. ° .
e.c.0%0
~.o:o:ofo’
. [] []

L] (]

ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 3: Sorting and Search Algorithms
Lecture 10: Introduction to binary search

Maxim Buzdalov
Saint Petersburg 2016

Binary search

" ITMO UNIVERSITY

Recall the example from Lecture 1: how to search in sorted data

Dijkstra

Sussman

2/6

Binary search

" ITMO UNIVERSITY

Recall the example from Lecture 1: how to search in sorted data

Dijkstra

Sussman

2/6

Binary search

" ITMO UNIVERSITY

Recall the example from Lecture 1: how to search in sorted data

Dijkstra

Sussman

2/6

Binary search

 ITMO UNIVERSITY

Recall the example from Lecture 1: how to search in sorted data

Dijkstra

Sussman

2/6

Binary search

 ITMO UNIVERSITY

Recall the example from Lecture 1: how to search in sorted data

Dijkstra

Sussman

This is an example of binary search. We will have more in this video

2/6

ITMO UNIVERSITY Binary search — Problem to solve

A very general form of binary search

3/6

ITMO UNIVERSITY Binary search — Problem to solve

A very general form of binary search
» Given a function F : D — C, such that:

3/6

ITMO UNIVERSITY Binary search — Problem to solve

A very general form of binary search

» Given a function F : D — C, such that:
» There exists a totally ordered set S equipped with an average-of-two operation

3/6

ITMO UNIVERSITY Binary search — Problem to solve

A very general form of binary search
» Given a function F : D — C, such that:
» There exists a totally ordered set S equipped with an average-of-two operation
> We will write it AvG(a, b) for arguments a and b

> AvaG(a, b) should be between a and b and should not be equal to neither a nor b,
unless there is no element of S between a and b

3/6

ITMO UNIVERSITY

Binary search — Problem to solve

A very general form of binary search
» Given a function F : D — C, such that:
» There exists a totally ordered set S equipped with an average-of-two operation

> We will write it AvG(a, b) for arguments a and b

> AvaG(a, b) should be between a and b and should not be equal to neither a nor b,
unless there is no element of S between a and b

» D is a bounded subset of S: D ={s|s€ S, Dnin < S5,S < Dimax}
» Simply speaking, a piece of S between Dmin and Dmax

3/6

ITMO UNIVERSITY Binary search — Problem to solve

A very general form of binary search

» Given a function F : D — C, such that:

» There exists a totally ordered set S equipped with an average-of-two operation
> We will write it AvG(a, b) for arguments a and b
> AvaG(a, b) should be between a and b and should not be equal to neither a nor b,

unless there is no element of S between a and b

» D is a bounded subset of S: D ={s|s€ S, Dnin < S5,S < Dimax}
» Simply speaking, a piece of S between Dmin and Dmax

» C={-1,0,+1} with the following meanings:
» —1: “too early”
» 0: “justin time”
> +1: “too late”

3/6

ITMO UNIVERSITY Binary search — Problem to solve

A very general form of binary search

» Given a function F : D — C, such that:

» There exists a totally ordered set S equipped with an average-of-two operation
> We will write it AvG(a, b) for arguments a and b
> AvaG(a, b) should be between a and b and should not be equal to neither a nor b,

unless there is no element of S between a and b

» D is a bounded subset of S: D ={s|s€ S, Dnin < S5,S < Dimax}
» Simply speaking, a piece of S between Dmin and Dmax

» C={-1,0,+1} with the following meanings:
» —1: “too early”
» 0: “justin time”
> +1: “too late”

» Monotonicity: Whenever a < b, F(a) < F(b)

3/6

ITMO UNIVERSITY Binary search — Problem to solve

A very general form of binary search
» Given a function F : D — C, such that:
» There exists a totally ordered set S equipped with an average-of-two operation

> We will write it AvG(a, b) for arguments a and b
> AvaG(a, b) should be between a and b and should not be equal to neither a nor b,
unless there is no element of S between a and b

» D is a bounded subset of S: D ={s|s€ S, Dnin < S5,S < Dimax}
» Simply speaking, a piece of S between Dmin and Dmax

