Failure Detectors

Seif Haridi
haridi@kth.se
Modeling Timing Assumptions

- Tedious to model eventual synchrony (partial synchrony)
- Timing assumptions mostly needed to detect failures
 - Heartbeats, timeouts, etc...

- Use **failure detectors** to encapsulate timing assumptions
 - Black box giving **suspicions** regarding process failures
 - Accuracy of suspicions depends on model strength
Implementation of Failure Detectors

Typical Implementation

- Periodically exchange *heartbeat* messages
- *Timeout* based on *worst case* message round trip
- If timeout, then *suspect* process
- If received message from suspected node, *revise suspicion* and increase time-out
Completeness and Accuracy

- Two important types of requirements
 - 1. Completeness requirements
 - Requirements regarding actually crashed nodes
 - When do they have to be detected?
 - 2. Accuracy requirements
 - Requirements regarding actually alive nodes
 - When are they allowed to be suspected?
Completeness and Accuracy

- In asynchronous system
 - Is it possible to achieve completeness?
 - Yes, suspect all processes

- Is it possible to achieve accuracy?
 - Yes, refrain from suspecting any process!

- Is it possible to achieve both?
 - NO!

- Failure detectors are feasible only in synchronous and partially synchronous systems
Requirements: Completeness

- **Strong Completeness**
 - Every crashed process is *eventually* detected by all *correct* processes

- There exists a time after which all crashed processes are detected by all correct processes
 - We only study failure detectors with this property

- Is it realistic? [d]
Requirements: Completeness

● **Weak Completeness**
 - Every crashed process is *eventually* detected by some *correct* process

● There exists a time after which all crashed nodes are detected by some correct nodes
 - Possibly detected by *different* correct nodes
Requirements: Accuracy

- **Strong Accuracy**
 - No correct process is ever suspected
- For all process p and q,
 - p does not suspect q, unless q has crashed
- Is it realistic? [d]
 - Strong assumption, requires synchrony
 - I.e. no premature timeouts
Requirements: Accuracy

- **Weak Accuracy**
 - There exists a correct process which is never suspected by any process

- There exists a correct node P
 - All nodes will never suspect P

- Still strong assumption
 - One node is always “well-connected”
Requirements: Accuracy

- **Eventual Strong Accuracy**
 - After some finite time the FD provides *strong accuracy*

- **Eventual Weak Accuracy**
 - After some finite time the detector provides *weak accuracy*

- After some time, the requirements are fulfilled
 - Prior to that, any behavior is possible!

- Quite weak assumptions [d]
 - When can eventual weak accuracy be achieved?
Failure Detectors Classes
Four Main Established Detectors

- Four detectors with strong completeness
 - Perfect Detector (P)
 - Strong Accuracy
 - Strong Detector (S)
 - Weak Accuracy

Synchronous Systems

- Eventually Perfect Detector (◊P)
 - Eventual Strong Accuracy
- Eventually Strong Detector (◊S)
 - Eventual Weak Accuracy

Partially Synchronous Systems
Four Less Interesting Detectors

- Four detectors with **weak completeness**
 - Detector Q
 - Strong Accuracy
 - Weak Detector (W)
 - Weak Accuracy

 \[\{\text{Synchronous Systems}\}\]

- Eventually Detector Q (◊Q)
 - Eventual Strong Accuracy
- Eventually Weak Detector (◊W)
 - Eventual Weak Accuracy

 \[\{\text{Partially Synchronous Systems}\}\]

S. Haridi, KTHx ID2203.1x
Prefect Failure
Detector P
Interface of Perfect Failure Detector

- **Module:**
 - Name: PerfectFailureDetector, instance P

- **Events:**
 - Indication (out): \(\langle P, \text{Crash} \mid p_i \rangle \)
 - Notifies that process \(p_i \) has crashed

- **Properties:**
 - \textit{PFD1 (strong completeness)}
 - \textit{PFD2 (strong accuracy)}
Properties of P

• Properties:
 • \textit{PFD1 (strong completeness)}
 • Eventually every process that \textit{crashes} is permanently detected by every correct process

