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Binary search

Recall the example from Lecture 1: how to search in sorted data
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This is an example of binary search. We will have more in this video

2 / 6



Binary search

Recall the example from Lecture 1: how to search in sorted data

A
b

el
so

n

A
h

o

B
ro

o
k

s

C
or

m
en

D
ij

k
st

ra

E
ck

el

F
or

ǐs
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ö

d
el

G
ra

h
a

m

H
o

ar
e

K
er

n
ig

h
a

n

K
n

u
th

L
a

m
p

or
t

M
cC

o
n

n
el

l

M
ey

er

N
or

vi
g

P
a

p
a

d
im

it
ri

o
u

P
a

ta
sh

n
ik

R
it

ch
ie

R
u

ss
el

S
et

h
i

S
ed

g
ew

ic
k

S
k

ie
n

a

S
p

o
ls

k
y

S
tr

o
u

st
ru

p

S
u

ss
m

a
n

T
a

n
en

b
a

u
m

T
u

ri
n

g

W
ir

th

This is an example of binary search. We will have more in this video

2 / 6



Binary search – Problem to solve

A very general form of binary search

I Given a function F : D → C , such that:

I There exists a totally ordered set S equipped with an average-of-two operation

I We will write it Avg(a, b) for arguments a and b
I Avg(a, b) should be between a and b and should not be equal to neither a nor b,

unless there is no element of S between a and b

I D is a bounded subset of S : D = {s | s ∈ S ,Dmin ≤ S ,S ≤ Dmax}
I Simply speaking, a piece of S between Dmin and Dmax

I C = {−1, 0,+1} with the following meanings:
I −1: “too early”
I 0: “just in time”
I +1: “too late”

I Monotonicity: Whenever a < b, F (a) ≤ F (b)

I Need to find x ∈ D such that F (x) = 0

I Or, if impossible, find x and y as near as possible, such that F (x) = −1, F (y) = 1
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Binary search – Problem examples

I Given a function F : D → C , such that:
I There exists a totally ordered set S equipped with an Avg(a, b) operation
I D is a bounded subset of S : D = {s | s ∈ S ,Dmin ≤ S ,S ≤ Dmax}
I C = {−1 (“too early”), 0 (”just in time”),+1 (“too late”)}
I Monotonicity: Whenever a < b, F (a) ≤ F (b)

I Need to find x ∈ D such that F (x) = 0
I Or, if impossible, find x , y as near as possible, such that F (x) = −1, F (y) = 1
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I Need to find x ∈ D such that F (x) = 0
I Or, if impossible, find x , y as near as possible, such that F (x) = −1, F (y) = 1

Example: Find where q is in a sorted array

I D = [1;N]: the set of array indices, ordered naturally

I Avg(a, b) = b(a + b)/2c
I F (x): “0” if q = x , “−1” if x < q, “+1” if x > q

I If no such element, “0” is infeasible: then you will find where to insert q
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Binary search: Algorithm

function BinarySearch(F , Avg, Dmin, Dmax)
L← Dmin, R ← Dmax, Vmin ← F (L), Vmax ← F (R)
if Vmin = 1 then return 〈Null, Dmin〉 end if
if Vmax = −1 then return 〈Dmax,Null〉 end if
if Vmin = 0 then return 〈Dmin, Dmin〉 end if
if Vmax = 0 then return 〈Dmax, Dmax〉 end if
for ever do

M ← Avg(L,R)
if M = L or M = R then return 〈L,R〉 end if
v ← F (M)
if v = 0 then return 〈M,M〉 end if
if v = −1 then L← M else R ← M end if

end for
end function
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Binary search: Properties

Termination

I Guaranteed to terminate if D is finite

I Proof: [L,R] shrinks at least by one item on every iteration

Correctness

I Loop invariant: F (L) = −1, F (R) = 1

I Zeros are always between → will be found if exist

I Nonexisting zeros: will report a point where −1 switches to 1

Running time

I Strongly depends on properties of Avg
I If Avg is a “real” average, the running time is O(logD)

I the size of [L;R) range is divided by two on every iteration
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