» C={-1,0,+1} with the following meanings:
» —1: “too early”
» 0: “justin time”
> +1: “too late”

» Monotonicity: Whenever a < b, F(a) < F(b)

» Need to find x € D such that F(x) =0

3/6

ITMO UNIVERSITY Binary search — Problem to solve

A very general form of binary search
» Given a function F : D — C, such that:
» There exists a totally ordered set S equipped with an average-of-two operation

> We will write it AvG(a, b) for arguments a and b
> AvaG(a, b) should be between a and b and should not be equal to neither a nor b,
unless there is no element of S between a and b

» D is a bounded subset of S: D ={s|s€ S, Dnin < S5,S < Dimax}
» Simply speaking, a piece of S between Dmin and Dmax

» C={-1,0,+1} with the following meanings:
» —1: “too early”
» 0: “justin time”
> +1: “too late”

» Monotonicity: Whenever a < b, F(a) < F(b)

» Need to find x € D such that F(x) =0

» Or, if impossible, find x and y as near as possible, such that F(x) = -1, F(y) =1

3/6

ITMO UNIVERSITY Binary search — Problem examples

» Given a function F : D — C, such that:

» There exists a totally ordered set S equipped with an Avc(a, b) operation
D is a bounded subset of S: D ={s|s € S,Dmin < 5,5 < Diax}
C ={-1 ("too early”),0 ("just in time"), +1 ("too late")}
Monotonicity: Whenever a < b, F(a) < F(b)
» Need to find x € D such that F(x) =0

» Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) =1

v vy

4/6

ITMO UNIVERSITY Binary search — Problem examples

» Given a function F : D — C, such that:

» There exists a totally ordered set S equipped with an Avc(a, b) operation
D is a bounded subset of S: D ={s|s € S,Dmin < 5,5 < Diax}
C ={-1 ("too early”),0 ("just in time"), +1 ("too late")}
Monotonicity: Whenever a < b, F(a) < F(b)
» Need to find x € D such that F(x) =0

» Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) =1

v vy

Example: Find where g is in a sorted array

4/6

ITMO UNIVERSITY Binary search — Problem examples

» Given a function F : D — C, such that:
» There exists a totally ordered set S equipped with an Avc(a, b) operation
» D is a bounded subset of S: D ={s|s€S,Dnin <S5,5 < Diax}
» C={-1("too early”),0 ("just in time"),+1 (“too late")}
» Monotonicity: Whenever a < b, F(a) < F(b)
» Need to find x € D such that F(x) =0

» Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) =1

Example: Find where g is in a sorted array
» D = [1; N]: the set of array indices, ordered naturally
» Avc(a,b) = [(a+ b)/2]
> F(x): "0" ifg=x, "~1"ifx<gq “+1" ifx> g

4/6

ITMO UNIVERSITY Binary search — Problem examples

» Given a function F : D — C, such that:
» There exists a totally ordered set S equipped with an Avc(a, b) operation
» D is a bounded subset of S: D ={s|s€S,Dnin <S5,5 < Diax}
» C={-1("too early”),0 ("just in time"),+1 (“too late")}
» Monotonicity: Whenever a < b, F(a) < F(b)
» Need to find x € D such that F(x) =0

» Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) =1

Example: Find where g is in a sorted array
» D = [1; N]: the set of array indices, ordered naturally
» Avc(a,b) = [(a+ b)/2]
> F(x): "0" ifg=x, "~1"ifx<gq “+1" ifx> g

> If no such element, “0" is infeasible: then you will find where to insert g

4/6

ITMO UNIVERSITY Binary search — Problem examples

» Given a function F : D — C, such that:

» There exists a totally ordered set S equipped with an Avc(a, b) operation
D is a bounded subset of S: D ={s|s € S,Dmin < 5,5 < Diax}
C ={-1 ("too early”),0 ("just in time"), +1 ("too late")}
Monotonicity: Whenever a < b, F(a) < F(b)
» Need to find x € D such that F(x) =0

» Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) =1

v vy

Example: Find first occurence of g in a sorted array

4/6

ITMO UNIVERSITY Binary search — Problem examples

» Given a function F : D — C, such that:
» There exists a totally ordered set S equipped with an Avc(a, b) operation
» D is a bounded subset of S: D ={s|s€S,Dnin <S5,5 < Diax}
» C={-1("too early”),0 ("just in time"),+1 (“too late")}
» Monotonicity: Whenever a < b, F(a) < F(b)
» Need to find x € D such that F(x) =0

» Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) =1

Example: Find first occurence of g in a sorted array
» D = [1; N]: the set of array indices, ordered naturally
» Avc(a,b) = [(a+ b)/2]
» F(x): “0" never, "—1"if x<gq, “+1" if x > gq

4/6

ITMO UNIVERSITY Binary search — Problem examples

» Given a function F : D — C, such that:
» There exists a totally ordered set S equipped with an Avc(a, b) operation
» D is a bounded subset of S: D ={s|s€S,Dnin <S5,5 < Diax}
» C={-1("too early”),0 ("just in time"),+1 (“too late")}
» Monotonicity: Whenever a < b, F(a) < F(b)
» Need to find x € D such that F(x) =0

» Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) =1

Example: Find first occurence of g in a sorted array
» D = [1; N]: the set of array indices, ordered naturally
» Avc(a,b) = [(a+ b)/2]
» F(x): “0" never, "—1"if x<gq, “+1" if x > gq
» But first check if F(y) =gq...

4/6

ITMO UNIVERSITY Binary search — Problem examples

» Given a function F : D — C, such that:

» There exists a totally ordered set S equipped with an Avc(a, b) operation
D is a bounded subset of S: D ={s|s € S,Dmin < 5,5 < Diax}
C ={-1 ("too early”),0 ("just in time"), +1 ("too late")}
Monotonicity: Whenever a < b, F(a) < F(b)
» Need to find x € D such that F(x) =0

» Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) =1

v vy

Example: Find a root of a monotonically growing function f

4/6

ITMO UNIVERSITY Binary search — Problem examples

» Given a function F : D — C, such that:
» There exists a totally ordered set S equipped with an Avc(a, b) operation
» D is a bounded subset of S: D ={s|s€S,Dnin <S5,5 < Diax}
» C={-1("too early”),0 ("just in time"),+1 (“too late")}
» Monotonicity: Whenever a < b, F(a) < F(b)
» Need to find x € D such that F(x) =0

» Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) =1

Example: Find a root of a monotonically growing function f
» D = [min; max]: the segment of R which we are interested in
» Avc(a,b) = (a+ b)/2
» F(x): “0" if f(x) =0, “=1"if f(x) <0, “+1" if f(x) >0

4/6

ITMO UNIVERSITY Binary search — Problem examples

» Given a function F : D — C, such that:
» There exists a totally ordered set S equipped with an Avc(a, b) operation
» D is a bounded subset of S: D ={s|s€S,Dnin <S5,5 < Diax}
» C={-1("too early”),0 ("just in time"),+1 (“too late")}
» Monotonicity: Whenever a < b, F(a) < F(b)
» Need to find x € D such that F(x) =0
» Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) =1

Example: Find a root of a monotonically growing function f
» D = [min; max]: the segment of R which we are interested in
» Avc(a,b) = (a+ b)/2
» F(x): “0" if f(x) =0, “=1"if f(x) <0, “+1" if f(x) >0
» Warning: you are unlikely to find the root exactly. ..

4/6

TMO UNIVERSITY Binary search: Algorithm

function BINARYSEARCH(F, AVG, Dmin, Dmax)
L < Duin, R < Dmax, Vmin < F(L), Vimax < F(R)
if Viiin = 1 then return (NULL, Dy,;,) end if
if Vinax = —1 then return (D, NULL) end if
if Viiin = 0 then return (Dpyin, Dpin) end if
(D

if Vimax = 0 then return (Dpax, Dmax) end if
for ever do
M + Avc(L, R)
if M =L or M = R then return (L, R) end if
v« F(M)

if v =0 then return (M, M) end if
if v=—1then L + M else R + M end if
end for
end function