 \textit{(liveness)}
 • \textit{PFD2 (strong accuracy)}
 • If a node \textit{p} is detected by any node, then \textit{p} has crashed

 \textit{(safety)}
 • Safety or Liveness?
Implementing P in Synchrony

- Assume synchronous system
 - Max transmission delay between 0 and δ time units

- Each process every γ time units
 - Send <heartbeat> to all processes

- Each process waits $\gamma + \delta$ time units
 - If did not get <heartbeat> from p_i
 - Detect <crash | p_i>
Correctness of P

- **PFD1 (strong completeness)**
 - A crashed process doesn’t send `<heartbeat>`
 - Eventually every process will notice the absence of `<heartbeat>`
Correctness of P

- **PFD2 (strong accuracy)**
 - Assuming local computation is negligible
 - Maximum time between 2 heartbeats
 - $\gamma + \delta$ time units
 - If alive, all process will receive hb in time
 - No inaccuracy
Eventually Prefect Failure Detector ♦ P
Interface of ◇P

- **Module:**
 - Name: EventuallyPerfectFailureDetector, instance ◇P

- **Events:**
 - **Indication:** ◇P, suspect | p_i
 - Notifies that process p_i is suspected to have crashed
 - **Indication:** ◇P, restore | p_i
 - Notifies that process p_i is not suspected anymore

- **Properties:**
 - PFD1 (*strong completeness*)
 - PFD2 (*eventual strong accuracy*). Eventually, no correct process is suspected by any correct process
Implementing \(P \)

- Assume partially synchronous system
 - Eventually some bounds exists

- Each process every \(\gamma \) time units
 - Send <heartbeat> to all processes

- Each process waits \(T \) time units
 - If did not get <heartbeat> from \(p_i \)
 - Indicate <suspect | \(p_i \)> if \(p_i \) is not in suspected set
 - Put \(p_i \) in suspected set

 - If get HB from \(p_i \), and \(p_i \) is in suspected
 - Indicate <restore | \(p_i \)> and remove \(p_i \) from suspected
 - Increase timeout \(T \)
Correctness of $\Diamond P$

- **EPFD1 (strong completeness)**
 - Same as before

- **EPFD2 (eventual strong accuracy)**
 - Each time p is inaccurately suspected by a correct q
 - Timeout T is increased at q
 - Eventually system becomes synchronous, and T becomes larger than the unknown bound δ ($T > \gamma + \delta$)
 - q will receive HB on time, and never suspect p again
Leader Election
Leader Election versus Failure Detection

- Failure detection captures failure behavior
 - Detect *failed* processes

- Leader election (LE) also captures failure behavior
 - Detect *correct* processes (a single *and* same for all)

- Formally, *leader election is a FD*
 - Always suspects all processes except one (leader)
 - Ensures some properties regarding that process
Leader Election vs. Failure Detection

We will define two leader election abstraction and algorithms

- Leader election (LE) which “matches” P
- Eventual leader election (Ω) which “matches” $\diamondsuit P$
Matching LE and P

- **P’s properties**
 - \(P \) always eventually detects failures (strong completeness)
 - \(P \) never suspects correct nodes (strong accuracy)

- **Completeness of LE**
 - Informally: eventually ditch **failed leaders**
 - Formally: **eventually** every correct process trusts **some** correct node

- **Accuracy of LE**
 - Informally: never ditch a correct leader
 - Formally: No two **correct** processes trust different **correct** nodes
 - Is this really accuracy? [d]
 - Yes! Assume two processes trust different correct processes
 - One of them must eventually switch, i.e. leaving a correct node
LE desirable properties

- LE always eventually detects failures
 - Eventually every correct process trusts some correct node
- LE is always accurate
 - No two correct processes trust different correct processes
- But the above two permit the following
 - But P_1 is “inaccurately” leaving a correct leader

```
p_1 -> elect p_3  
    |    
    v
  elect p_3

p_2
  |  
  v 
  elect p_3

p_3
  |  
  v 
  ✗
```
LE desirable properties

