients have limited connectivity and the system
still needs to make progress while clients are offline

• No lost updates 
All displayed advertisements should be accounted
for, with no lost updates

105

Advertisement Counter
Losing Updates

106

RA

RB

107

RA

RB

1

set(1)

108

RA

RB

1

set(1)

2

2

set(2)

set(2)

109

RA

RB

1

set(1)

2

2

set(2)

set(2)

2

2

max(2,2)

max(2,2)

110

RA

RB

1

set(1)

2

2

set(2)

set(2)

2

2

max(2,2)

max(2,2)

111

Incorrect value
is computed
because of

incompatible lattice.

Advertisement Counter
Application Flow

112

Server

Client

Client

113

Server

Client

Client

114

Client
reads state

from the server.

Server

Client

Client

115

Client
locally mutates

state.

Server

Client

Client

116

Client
pushes changes

back to
the server.

Server

Client

Client

117

Server

Client

Client

118

Server
enforces invariants

over state.

Server

Client

Client

119

Client retrieves
updated state
periodically.

Server

Client

Client

120

Clients
unable to communicate

may
violate invariant.

Advertisement Counter
Application Design

121

Ads

Contracts

Product Filter Map
Ads
X

Contracts

Ads
With

Contracts

Ads
To

Display

Asynchronous Dataflow

CountersCountersCountersCounter

Ads

Update
(Insert)

Application Initialization

Counter
Read

> 50,000

AdsUpdate
(Remove)

Epsilon-Invariant

Ads Map

Configure Invariant

Enforce Invariant

122

Ads

Contracts

Product Filter Map
Ads
X

Contracts

Ads
With

Contracts

Ads
To

Display

Asynchronous Dataflow

123

CountersCountersCountersCounter

Ads

Update
(Insert)

Application Initialization

124

Counter
Read

> 50,000

AdsUpdate
(Remove)

Epsilon-Invariant

Ads Map

Configure Invariant

Enforce Invariant

125

Counter
Read

> 50,000

AdsUpdate
(Remove)

Epsilon-Invariant

Ads Map

Configure Invariant

Enforce Invariant

126

Configure
invariants

for all of the
advertisements.

Counter
Read

> 50,000

AdsUpdate
(Remove)

Epsilon-Invariant

Ads Map

Configure Invariant

Enforce Invariant

127

Remove the
advertisement from

the list.

Advertisement Counter
• Completely monotonic 

Disabling advertisements and contracts are all
modeled through monotonic state growth

• Arbitrary distribution 
Use of convergent data structures allows
computational graph to be arbitrarily distributed

• Divergence 
Divergence is a factor of synchronization
period, concurrency, and throughput rate

128

Programming
Weak Synchronization
Models
Christopher S. Meiklejohn
Université catholique de Louvain, Belgium
Instituto Superior Técnico, Portugal

LIGHT	 ONE	

Programming
Weak Synchronization
Models
Christopher S. Meiklejohn
Université catholique de Louvain, Belgium
Instituto Superior Técnico, Portugal

LIGHT	 ONE	

Distributed Runtime
Anabranch

130
work-in-progress

Anabranch
• Layered approach 

Cluster membership and state dissemination for large clusters

• Delta-state synchronization  
Efficient incremental state dissemination and anti-entropy
mechanism [Almeida et al. 2016]

• Epsilon-invariants 
Lower-bound invariants, configurable at runtime

• Scalable 
Demonstrated high scalability in production Cloud
environments

131

Anabranch
Layered Approach

132

Layered Approach
• Backend 

Configurable persistence layer depending on
application.

• Membership 
Configurable membership protocol which can operate in
a client-server or peer-to-peer mode [Leitao et al. 2007]

• Broadcast (via Gossip, Tree, etc.) 
Efficient dissemination of both program state and
application state via gossip, broadcast tree, or hybrid
mode [Leitao et al. 2007]

133

Mobile Phone

Distributed Hash Table

Application
Language Execution

KV Store
KV Backend Membership

Broadcast Layer

Client/Server Peer-to-Peer

Mobile Phone

Distributed Hash Table

Application
Language Execution

KV Store
KV Backend Membership

Broadcast Layer

Client/Server Peer-to-Peer

Language
and applications.