5/6

TMO UNIVERSITY Binary search: Algorithm

function BINARYSEARCH(F, AVG, Dmin, Dmax)
L < Duin, R < Dmax, Vimin < F(L), Vinax < F(R) > First evaluate endpoints
if Viiin = 1 then return (NULL, Dy,;,) end if
if Vinax = —1 then return (D, NULL) end if
if Viiin = 0 then return (Dpyin, Dpin) end if
(D

if Vimax = 0 then return (Dpax, Dmax) end if
for ever do
M + Avc(L, R)
if M =L or M = R then return (L, R) end if
v« F(M)

if v =0 then return (M, M) end if
if v=—1then L + M else R + M end if
end for
end function

5/6

TMO UNIVERSITY Binary search: Algorithm

function BINARYSEARCH(F, AVG, Dmin, Dmax)
L < Duin, R < Dmax, Vimin < F(L), Vimax < F(R) > First evaluate endpoints
if Viiin = 1 then return (NULL, Dy,;,) end if > If true, no zeros at all
if Vinax = —1 then return (D, NULL) end if
if Viiin = 0 then return (Dpyin, Dpin) end if
(D

if Vimax = 0 then return (Dpax, Dmax) end if
for ever do
M + Avc(L, R)
if M =L or M = R then return (L, R) end if
v« F(M)

if v =0 then return (M, M) end if
if v=—1then L + M else R + M end if
end for
end function

5/6

TMO UNIVERSITY Binary search: Algorithm

function BINARYSEARCH(F, AVG, Dmin, Dmax)
L < Duin, R < Dmax, Vimin < F(L), Vimax < F(R) > First evaluate endpoints
if Viiin = 1 then return (NULL, Dy,;,) end if > If true, no zeros at all
if Vinax = —1 then return (D, NULL) end if > If true, no zeros at all
if Viiin = 0 then return (Dpyin, Dpin) end if
(D

if Vimax = 0 then return (Dpax, Dmax) end if
for ever do
M «+ Avc(L, R)
if M =L or M = R then return (L, R) end if
v« F(M)

if v =0 then return (M, M) end if
if v=—1then L + M else R + M end if
end for
end function

5/6

TMO UNIVERSITY Binary search: Algorithm

function BINARYSEARCH(F, AVG, Dmin, Dmax)
L < Duin, R < Dmax, Vimin < F(L), Vimax < F(R) > First evaluate endpoints

if Viiin = 1 then return (NULL, Dy,;,) end if > If true, no zeros at all
if Vinax = —1 then return (D, NULL) end if > If true, no zeros at all
if Viiin = 0 then return (Dpyin, Dpin) end if > If true, zero is found
if Vimax = 0 then return (Dpax, Dmax) end if
for ever do

M + Avc(L, R)

if M =L or M = R then return (L, R) end if

v < F(M)

if v =0 then return (M, M) end if
if v=—1then L + M else R + M end if
end for
end function

5/6

TMO UNIVERSITY Binary search: Algorithm

function BINARYSEARCH(F, AVG, Dmin, Dmax)
L < Duin, R < Dmax, Vimin < F(L), Vimax < F(R) > First evaluate endpoints

if Viiin = 1 then return (NULL, Dy,;,) end if > If true, no zeros at all
if Vinax = —1 then return (D, NULL) end if > If true, no zeros at all
if Viiin = 0 then return (Dpyin, Dpin) end if > If true, zero is found
if Vimax = 0 then return (Dpax, Dmax) end if > If true, zero is found
for ever do

M + Avc(L, R)

if M =L or M = R then return (L, R) end if

v < F(M)

if v =0 then return (M, M) end if
if v=—1then L + M else R + M end if
end for
end function

5/6

TMO UNIVERSITY Binary search: Algorithm

function BINARYSEARCH(F, AVG, Dmin, Dmax)
L < Duin, R < Dmax, Vimin < F(L), Vimax < F(R) > First evaluate endpoints

if Viiin = 1 then return (NULL, Dy,;,) end if > If true, no zeros at all
if Vinax = —1 then return (D, NULL) end if > If true, no zeros at all
if Viiin = 0 then return (Dpyin, Dpin) end if > If true, zero is found
if Vimax = 0 then return (Dpax, Dmax) end if > If true, zero is found
for ever do > Invariant: F(L) = -1, F(R)=1