- To avoid “inaccuracy” we add
 - Local Accuracy:
 - If a process is elected leader by p_i, all previously elected leaders by p_i have crashed

Not allowed, as p_1 is correct

```
<table>
<thead>
<tr>
<th></th>
<th>elect $p_3$</th>
<th>elect $p_1$</th>
<th>elect $p_2$</th>
<th>elect $p_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

S. Haridi, KTHx ID2203.1x
Interface of Leader Election

- **Module:**
 - Name: LeaderElection (le)

- **Events:**
 - **Indication:** \(\text{leLeader} \mid p_i\)
 - Indicate that leader is node \(p_i\)

- **Properties:**
 - **LE1 (eventual completeness).** Eventually every correct process trusts some correct process

 - **LE2 (agreement).** No two correct processes trust different correct processes

 - **LE3 (local accuracy).** If a process is elected leader by \(p_i\), all previously elected leaders by \(p_i\) have crashed
Implementing LE

- Globally rank all processes
 - E.g. rank ordering $\text{rank}(p_1) > \text{rank}(p_2) > \text{rank}(p_3) > \ldots$
- $\text{maxrank}(S)$
 - The process $p \in S$, with the largest rank
Implementing LE

- LeaderElection, instance le
- Uses:
 - PerfectFailureDetector, instance P
- upon event \langle le, Init \rangle do
 - suspected := \emptyset
 - leader := \bot
- upon event \langle P, Crash |p \rangle do
 - suspected := suspected \cup \{p\}
- upon leader \neq \text{maxrank}(\Pi \setminus \text{suspected}) do
 - leader := \text{maxrank}(\Pi \setminus \text{suspected})
 - trigger \langle le, Leader | leader \rangle
Eventual Leader Election Ω
Matching Ω and $\Diamond P$

- $\Diamond P$ weakens P by only providing eventual accuracy
- Weaken LE to Ω by only guaranteeing eventual agreement

LE Properties:

- **LE1** *(eventual completeness).* Eventually every correct node trusts some correct node
- **LE2** *(agreement).* No two correct nodes trust different correct nodes
- **LE3** *(local accuracy).* If a node is elected leader by p_i, all previously elected leaders by p_i have crashed
Interface of Eventual Leader Election

• **Module:**
 - Name: EventualLeaderElection (Ω)

• **Events:**
 - Indication (out): $\langle \Omega$, Trust $\mid p_i \rangle$
 - Notify that p_i is trusted to be leader

• **Properties:**
 - $\textit{ELD1 (eventual completeness).}$ Eventually every correct node trusts some correct node
 - $\textit{ELD2 (eventual agreement).}$ Eventually no two correct nodes trust different correct node
Eventual Leader Detection Ω

- In crash-stop process abstraction
 - Ω is obtained directly from $\Diamond P$

- Each process trusts the process with highest rank among all processes not suspected by $\Diamond P$

- Eventually, exactly one correct process will be trusted by all correct processes
Implementing Ω

- EventualLeaderElection, instance Ω
- **Uses:** EventuallyPerfectFailureDetector, instance $◊P$
- **upon event** $\langle \Omega, \text{Init} \rangle$ **do**
 - suspected := \emptyset; leader := \bot
- **upon event** $\langle ◊P, \text{Suspect} \mid p \rangle$ **do**
 - suspected := suspected $\cup \{p\}$
- **upon event** $\langle ◊P, \text{Restore} \mid p \rangle$ **do**
 - suspected := suspected $\setminus \{p\}$
- **upon** leader $\neq \text{maxrank}(\Pi \setminus \text{suspected})$ **do**
 - leader := maxrank($\Pi \setminus \text{suspected}$)
 - **trigger** $\langle \Omega, \text{Trust} \mid \text{leader} \rangle$
Ω for Crash Recovery

- Can we elect a recovered process? [d]
 - Not if it keeps crash-recovering infinitely often!
- Basic idea
 - Count number of times you’ve crashed (epoch)
 - Distribute your epoch periodically to all nodes