Mobile Phone

Distributed Hash Table

Application
Language Execution

KV Store
KV Backend Membership

Broadcast Layer

Client/Server Peer-to-Peer

Storage
for CRDT state.

Mobile Phone

Distributed Hash Table

Application
Language Execution

KV Store
KV Backend Membership

Broadcast Layer

Client/Server Peer-to-Peer

State
dissemination.

Anabranch
Delta-state CRDTs

138

Delta-based Dissemination
• Delta-state based CRDTs 

Reduces state transmission for clients

• Operate locally 
Objects are mutated locally; delta’s buffered
locally and periodically gossiped

• Only fixed number of clients 
Clients resort to full state synchronization
when they’ve been partitioned too long

139

RC

BufferA

BufferB

RC

BufferA

BufferB

(1, {b}, {})

{1}

(1, {b}, {})

(1, {b}, {})

Buffer minimal
change representation…

RC

BufferA

BufferB

(1, {b}, {})

{1}

(1, {b}, {})

(1, {b}, {})

{}

(1, {b}, {b})

(1, {b}, {b})

(1, {b}, {b})

RC

BufferA

BufferB

(1, {b}, {})

{1}

(1, {b}, {})

(1, {b}, {})

{}

(1, {b}, {b})

(1, {b}, {b})

(1, {b}, {b})

{2}

(1, {b}, {b})
(2, {c}, {})

(2, {c}, {})

(2, {c}, {})

…then, disseminate state
in causal order
to neighbors.

RC

BufferA

BufferB

(1, {b}, {})

{1}

(1, {b}, {})

(1, {b}, {})

{}

(1, {b}, {b})

(1, {b}, {b})

(1, {b}, {b})

{2}

(1, {b}, {b})
(2, {c}, {})

(2, {c}, {})

(2, {c}, {})

{1, 2}

(1, {a, b}, {b})
(2, {c}, {})

{1, 2}

(1, {a}, {})

(1, {a}, {})

Only ship inflation
from incoming state.

Anabranch
Scalability

145

Scalability
• 1024+ nodes 

Demonstrated scalability to 1024 nodes in Amazon
cloud computing environment

• Modular approach 
Many of the components built and can be operated
outside of Lasp to improve scalability of Erlang

• Automated and repeatable 
Fully automated deployment, scenario execution,
log aggregation and archival of experimental results

146

Just-right	consistency:	
Antidote	

Guest	lecture	
	

Peter	Van	Roy	
Christopher	Meiklejohn	

Annette	Bieniusa	

Outline	
Part	I:			Consistency	in	geo-replicated	data	stores	

Part	II:		Consistency	and	invariant	preservation	

Part	III:	Antidote	

Part	I	

Consistency	in	geo-replicated		
data	stores	

Interactive	distributed	applications	

•  Shared	mutable	data	
•  High-availability	expected	
•  Low	latency	is	business	critical	

Cloud	Databases	

Centralized	deployment	

Cloud	Databases:	
Centralized	deployment	

•  Clients	read	and	write	against	
the	primary	copy	

•  High	latency	
•  No	fault	tolerance	

Cloud	Databases:		
Geo-replication	

A	

•  Clients	interact	with	closest	replica	
•  Low	latency	between	clients	and	replicas	
•  Fault-tolerance	and	high	availability	

B	

C	

Cloud	Databases	

A	

What	happens	if	B	can’t	communicate	with	other	replicas?		