M + Avc(L, R)

if M =L or M = R then return (L, R) end if

v < F(M)

if v =0 then return (M, M) end if
if v=—1then L + M else R + M end if
end for
end function

5/6

TMO UNIVERSITY Binary search: Algorithm

function BINARYSEARCH(F, AVG, Dmin, Dmax)
L < Duin, R < Dmax, Vimin < F(L), Vimax < F(R) > First evaluate endpoints

if Viiin = 1 then return (NULL, Dy,;,) end if > If true, no zeros at all
if Vinax = —1 then return (D, NULL) end if > If true, no zeros at all
if Viiin = 0 then return (Dpyin, Dpin) end if > If true, zero is found
if Vimax = 0 then return (Dpax, Dmax) end if > If true, zero is found
for ever do > Invariant: F(L) = -1, F(R)=1
M + Avc(L, R) > Getting new query point
if M =L or M = R then return (L, R) end if
v < F(M)

if v =0 then return (M, M) end if
if v=—1then L + M else R + M end if
end for
end function

5/6

TMO UNIVERSITY Binary search: Algorithm

function BINARYSEARCH(F, AVG, Dmin, Dmax)
L < Duin, R < Dmax, Vimin < F(L), Vimax < F(R) > First evaluate endpoints

if Viiin = 1 then return (NULL, Dy,;,) end if > If true, no zeros at all

if Vinax = —1 then return (D, NULL) end if > If true, no zeros at all

if Viiin = 0 then return (Dpyin, Dpin) end if > If true, zero is found

if Vimax = 0 then return (Dpax, Dmax) end if > If true, zero is found

for ever do > Invariant: F(L) = -1, F(R)=1
M + Avc(L, R) > Getting new query point
if M =L or M =R then return (L,R) end if > (L, R) empty — no zeros
v < F(M)

if v =0 then return (M, M) end if
if v=—1then L + M else R + M end if
end for
end function

5/6

TMO UNIVERSITY Binary search: Algorithm

function BINARYSEARCH(F, AVG, Dmin, Dmax)
L < Duin, R < Dmax, Vimin < F(L), Vimax < F(R) > First evaluate endpoints

if Viiin = 1 then return (NULL, Dy,;,) end if > If true, no zeros at all
if Vinax = —1 then return (D, NULL) end if > If true, no zeros at all
if Viiin = 0 then return (Dpyin, Dpin) end if > If true, zero is found
if Vimax = 0 then return (Dpax, Dmax) end if > If true, zero is found
for ever do > Invariant: F(L) = -1, F(R)=1
M + Avc(L, R) > Getting new query point
if M=Lor M =R then return (L,R) end if > (L, R) empty — no zeros
v < F(M) > Evaluating M

if v =0 then return (M, M) end if
if v=—1then L + M else R + M end if
end for
end function

5/6

TMO UNIVERSITY Binary search: Algorithm

function BINARYSEARCH(F, AVG, Dmin, Dmax)
L < Duin, R < Dmax, Vimin < F(L), Vimax < F(R) > First evaluate endpoints

if Viiin = 1 then return (NULL, Dy,;,) end if > If true, no zeros at all

if Vinax = —1 then return (D, NULL) end if > If true, no zeros at all

if Viiin = 0 then return (Dpyin, Dpin) end if > If true, zero is found

if Vimax = 0 then return (Dpax, Dmax) end if > If true, zero is found

for ever do > Invariant: F(L) = -1, F(R)=1
M + Avc(L, R) > Getting new query point
if M=Lor M =R then return (L,R) end if > (L, R) empty — no zeros
v < F(M) > Evaluating M
if v =0 then return (M, M) end if > Direct hit!
if v=—1then L + M else R + M end if

end for

end function

5/6

* ITMO UNIVERSITY

function BINARYSEARCH(F, AVG, Dmin, Dmax)