 - Elect leader with lowest (epoch, rank(node))
- Implementation
 - Similar to ◊P and Ω for crash-stop
 - Piggyback epoch with heartbeats
 - Store epoch, upon recovery load epoch and increment
Reductions
Reductions

- We say $X \leq Y$ if
 - X can be solved given a solution of Y
 - Read X is reducible to Y
 - Informally, problem X is easier or as hard as Y
Preorders, partial orders...

- A relation \(\preceq \) is a preorder on a set \(A \) if for any \(x,y,z \) in \(A \)
 - \(x \preceq x \) (reflexivity)
 - \(x \preceq y \) and \(y \preceq z \) implies \(x \preceq z \) (transitivity)

- Difference between preorder and partial order
 - Partial order is a preorder with anti-symmetry
 - \(x \leq y \) and \(y \leq x \) implies \(x = y \)
 - For preorder two different objects \(x \) and \(y \) can be symmetric
 - It is possible that \(x \preceq y \) and \(y \preceq x \) for two different \(x \) and \(y \), \((x \neq y) \)
Reducibility \preceq is a preorder

- \preceq is a preorder
 - **Reflexivity.** $X \preceq X$
 - X can be solved given a solution to X
 - **Transitivity.** $X \preceq Y$ and $Y \preceq Z$ implies $X \preceq Z$
 - Since $Y \preceq Z$, use implementation of Z to implement Y
 use that implementation of Y to implement X
 - Hence we implemented X from Z’s implementation

- \preceq is not anti-symmetric, thus not a partial order
 - Two different X and Y can be equivalent
 - Distinct problems X and Y can be solved from the other’s solution
Shortcut definitions

- We write $X \cong Y$ if
 - $X \preceq Y$ and $Y \preceq X$
 - Problem X is equivalent to Y

- We write $X \prec Y$ if
 - $X \preceq Y$ and not $X \cong Y$
 - or equivalently, $X \preceq Y$ and not $Y \preceq X$
 - Problem X is strictly weaker than Y, or
 - Problem Y is strictly stronger than X
Example

- It is true that \(\Diamond P \leq P \)
 - Given P, we can implement \(\Diamond P \)
 - We just return P’s suspicions.
 - P always satisfies \(\Diamond P \)’s properties
- In fact, \(\Diamond P < P \) in the asynchronous model
 - Because not \(P \leq \Diamond P \) is true
- Reductions common in computability theory
 - If \(X \leq Y \), and if we know X is impossible to solve
 - Then Y is impossible to solve too
 - If \(\Diamond P \leq P \), and some problem Z can be solved with \(\Diamond P \)
 - Then Z can also be solved with P
Weakest FD for a problem?

- Often P is used to solve problem X
 - But P is not very practical (needs synchrony)
 - Is X a “practically” solvable problem?
 - Can we implement X with ◊P?
 - Sometimes a weaker FD than P will not solve X
 - Proven using reductions
Weakest FD for a problem

- Common proof to show P is weakest FD for X
 - Prove that $P \preceq X$
 - I.e. P can be solved given X
- If $P \preceq X$ then $◊P < X$
 - Because we know $◊P < P$ and $P \simeq X$, i.e. $◊P < P \simeq X$
 - If we can solve X with $◊P$, then
 - we can solve P with $◊P$, which is a contradiction
How are the detectors related
Trivial Reductions

- Strongly complete
 - ♦P ≤ P
 - P is always strongly accurate, thus also eventually strongly accurate
 - ♦S ≤ S
 - S is always weakly accurate, thus also eventually weakly accurate
 - S ≤ P
 - P is always strongly accurate, thus also always weakly accurate
 - ♦S ≤ ♦P
 - ♦P is always eventually strongly accurate, thus also always eventually weakly accurate
Trivial Reductions (2)

- Weakly complete
 - ◊Q ≤ Q
 - Q is always strongly accurate, thus also eventually strongly accurate
 - ◊W ≤ W
 - W is always weakly accurate, thus also eventually weakly accurate
 - W ≤ Q