B	

C	

Cloud	Databases	

A	

B	

C	

Option	1:	Preserve	availability	
•  Local	operation	only,	asynchronous	

propagation	
•  Stale	reads	and	write	conflicts	will	

occur	without	synchronization	

Cloud	Databases	

A	

B	

C	

Option	2:	Preserve	Consistency	
•  Synchronize	each	operation	
•  Maintains	“single	system	image”	
•  Over-conservative,	but	simple	semantics!	

Consistency-Availability	trade-off	

CP:	Consistent-under-Partition	
•  Cross-replica	consistency	
•  High	latency	and	less	

availability,	especially	under	
faults	

AP:	Available-under-Partition	
•  Allows	(temporary)	state	

divergence	
•  Low	latency,	high	availability		
•  Weaker	guarantees	

Strong	Serializability	

Snapshot	Isolation	(SI)	

Parallel	SI	

Non-monotonic	SI	
Causal	

Eventual	Consistency	

CAP	

Cloud	storage:	AP	systems	

•  To	achieve	low	latency,	high	availability	and	
throughput,	systems	have	to	forego	strong	
consistency	

- Complex	semantics	
- Low-level	programming	
interface	
-  Key-value	map	

- No	transactional	support	
- No	relational	mappings	

Cloud	storage:	CP	Systems	

•  Cloud	provides	rely	on	expensive	infrastructure	to	
provide	more	guarantees	

- Strong	consistency	
- Support	for	transactions	
and	SQL	queries	
- Coordination	across	sites	
- ...	still	high	latency	

Alternative:	AntidoteDB	
•  AP	data	store		
•  Provides	strongest	form	of	consistency	that	is	highly	
available	
•  Use	coordination	only	if	its	unavoidable	
- Allows	for	Just-right-consistency	

•  Supports	programmer	with	comprehensive	interface	
- Abstract	data-types	(CRDTs)	and	transactions	

Conclusion:	Part	I	
•  Choice	of	consistency	has	consequences	for	system	

availability	

•  CP	systems	provide	strong	consistency,	but	require	expensive	
infrastructure	to	provide	high	availability	and	introduce	
higher	latencies	

•  AP	systems	opt	for	high	availability,	but	provide	weaker	
consistency	guarantees	and	increase	complexity	in	data	
management	

Part	II	

Consistency	and		
Invariant	Preservation	

Which	consistency	does	my	
application	need?	

•  Many	applications	have	constraints	defined	on	the	data	that	might	
not	hold	when	operations	execute	concurrently.	

•  No	“one-size-fits-all”	consistency	model	
–  Choosing	either	model	will	either	be	over-conservative	or	risk	anomalies	

•  Idea:	Tailor	consistency	choices	based	on	application-level	invariants	
for	each	operation	

•  AP-compatible	invariants	
–  Invariants	that	only	require	“one	way”	communications	

•  CAP-sensitive	invariants	
–  Involve	operations	that	require	coordination	
–  “two	way”	communication	invariants	

AP-compatible	invariants	
•  No	synchronization	
– Updates	occur	locally	without	blocking	

•  Asynchronous	operation	
– Updates	are	fast,	available,	and	exploit	concurrency	

•  CRDTs	are	AP-compatible	data	model	
•  Compatible	invariants	
–  Relative	order	and	joint	update	invariants	can	be	
preserved	

Use	Case:	FMK	
•  Fælles	Medicinkort:	Prescription	management	in	the	

Danish	national	healthcare	system	

•  create-prescription	
Create	prescription	for	patient,	doctor,	pharmacy	

•  update-medication	
Add	or	increase	medication	to	prescription	

•  process-prescription	
Deliver	a	medication	by	a	pharmacy	

•  get-*-prescriptions	
Query	functions	to	return	information	about	
prescriptions	

AP-compatible:	Relative	order	

RA	

RB	

•  Maintain	program	order	implication	invariant:	
	“OnIy	if	prescription	exists,	medication	can	be	adapted”	

•  Transmit	in	the	right	order!		

create-prescription(p1,patient1,med1)	 update-medication(p1,med2)	

Ordering	is	respected	at	other	replicas	

AP-compatible:	Relative	order	

RA	

RB	

•  Maintain	program	order	implication	invariant:	
	“OnIy	if	prescription	exists,	medication	can	be	adapted”	

•  Transmit	in	the	right	order!		

create-prescription(p1,patient1,med1)	 update-medication(p1,med2)	

Out	of	order	propagation	violates	invariant!	