L < Duin, R < Dmax, Vmin < F(L), Vimax < F(R)
if Viiin = 1 then return (NULL, Dy,;,) end if

(
if Vinax = —1 then return (D, NULL) end if
if Viiin = 0 then return (Dpyin, Dpin) end if
if Vimax = 0 then return (Dpax, Dmax) end if
for ever do

M + Avc(L, R)

if M =L or M = R then return (L, R) end if

v« F(M)
if v =0 then return (M, M) end if
if v=—1then L + M else R + M end if
end for
end function

Binary search: Algorithm

> First evaluate endpoints
> If true, no zeros at all
> If true, no zeros at all

> If true, zero is found
> If true, zero is found

> Invariant: F(L) = -1, F(R)=1
> Getting new query point
> (L, R) empty — no zeros

> Evaluating M
> Direct hit!

> “Too early”: use right part

5/6

* ITMO UNIVERSITY

function BINARYSEARCH(F, AVG, Dmin, Dmax)

L < Duin, R < Dmax, Vmin < F(L), Vimax < F(R)
if Viiin = 1 then return (NULL, Dy,;,) end if
Drmax, NULL) end if
Dmma m|n> end if
Diax, Dmax) end if

> Invariant: F(L) = -1, F(R)=1
> Getting new query point
> (L, R) empty — no zeros

if Vinin = 0 then return
if Vihax = 0 then return
for ever do

M + Avc(L, R)

(
if Vinax = —1 then return (
(
(

if M =L or M = R then return (L, R) end if

v« F(M)
if v =0 then return (M, M) end if

if v=—1then L + M else R +— M end if

end for
end function

Binary search: Algorithm

> First evaluate endpoints
> If true, no zeros at all
> If true, no zeros at all

> If true, zero is found
> If true, zero is found

> Evaluating M
> Direct hit!

> “Too early”: use right part
> “Too late”: use left part

5/6

ITMO UNIVERSITY Binary search: Properties

Termination

6/6

ITMO UNIVERSITY Binary search: Properties

Termination

» Guaranteed to terminate if D is finite

6/6

ITMO UNIVERSITY Binary search: Properties

Termination

» Guaranteed to terminate if D is finite

» Proof: [L, R] shrinks at least by one item on every iteration

Correctness

6/6

ITMO UNIVERSITY Binary search: Properties

Termination

» Guaranteed to terminate if D is finite

» Proof: [L, R] shrinks at least by one item on every iteration
Correctness

» Loop invariant: F(L) = -1, F(R) =1

6/6

ITMO UNIVERSITY Binary search: Properties

Termination

» Guaranteed to terminate if D is finite

» Proof: [L, R] shrinks at least by one item on every iteration
Correctness

» Loop invariant: F(L) = -1, F(R) =1

» Zeros are always between — will be found if exist

6/6

ITMO UNIVERSITY Binary search: Properties

Termination

» Guaranteed to terminate if D is finite

» Proof: [L, R] shrinks at least by one item on every iteration
Correctness

» Loop invariant: F(L) = -1, F(R) =1

» Zeros are always between — will be found if exist

» Nonexisting zeros: will report a point where —1 switches to 1

Running time

6/6

ITMO UNIVERSITY Binary search: Properties

Termination

» Guaranteed to terminate if D is finite

» Proof: [L, R] shrinks at least by one item on every iteration
Correctness

» Loop invariant: F(L) = -1, F(R) =1

» Zeros are always between — will be found if exist

» Nonexisting zeros: will report a point where —1 switches to 1
Running time

» Strongly depends on properties of Ava

6/6

ITMO UNIVERSITY Binary search: Properties

Termination

» Guaranteed to terminate if D is finite

» Proof: [L, R] shrinks at least by one item on every iteration
Correctness

» Loop invariant: F(L) = -1, F(R) =1

» Zeros are always between — will be found if exist

» Nonexisting zeros: will report a point where —1 switches to 1
Running time

» Strongly depends on properties of Ava
» If AvG is a “real” average, the running time is O(log D)
» the size of [L; R) range is divided by two on every iteration

6/6