 - Q is always strongly accurate, thus also always weakly accurate
 - ◊W ≤ ◊Q
 - ◊Q is always eventually strongly accurate, thus also always eventually weakly accurate
Completeness “Irrelevant”

Weak completeness **trivially reducible** to strong

Strong completeness **reducible** to weak

- i.e. can get strong completeness from weak
 \[P \preceq Q, \ S \preceq W, \ \diamond P \preceq \diamond Q, \ \diamond S \preceq \diamond W, \]

- They’re **equivalent**!
 \[P \simeq Q, \ S \simeq W, \ \diamond P \simeq \diamond Q, \ \diamond S \simeq \diamond W \]

<table>
<thead>
<tr>
<th>Completeness</th>
<th>Strong</th>
<th>Weak</th>
<th>Eventual Strong</th>
<th>Eventual Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>P</td>
<td>S</td>
<td>\diamond P</td>
<td>\diamond S</td>
</tr>
<tr>
<td>Weak</td>
<td>Q</td>
<td>W</td>
<td>\diamond Q</td>
<td>\diamond W</td>
</tr>
</tbody>
</table>

S. Haridi, KTHx ID2203.1x
Proving Irrelevance of Completeness

- Weak completeness ensures
 - every crash is eventually detected by some correct node

- Simple idea
 - Every process q broadcast suspicions Susp periodically
 - upon event receive $<S,q>$
 - $\text{Susp} := (\text{Susp} \cup S) - \{q\}$
 - Every crash is eventually detected by all correct p
 - Can this violate some accuracy properties?

Also works like a heartbeat
Maintaining Accuracy

- Strong and Weak Accuracy aren’t violated

Strong accuracy
- No one is ever inaccurate
- Our reduction never spreads inaccurate suspicions

Weak accuracy
- Everyone is accurate about at least one process p
 - No one will spread inaccurate information about p
Maintaining Eventual Accuracy

- Eventual Strong and Eventual Weak Accuracy aren’t violated

- Proof is almost same as previous page
 - Eventually all faulty processes crash
 - Inaccurate suspicions undone
 - Will get heartbeat from correct nodes and revise (\(-\{q\}\))
Relation between FDs

\[\diamond P \rightarrow P \rightarrow Q \rightarrow W \rightarrow W \rightarrow S \rightarrow \diamond S \]

Equivalent reducible to
Omega also a FD

• Can we implement ◊S with Ω? [d]
 • I.e. is it true that ◊S ≤ Ω
 • Suspect all nodes except the leader given by Ω
 • Eventual Completeness
 ▪ All nodes are suspected except the leader (which is correct)
 • Eventual Weak Accuracy
 ▪ Eventually, one correct node (leader) is not suspected by anyone
 • Thus, ◊S ≤ Ω
Ω equivalent to $\diamond S$ (and $\diamond W$)

- We showed $\diamond S \preceq \Omega$, it turns out we also have $\Omega \preceq \diamond S$
 - I.e. $\Omega \simeq \diamond S$

- The famous CHT (Chandra, Hadzilucas, Toueg) result
 - If consensus implementable with detector D
 Then Omega can be implemented using D
 - I.e. if $\text{Consensus} \preceq D$, then $\Omega \preceq D$
 - Since $\diamond S$ can be used to solve consensus, we have $\Omega \preceq D$
 - Implies $\diamond W$ is weakest detector to solve consensus
Relation between FDs (2)

\[P \iff Q \iff W \iff S \iff \Omega \]

equivalent reducible to
Combining Abstractions
Combining Abstractions

- **Fail-stop** (synchronous)
 - Crash-stop process model
 - Perfect links + Perfect failure detector (P)

- **Fail-silent** (asynchronous)
 - Crash-stop process model
 - Perfect links

- **Fail-noisy** (partially synchronous)
 - Crash-stop process model
 - Perfect links + Eventually Perfect failure detector (◊P)

- **Fail-recovery**
 - Crash-recovery process model
 - Stubborn links + ...
The rest of course

- Assume crash-stop system with a perfect failure detector (fail-stop)
 - Give algorithms

- Try to make a weaker assumption
 - Revisit the algorithms