Causal	consistency	
•  No	ordering	anomalies:	u	⟶	v	∧	visible(v)	⟹	visible(u)	
•  Respect	causality	

–  Ensure	updates	are	delivered	in	the	causal	order	
[Lamport	78]	

•  Strongest	available	model	
–  Always	able	to	return	some	compatible	version	for	an	data	
object	

•  Referential	integrity	
–  Causal	consistency	is	sufficient	for	providing	referential	integrity	
in	an	AP	database	

AP-compatible:	Joint	updates	

RA	

RB	

create	P1	 update	doctor	(P1)	

Client	

update	patient(P1)	 update	pharmacy(P1)	

Updates	are	causally	consistent	

Clients	can	observe	inconsistent	state!	
Missing	update	to	patient	and	pharmacy!	

AP-compatible:	Joint	updates	

RA	

RB	

create	P1	
update	doctor	(P1)	
update	patient(P1)	
update	pharmacy(P1)	

T1	

Client	

Group	updates	into	
atomic	operations	
(aka	transactions)	

Updates	reflect	“All-Or-Nothing”	property	
through	snapshots.	

T2	

Transactions	are	delivered	in	
causal	order	

Transactional	Causal+	Consistency	
•  Causal	consistency	
•  Transactional	reads	

–  Clients	observe	a	consistent	snapshot	
•  Transactional	writes+	

–  Updates	become	observable	all-or-nothing	
–  Concurrent	updates	converge	to	same	value	for	all	replicas	

CAP-sensitive	invariants	

RA(2)	

RB(2)	

RC(2)	

T1	

process-prescription(-1)	

RA(1)	

RB(1)	

RC(1)	

Replica	A	checks	precondition		
and	delivers	medication.	

Do	not	over-deliver	medication!	

CAP-sensitive	invariants	

RA(2)	

RB(2)	

RC(2)	

T1	

process-prescription(-1)	

RA(4)	

RB(4)	

RC(4)	

Replica	A	checks	
precondition	and	
delivers	medication.	

T2	

process-prescription(+3)	

Replica	C	adds	three	
medications.	

Precondition	is	stable	
under	concurrent	addition.	

CAP-sensitive	invariants	

RA(2)	

RB(2)	

RC(2)	

T1	

process-prescription(-1)	

RA(-1)	

RB(-1)	

RB(-1)	

Replica	A	checks	
precondition	and	
delivers	medication.	

T2	

process-prescription(-2)	

Replica	C	checks	
precondition	and	
delivers	medication.	

Precondition	is	NOT	stable	
under	concurrent	fulfillment.	

Conclusion:	Part	II	
•  Strong	consistency	is	often	too	conservative	

– Many	operations	are	safe	without	cross-site	coordination	
•  Causal	consistency	ensures	that	relative	order	
invariants	are	preserved	transparently	

•  Transactional	causal	consistency	provides	additionally	
atomicity	and	isolation	

•  What	about	operations	that	are	really	unsafe	under	
weak	consistency?	
–  Require	coordination	(but	only	sporadically)	

Part	III	

Antidote	

Antidote	
•  AP	data	store	for	geo-replication	in	the	cloud	
•  Provides	strongest	form	of	consistency	that	is	highly	available,	namely	
transactional	causal	consistency	(Cure	protocol)	

•  Supports	programmer	with	comprehensive	interface	
-  Abstract	data-types	(CRDTs),	including	maps,	sets,	sequences,	counters	
-  Transactions	operate	on	a	consistent	snapshot	
-  Atomic	update	(e.g.,	allows	non-normalised	data)	

•  Use	coordination	only	if	its	unavoidable	(bounded	counters)	
-  Allows	for	Just-right-consistency	

Architecture	

Transaction	Manager	

Materializer	

Log	 InterDC	
Replication	

Node1	

Node3	

Node2	

DC1	

DC2	

DC3	

Clients	

Object	API	
let connection = connect(8087, "localhost")

connection.defaultBucket = ”bucket1”

let s1 = connection.set(”programmingLanguages”)
await connection.update(s1.addAll([”Java”,”Erlang"]))

let res = await s1.read()

Establish connection	

Select bucket	

Create new
CRDT and
perform update	

Read current value	

Transaction	API	
let set = connection.set(”programmingLanguages")
{

let tx = await connection.startTransaction()
await tx.update(set.remove("Java"))
await tx.update(set.add("Kotlin"))
await tx.commit()

}{
await connection.update([
set.remove("Java"),
set.add("Kotlin")])

}

Variant 2:
static transaction /
batch updates	

Variant 1:
dynamic transaction	

Conclusion:	Part	III	
•  Antidote	provides	Just-right	consistency	

–  Transactional	Causal	Consistency	for	AP-compatible	invariants	
–  Bounded	Counters	for	CAP-sensitive	invariants	

•  Supports	programmer	with	rich	interface	
–  Transactions	with	snapshot	reads	and	atomic	updates	
–  CRDTs	avoid	conflicting	updates	

•  Documentation	
–  http://antidotedb.org		

•  Code	repository	
–  https://github.com/SyncFree/antidote	

Conclusion	of	the	lesson	
•  We	have	now	arrived	at	the	end	of	this	lesson	on	how	to	program	a	

distributed	system	with	weak	synchronization	
–  Synchronization:	eventual	node-to-node	communication	
–  Consistency	model:	strong	eventual	consistency	

•  We	have	shown	three	important	applications	of	this	idea	
–  CRDTs,	Lasp,	and	Antidote	

•  We	are	convinced	that	the	approach	has	a	promising	future	
1.  Edge	computing	
2.  Synchronization-free	services	

Different	consistency	models	
•  Strong	consistency:	the	system	obeys	linearizability	

–  Easy	to	program	but	can	be	very	inefficient	

•  Eventual	consistency:	the	system	can	support	many	concurrent	operations	
«	in	flight	»	
–  Efficient	execution	but	hard	to	program	because	of	potential	conflicts	

•  Convergent	consistency:	the	system	can	support	many	concurrent	operations,	
plus	it	obeys	strong	eventual	consistency	
–  Both	efficient	execution	and	easy	to	program	
–  We	cannot	do	CAP	but	we	can	do	AP	+	♢C	=	available,	partition-tolerant,	and	convergent	

1.	Edge	computing	
•  Distributed	systems	«	at	the	edge	»	are	omnipresent	

–  Internet	of	Things	and	mobile	devices	far	outnumber	data	center	nodes	
–  Edge	networks	are	highly	dynamic	for	computation	and	communication	

•  Synchronization-free	programming	is	well-matched	to	edge	systems	
–  Convergent	computation	layer	with	a	hybrid	gossip	communication	layer	

•  It	is	naturally	tolerant	to	faults	in	edge	systems	
–  Partitions	
–  Message	loss	and	reordering	
–  Nodes	going	offline	and	online	
–  Node	crashes	

Slows	down	convergence	

Tolerant	as	long	as	state	exists	
on	at	least	one	node	

2.	Synchronization-free	services	(1)	
•  We	are	using	CRDTs	as	the	basis	for	a	
programming	framework	and	a	transactional	
database	
–  Lasp	and	Antidote	

•  But	the	synchronization-free	approach	can	be	
applied	much	more	generally	
–  Let	me	introduce	this	with	a	parable...	

Today	

Future	

•  Like	friction,	synchronization	is	
both	desirable	and	undesirable	

•  Consider	a	car	on	a	highway	
•  The	car	needs	friction:	it	moves	

because	the	tires	grip	the	road	
•  But	the	car’s	motor	avoids	

friction:	the	motor	should	be	as	
frictionless	as	possible,	otherwise	
it	will	heat	up	and	wear	out	

Parable	of	the	car	(1)	
Synchronization	is	like	friction	

Motor	prefers	zero	friction	

Tires	need	friction	

•  Synchronization	is	only	needed	at	the	system’s	
interface	with	the	external	world	

•  Internally	the	services	should	avoid	synchronization	

Parable	of	the	car	(2)	
Distributed	computing	system	

Service	

Service	

Service	
Interface	 Interface	Consider	a	distributed	

computing	system	made	
of	services	connected	
together	

Friction	is	only	n
eeded	externally

,	

so	the	tires	can	g
rip	the	road	

Internally,	the	m
otor	avoids	fricti

on	

Internal	
world	

External	
world	

Synchronization-free	services	(2)	
•  The	system	has	a	synchronization	boundary	
–  Inside	this	boundary,	all	services	are	
synchronization-free	

– Synchronization	is	only	needed	at	the	boundary	
•  Services	are	inside	this	boundary	
–  Internal	state	of	each	service	obeys	SEC	
– Service	API	has	asynchronous	streams,	in	and	out	
	

Going	forward!	
•  In	this	lesson	have	introduced	the	basic	concepts	of	
programming	with	weak	synchronization 	 		
– We	presented	data	structures	(CRDTs),	a	programming	
framework	(Lasp),	and	a	transactional	database	(Antidote)	

•  Our	future	work	will	focus	on	edge	computing	and	
synchronization-free	services	
–  LightKone	H2020	project	(lightkone.eu)	
–  This	project	is	working	on	both	Lasp	and	Antidote	

Lasp	and	Antidote	resources	
•  Documentation	
– https://lasp-lang.org	
– http://antidotedb.org		

•  Code	repository	
– https://github.com/lasp-lang	
– https://github.com/SyncFree/antidote	

Bibliography	
•  Marc	Shapiro,	Nuno	Preguiça,	Carlos	Baquero,	and	Marek	Zawirski.		Conflict-free	

replicated	data	types.		Technical	Report	RR-7687.		INRIA	(July	2011).	
•  Christopher	Meiklejohn	and	Peter	Van	Roy.		Lasp:	A	language	for	distributed,	

coordination-free	programming.		In	PPDP.		ACM,	184–195	(2015).	
•  SyncFree:	Large-scale	computation	without	synchronisation.		European	FP7	project,	

2013–2016.		syncfree.lip6.fr	
•  LightKone:	Lightweight	computation	for	networks	at	the	edge.		European	H2020	

project,	2017–2019.		lightkone.eu	
•  Deepthi	Devaki	Akkoorath,	Alejandro	Z.	Tomsic,	Manuel	Bravo,	Zhongmiao	Li,	Tyler	

Crain,	Annette	Bieniusa,	Nuno	M.	Preguiça,	and	Marc	Shapiro.		Cure:	strong	semantics	
meets	high	availability	and	low	latency.		In	ICDCS.	405–414	(2016).	

•  Peter	Bailis,	Aaron	Davidson,	Alan	Fekete,	Ali	Ghodsi,	Joseph	M.	Hellerstein,	and	Ion	
Stoica.		Highly	available	transactions:	virtues	and	limitations.		In	PVLDB	7(3).	181–192	
(2013).	

	11-Slides1-Peter
	12-Slides2-Peter
	13-Slides3-Peter
	21-Slides1-Chris
	22-Slides2-Chris
	23-Slides3-Chris
	24-Slides4-Chris
	25-Slides5-Chris
	26-Slides6-Chris
	31-Slides1-Annette
	32-Slides2-Annette
	33-Slides3-Annette
	41-Slides4-Peter

